
PROYECTO FIN DE CARRERA

INGENIERÍA INDUSTRIAL. EPS FERROL

SIMULADOR DE GRÚA PANAMAX PARA MOVIMIENTO DE CONTENEDORES EN PUERTO

- Autor:
 - David Vilela Freire
- Tutor:
 - Daniel Dopico Dopico
- Septiembre, 2011

Índice

- Introducción
- Dinámica de sistemas multicuerpo
- Software empleado
- Conclusiones
- Simulación

Motivación y objetivos

- Motivación
 - Encargo de Azteca Consulting, S.L. al LIM
 - Cliente final: Fundación Puerto de Vigo
- Objetivo: simulación de grúa en tiempo real
 - Formación operarios
 - Selección de personal
 - Asistencia en diseño

Antecedentes

- Simuladores: cada vez más interesantes
 - Potencia aumenta cada día
 - Gran ventaja competitiva: diferencias entre usar una grúa y usar un simulador
 - Coste: asociado al uso de las instalaciones (horas máquina)
 - Riesgo: asociado a los operarios inexpertos (accidentes)
- Transporte marítimo

Cubre la gran mayoría de la mercancía mundial

Importancia económica de puertos

Puerto de Singapur

- Puerto más activo del mundo
- Principal centro logístico de transportes
- 600 puertos conectados
- 13 km de muelles
- 150 grúas
- 30 millones de contenedores
- 1000 barcos simultáneos
- 25% mercancías del mundo

Portainer TMVP01

Peso

Capacidad

Elevación con carga 32 t

Elevación en vacío

Traslación carro

Traslación pórtico

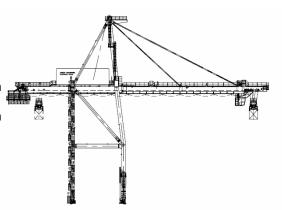
Potencia

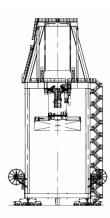
Tensión

850 tm

40 tm

60 m/min


120 m/min 🚚


150 m/min

45 m/min

640 KW

440 V

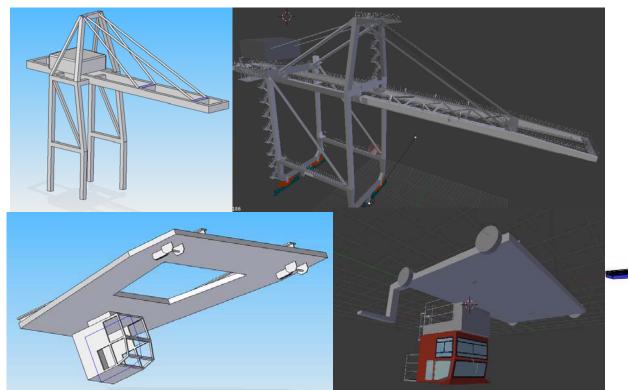
Alcance pluma lado mar	45 m
Alcance pluma lado tierra	10 m
Distancia entre carriles	15,24 m
Ancho ente patas	18,4 m
Ancho entre ejes	19,94 m
Recorrido cabina	70,24
Recorrido estructura	300 m
Altura total	62 m
Altura bajo spreader	33 m
Altura libre bajo viga portal	16,03 m

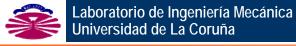
Dinámica de sistemas multicuerpo

- Sistema multicuerpo
 Sistema mecánico móvil o con partes móviles
 Mecanismo = Sólidos +Pares cinemáticos
- Dinámica de sistemas multicuerpo
 Simulación de sistemas multicuerpo a partir de la resolución de las ecuaciones del movimiento

Procedimiento

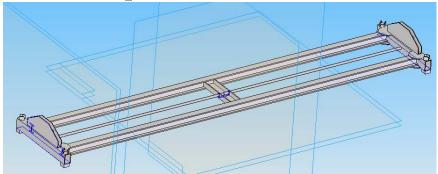
- Fase 1: Modelización
 - Propiedades físicas y geométricas
 - Situación espacial
 - Topología del mecanismo
- Fase 2: Formulación
 - Planteamiento y resolución de ecuaciones del movimiento
- Fase 3: Obtención de resultados

