Figure 6-20

Notch-sensitivity charts for steels and UNS A92024-T wrought aluminum alloys subjected to reversed bending or reversed axial loads. For larger notch radii, use the values of q corresponding to the r = 0.16-in (4-mm) ordinate. (*From George Sines* and J. L. Waisman (eds.), Metal Fatigue, McGraw-Hill, New York. Copyright © 1969 by The McGraw-Hill Companies, Inc. Reprinted by permission.)

Figure 6-21

Notch-sensitivity curves for materials in reversed torsion. For larger notch radii, use the values of q_{shear} corresponding to r = 0.16 in (4 mm).

Charts of Theoretical Stress-Concentration Factors K_t^*

Figure A-15-1

Bar in tension or simple compression with a transverse hole. $\sigma_0 = F/A$, where A = (w - d)t and t is the thickness.

1.05

0.15

r/d

0.20

0.25

0.30

0.10

0.05

Figure A-15-2

Rectangular bar with a transverse hole in bending. $\sigma_0 = Mc/I$, where $I = (w - d)h^3/12$.

Figure A-15-3

Notched rectangular bar in tension or simple compression. $\sigma_0 = F/A$, where A = dt and t is the thickness.

1.4

1.0

Charts of Theoretical Stress-Concentration Factors K_t^* (Continued)

Figure A-15-4

Figure A-15-5

t is the thickness.

Rectangular filleted bar in

 $\sigma_0 = F/A$, where A = dt and

Notched rectangular bar in bending. $\sigma_0 = Mc/I$, where $c = d/2, I = t d^3/12$, and t is the thickness.

(continued)

*Factors from R. E. Peterson, "Design Factors for Stress Concentration," Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March 1951, p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, a Penton Media Inc. publication.

r/d

Rectangular filleted bar in bending. $\sigma_0 = Mc/I$, where $c = d/2, I = t d^3/12, t$ is the thickness.

Charts of Theoretical Stress-Concentration Factors K_t^* (Continued)

Charts of Theoretical Stress-Concentration Factors K_t^* (*Continued*)

(continued)

*Factors from R. E. Peterson, "Design Factors for Stress Concentration," Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March 1951, p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, a Penton Media Inc. publication.

Charts of Theoretical Stress-Concentration Factors K_t^* (Continued)

*Factors from R. E. Peterson, "Design Factors for Stress Concentration," Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March 1951, p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, a Penton Media Inc. publication.

Charts of Theoretical Stress-Concentration Factors $K_t^*(Continued)$

Figure A-15-16

Round shaft with flat-bottom groove in bending and/or tension.

$$\sigma_0 = \frac{4F}{\pi d^2} + \frac{32M}{\pi d^3}$$

Source: W. D. Pilkey, Peterson's Stress-Concentration Factors, 2nd ed. John Wiley & Sons, New York, 1997, p. 115.

(continued)

Charts of Theoretical Stress-Concentration Factors $K_t^*(Continued)$

Approximate Stress-Concentration Factor K_t for Bending of a Round Bar or Tube with a

Transverse Round Hole

Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 146, 235.

The nominal bending stress is $\sigma_0 = M/Z_{\text{net}}$ where Z_{net} is a reduced value of the section modulus and is defined by

$$Z_{\rm net} = \frac{\pi A}{32D} (D^4 - d^4)$$

Values of *A* are listed in the table. Use d = 0 for a solid bar

	d/D						
	0.9		0	.6	0		
a/D	A	Kt	Α	K _t	А	K _t	
0.050	0.92	2.63	0.91	2.55	0.88	2.42	
0.075	0.89	2.55	0.88	2.43	0.86	2.35	
0.10	0.86	2.49	0.85	2.36	0.83	2.27	
0.125	0.82	2.41	0.82	2.32	0.80	2.20	
0.15	0.79	2.39	0.79	2.29	0.76	2.15	
0.175	0.76	2.38	0.75	2.26	0.72	2.10	
0.20	0.73	2.39	0.72	2.23	0.68	2.07	
0.225	0.69	2.40	0.68	2.21	0.65	2.04	
0.25	0.67	2.42	0.64	2.18	0.61	2.00	
0.275	0.66	2.48	0.61	2.16	0.58	1.97	
0.30	0.64	2.52	0.58	2.14	0.54	1.94	

(continued)

1034 Mechanical Engineering Design

Table A-16 (Continued)

Approximate Stress-Concentration Factors *K*_{ts} for a Round Bar or Tube Having a Transverse Round Hole and Loaded in Torsion *Source:* R. E. Peterson, *Stress-Concentration Factors*, Wiley, New York, 1974, pp. 148, 244.