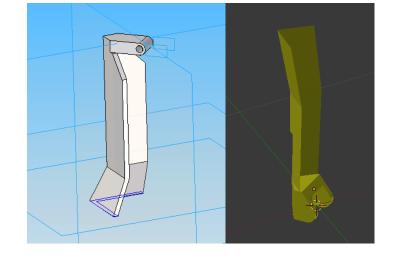


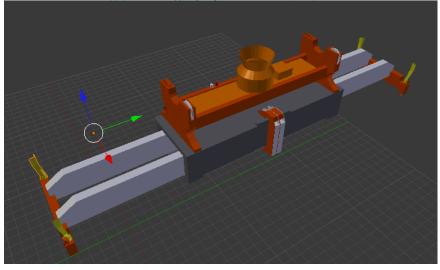


Geometría

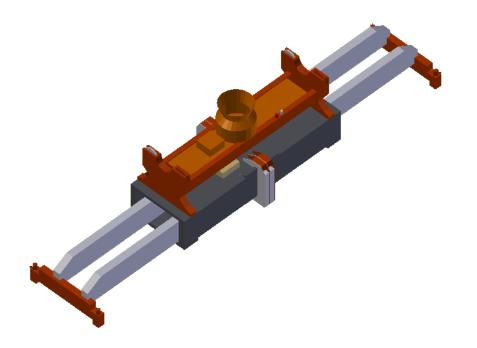
- Geometría inicial: estimación de propiedades en fase inicial. Datos de catálogo
- Geometría detallada: fase final. Aportada por Azteca Consulting S.L.







Propiedades geométricas



Propiedades físicas

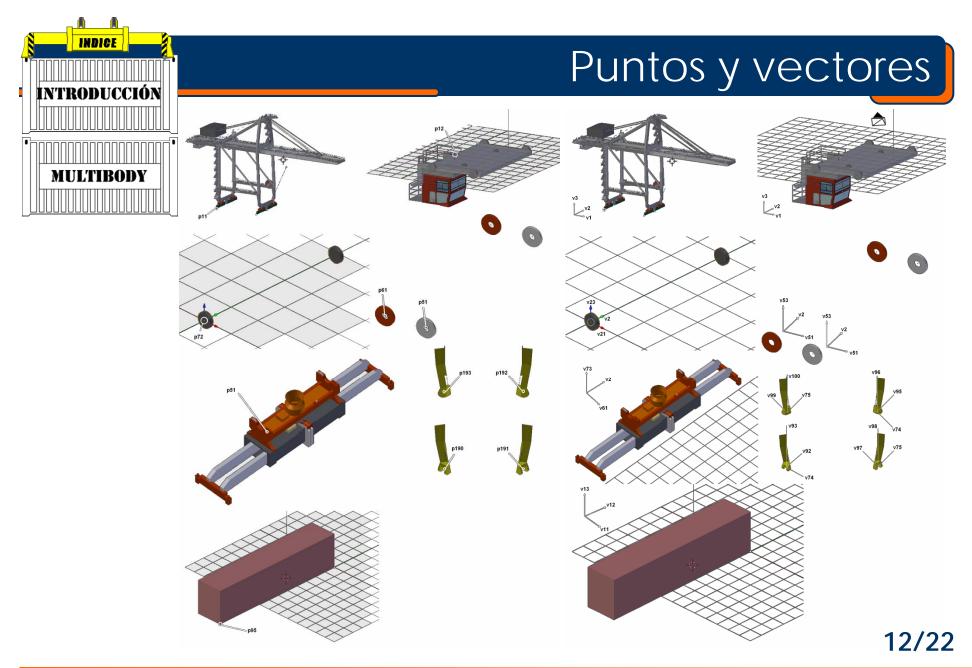
 Ejemplo de propiedades físicas de un sólido

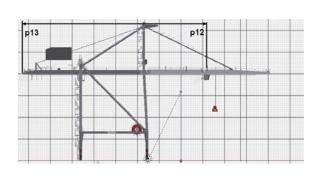
Spreader		
Masa (Kg)		
5099.72		
Centro de gravedad (mm)		
X	Υ	Z
0	0	0
Tensor de inercia		
XX	YY	ZZ
90737.03	2541.47	92944.41
XY	XZ	YZ
0	0	0

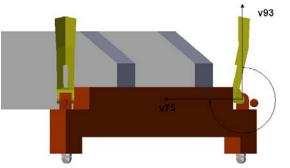
Situación espacial y topología

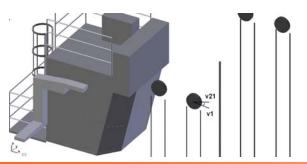
Coordenadas: variables que definen al mecanismo

- Sistema mixto
 - **Naturales**
 - Puntos y vectores
 - Definición sencilla
 - Requieren experiencia
 - Relativas
 - Ángulos y distancias
 - Ideal para simplificar la definición de actuadores
 - Aumentan el tamaño del problema
 - Términos de alto coste computacional

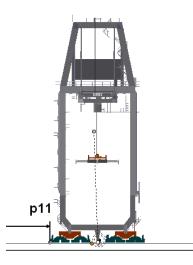







Grados de libertad

- Actuados
 - Guiados por restricciones reónomas
- No actuados


Guiados por la física del sistema

Formulación

Index 3 Augmented Lagrange (I3AL) [1]

$$\begin{split} M\ddot{q} + \Phi_{q}^{t} \alpha \Phi + \Phi_{q}^{t} \lambda &= Q \\ \lambda_{n}^{i+1} &= \lambda_{n}^{i} + \alpha \Phi_{n}^{i+1} \end{split}$$

 Integración con regla trapezoidal implícita de paso simple

M: matriz de masas.

q: vector de variables del problema.

 $\Phi_{\mathbf{q}}$: matriz jacobiana del vector de restricciones.

λ: vector de multiplicadores de Lagrange.

Q: vector de fuerzas generalizadas.

[1] Penalty, Semi-Recursive and Hybrid Methods for MBS Real-Time Dynamics in the Context of Structural Integrators

J. Cuadrado, D. Dopico, M.A. Naya and M. Gonzalez Multibody System Dynamics, vol. 12, no. 2, pp. 117-132, 2004. (Journal paper)

Formulación

Solución del sistema no lineal por Newton – Raphson

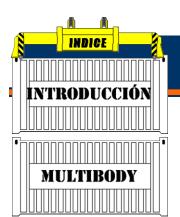
$$\left[\frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}\right]_{i} \Delta \mathbf{q}_{i+1} = -\left[\mathbf{f}(\mathbf{q})\right]_{i}$$

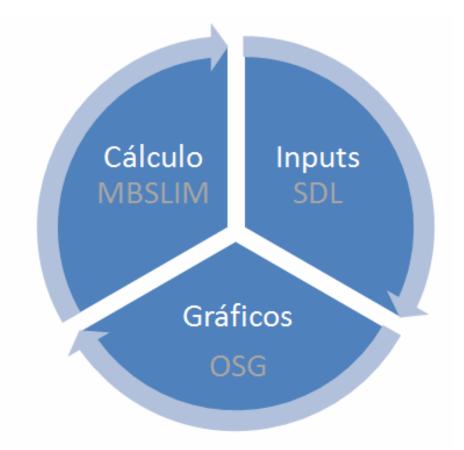
$$\left[\frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}\right] = \left[\mathbf{M} + \frac{\Delta t}{2}\mathbf{C} + \frac{\Delta t^2}{4}\left(\mathbf{\Phi}_{\mathbf{q}}^{\mathsf{t}}\boldsymbol{\alpha}\mathbf{\Phi}_{\mathbf{q}} + \mathbf{K}\right)\right]$$

$$\mathbf{f}(\mathbf{q}) = \mathbf{M}\mathbf{q}_{n+1} + \frac{\Delta t^2}{4} \left(\mathbf{M} \hat{\ddot{\mathbf{q}}}_n + \mathbf{\Phi}_{q_{n+1}}^{\mathrm{T}} \boldsymbol{\alpha} \mathbf{\Phi}_{n+1} + \mathbf{\Phi}_{q_{n+1}}^{\mathrm{T}} \boldsymbol{\lambda}_{n+1} - \mathbf{Q}_{n+1} \right) = 0$$

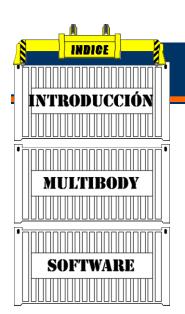
Proyecciones ortogonales en velocidad y aceleración

$$\left[\frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}\right]\dot{\mathbf{q}} = \left[\mathbf{M} + \frac{\Delta t}{2}\mathbf{C} + \frac{\Delta t^2}{4}\mathbf{K}\right]\dot{\mathbf{q}}^* - \frac{\Delta t^2}{4}\mathbf{\Phi}_{\mathbf{q}}^t \boldsymbol{\alpha} \mathbf{\Phi}_{\mathbf{t}}$$


$$\left[\frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}\right] \ddot{\mathbf{q}} = \left[\mathbf{M} + \frac{\Delta t}{2}\mathbf{C} + \frac{\Delta t^{2}}{4}\mathbf{K}\right] \ddot{\mathbf{q}}^{*} - \frac{\Delta t^{2}}{4}\mathbf{\Phi}_{\mathbf{q}}^{t} \boldsymbol{\alpha} \left(\dot{\mathbf{\Phi}}_{\mathbf{q}} \dot{\mathbf{q}} + \dot{\mathbf{\Phi}}_{t}\right)$$