The maximum stress occurs on the inside of the hole, slightly below the shaft surface. The nominal shear stress is $\tau_0 = TD/2J_{\text{net}}$, where J_{net} is a reduced value of the second polar moment of area and is defined by

$$J_{\rm net} = \frac{\pi A (D^4 - d^4)}{32}$$

Values of *A* are listed in the table. Use d = 0 for a solid bar.

	d/D										
	0.9		0.8		0.	0.6		0.4		0	
a/D	A	K _{ts}	A	Kts	A	K _{ts}	A	K _{ts}	A	K _{ts}	
0.05	0.96	1.78							0.95	1.77	
0.075	0.95	1.82							0.93	1.71	
0.10	0.94	1.76	0.93	1.74	0.92	1.72	0.92	1.70	0.92	1.68	
0.125	0.91	1.76	0.91	1.74	0.90	1.70	0.90	1.67	0.89	1.64	
0.15	0.90	1.77	0.89	1.75	0.87	1.69	0.87	1.65	0.87	1.62	
0.175	0.89	1.81	0.88	1.76	0.87	1.69	0.86	1.64	0.85	1.60	
0.20	0.88	1.96	0.86	1.79	0.85	1.70	0.84	1.63	0.83	1.58	
0.25	0.87	2.00	0.82	1.86	0.81	1.72	0.80	1.63	0.79	1.54	
0.30	0.80	2.18	0.78	1.97	0.77	1.76	0.75	1.63	0.74	1.51	
0.35	0.77	2.41	0.75	2.09	0.72	1.81	0.69	1.63	0.68	1.47	
0.40	0.72	2.67	0.71	2.25	0.68	1.89	0.64	1.63	0.63	1.44	

Table 5-1

Values of K_{Ic} for Some Engineering Materials at Room Temperature

Material	K _{lc} , MPa√m	S _y , MPa	
Aluminum			
2024	26	455	
7075	24	495	
7178	33	490	
Titanium			
Ti-6AL-4V	115	910	
Ti-6AL-4V	55	1035	
Steel			
4340	99	860	
4340	60	1515	
52100	14	2070	

Figure 5-25

Off-center crack in a plate in longitudinal tension; solid curves are for the crack tip at *A*; dashed curves are for the tip at *B*.

Figure 5-26

Plate loaded in longitudinal tension with a crack at the edge; for the solid curve there are no constraints to bending; the dashed curve was obtained with bending constraints added.

Figure 5-27

Beams of rectangular cross section having an edge crack.

Figure 5-28

Plate in tension containing a circular hole with two cracks.

Figure 5-29

A cylinder loading in axial tension having a radial crack of depth *a* extending completely around the circumference of the cylinder.

Figure 5-30

Cylinder subjected to internal pressure *p*, having a radial crack in the longitudinal direction of depth *a*. Use Eq. (4–51) for the tangential stress at $r = r_0$.

TABLA A-20

Características y propiedades mecánicas a la tensión de algunos aceros rolados en caliente (HR) y estirados en frío (CD).

[Las resistencias indicadas son valores mínimos ASTM estimados en el intervalo de tamaños de 18 a 32 mm (3⁄4 a 11⁄4 in). Tales resistencias son adecuadas para el uso con el factor de diseño definido en la sección 1-9, siempre que los materiales cumplan los requisitos ASTM A6 o A568, o sean requeridos en las especificaciones de compra. Conviene recordar que una designación numérica no es una especificación. Véanse en la tabla 1-1 las propiedades de algunos aceros ASTM.

1	2	3	4	5	6	7	8
UNS NÚM.	SAE Y/O AISI NO.	PROCESA- MIENTO	RESISTENCIA ÚLTIMA, MPa (kpsi)	RESISTENCIA DE FLUENCIA MPa (kpsi)	ELONGACION EN 2 in, %	REDUCCION EN ÁREA %	DUREZA BRINELL
G10060	1006	HR	300 (43)	170 (24)	30	55	86
010000	1000	CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
010100		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
010150		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
1000000		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170
G10450	1045	HR	570 (82)	310 (45)	16	40	163
		CD	630 (91)	530 (77)	12	35	179
G10500	1050	HR	620 (90)	340 (49.5)	15	35	179
		CD	690 (100)	580 (84)	10	30	197
G10600	1060	HR	680 (98)	370 (54)	12	30	201
G10800	1080	HR	770 (112)	420 (61.5)	10	25	229
G10950	1095	HR	830 (120)	460 (66)	10	25	248

Fuente: 1986 SAE Handbook, p. 2.15.