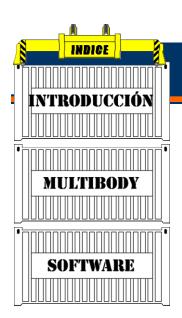


Software

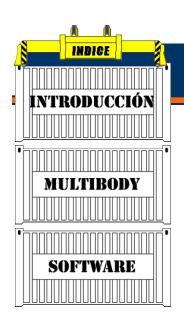


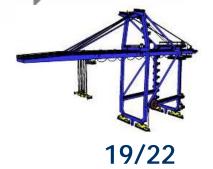
MBSLIMF90

- Desarrollado por el LIM
- Biblioteca de funciones para la dinámica de sistemas multicuerpo
- Planteamiento y resolución de las ecuaciones del movimiento



Simple DirectMedia Layer (SDL)


- Biblioteca que proporciona un acceso sencillo a audio, teclado, ratón, joystick, tarjeta gráfica
- Joystick
 Actuadores de la grúa
- Teclado y ratón
 Cámaras

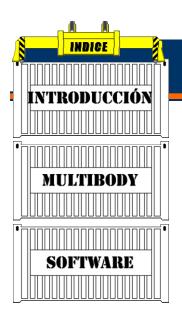

Open Scene Graph (OSG)

 Comunicación entre la aplicación y el OpenGL, encargado del control de la tarjeta gráfica

Grúa
• Aplicación 3D

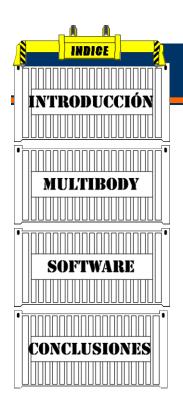
OSG
• (API Nivel intermedio)

OpenGL
• (API Bajo nivel)



Conclusiones

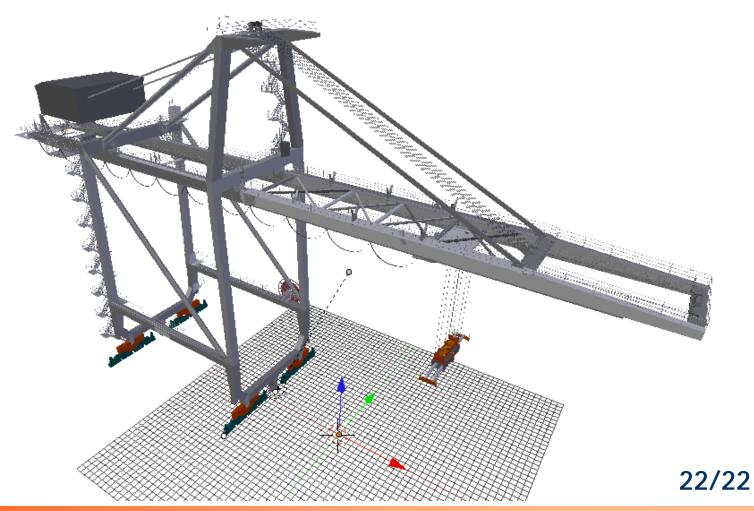
- Desarrollo de la parte física del simulador
- Maniobras de elevación y desplazamiento de la carga
- Realismo: maniobras similares a una grúa real
- Funcionamiento en tiempo real



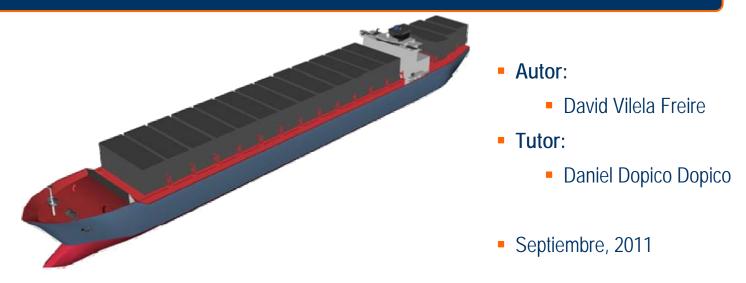
Conclusiones

Mejoras y trabajo futuro:

- Múltiples contenedores, caída de filas de contenedores, etc...
- Spreader adaptable a contenedores de 20 pies
- Recogida y descarga de contenedores en camión
- Mejora del panel de mando
- Posibilidad de supervisión de maniobras
- Realización de prácticas guiadas
- Validación de parámetros



Simulación



PROYECTO FIN DE CARRERA

INGENIERÍA INDUSTRIAL. EPS FERROL

SIMULADOR DE GRÚA PANAMAX PARA MOVIMIENTO DE CONTENEDORES EN PUERTO

