
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier.com/locate/compstruc

An analytical approach to the sensitivity analysis of semi-recursive ODE

formulations for multibody dynamics
Álvaro López Varela a,b, ,∗, Daniel Dopico Dopico a, Alberto Luaces Fernández a

a Laboratorio de Ingeniería Mecánica, Campus Industrial de Ferrol, CITENI, Universidade da Coruña, Mendizábal s/n, 15403, Ferrol, Spain
b Centro Mixto de Investigación Navantia-UDC, Campus Industrial de Ferrol, Universidade da Coruña, Batallones s/n, 15403, Ferrol, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:
Multibody dynamics
Semi-recursive
Sensitivity analysis
Direct differentiation method
Adjoint variable method
Matrix R

Sensitivity analysis is an extremely powerful tool in many applications such as in the optimization of the dynamics
of multibody systems with gradient-based methods. Sensitivity calculations are computationally burdensome and,
depending on the method chosen for differentiation and the set of dynamic equations, they could result highly
inefficient. Semi-recursive dynamic methods are seldom studied analytically in terms of sensitivity analysis due
to their complexity, even though their dynamic performance is usually among the most efficient.
This work explores the sensitivity analysis of a particular multibody-dynamics formulation, the semi-recursive
Matrix R formulation, which is based on the nullspace of constraint equations and leads to a system of ordinary
differential equations. As a result, two sets of sensitivity equations are proposed, one based on the direct differ-
entiation method (DDM) and other on the Adjoint Variable Method (AVM), being these sensitivity formulations
the main novelty of this work. The main derivatives required in the sensitivity equations are listed in this docu-
ment, paying special attention to conciseness, correctness and completeness. The methods proposed have been
implemented in the general purpose multibody library MBSLIM (Multibody Systems in Laboratorio de Ingeniería
Mecánica), and their performance has been tested in two numerical experiments, a five-bar benchmark problem
and a four-wheeled buggy vehicle.
A review and generalization of constrained and unconstrained kinematic problems in relative coordinates is
provided as an introduction to the generation of the semi-recursive Matrix R equations of motion. Due to the
importance of the selection of the set of independent coordinates, a more general description of the Matrix R
method is presented as a novel contribution as well.

1. Introduction

During the last few decades, the knowledge area which studies the dynamics of systems composed of multiple bodies, commonly known as
multibody dynamics (MBD), has expanded its boundaries from pure direct and inverse dynamic problems to new topics related to design, optimization
or control. In all these problems, it is essential to have a measure of the variation of the behavior of a model with respect to a set of parameters. The
sensitivity analysis is the tool that permits to calculate these variations, but it involves a higher level of complexity than pure dynamic problems.

The quest for the most efficient method for the evaluation of the sensitivity analysis of a multibody system dynamics is still open nowadays since
its performance is related to: the differentiation method, the sensitivity equations, the multibody model and, specially, the dynamic formulation
considered. Dynamic recursive methods which exploit the topology of the multibody system usually display the best performance in terms of efficiency
[1], but they are rarely considered for a sensitivity analysis since they imply much higher complexity than global methods. Moreover, constraint
enforcement schemes like Matrix R [2], based on a projection from dependent to independent coordinates, are rarely addressed with analytical
differentiation methods due to the complexity of the resulting derivatives and to the assumption that analytical methods are “time-consuming and
error-prone” [3]. This work proves that a purely analytical sensitivity analysis of a semi-recursive matrix R formulation is viable, general for any
multibody system and can be highly efficient.

* Corresponding author.
E-mail addresses: alvaro.lopez1@udc.es (Á. López Varela), ddopico@udc.es (D. Dopico Dopico), alberto.luaces@udc.es (A. Luaces Fernández).

https://doi.org/10.1016/j.compstruc.2024.107642
Received 19 June 2024; Accepted 30 December 2024

Computers and Structures 308 (2025) 107642

Available online 10 January 2025
0045-7949/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/compstruc
http://orcid.org/0000-0003-3898-0836
mailto:alvaro.lopez1@udc.es
mailto:ddopico@udc.es
mailto:alberto.luaces@udc.es
https://doi.org/10.1016/j.compstruc.2024.107642
https://doi.org/10.1016/j.compstruc.2024.107642
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2024.107642&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

Classical Matrix R formulations involve a selection of independent coordinates from the dependent coordinates vector. In some closed-chain
multibody models, coordinates of points might represent better the degrees of freedom of a multibody system than relative coordinates. For that
reason, another contribution of this work is the extension of the dynamic semi-recursive Matrix R formulation to support any relative or natural co-
ordinates (Cartesian coordinates of points or vectors) as independent coordinates, and the incorporation of this feature in the sensitivity formulations
developed.

The sensitivity analysis of the semi-recursive Matrix R formulation has been analytically studied before by Gutiérrez et al. in [4]. This seminal
work presents a direct sensitivity method and lists the set of derivatives needed in the direct differentiation of the semi-recursive Matrix R formulation.
Additionally, it provides a comparison between direct (analytical), automatic and numerical differentiation methods, but the comparison at efficiency
level is hindered by the use of different languages (C and MATLAB). This work represents the first effort to compute analytical semi-recursive Matrix R
sensitivities in a general form, but it has two main limitations: first, it only allows relative coordinates as independent coordinates (here, coordinates
of points and vectors are also allowed); and second, it assumes that the Jacobian of the constraints is invertible (the generalization conveys significant
modifications). The present work addresses these two limitations, leading to more general sensitivity formulations, and completes the study with the
analytical semi-recursive adjoint method. Moreover, in [4] the dynamic and sensitivity equations are derived considering one particular reference
point for the recursive evaluation of kinematic, dynamic and sensitivity terms (it uses the point that “instantaneously coincides with the origin of
the inertial reference frame” [4]). In the current developments, an arbitrary reference point is considered, leading to a more general formulation of
the equations of motion and their sensitivities.

There are several differentiation techniques which can be used to obtain the sensitivity analysis of a system. The simplest differentiation method
consists in numerical differentiation (ND), which is based on the numerical perturbation of the parameters in order to approximate the derivative of
an objective function by means of its variation using a finite difference scheme or similar. This technique suffers from two issues: first, it is extremely
dependent on the magnitude of the perturbations used which yields the so called “step-size dilemma” [5]; and second, the computational effort is
directly proportional to the number of parameters. Despite its problems, this method has been used combined with semi-analytical differentiation
in works such as [6] or [7], and it is commonly used as test method for analytical implementations.

A second option is the automatic differentiation method (AD) (also called algorithmic differentiation method). Automatic differentiation is based
on the decomposition of complex computations into elemental operations with known direct analytical expressions for their derivatives, and it offers
high accuracy with low computational expense. Even though its implementation is substantially more complex than numerical methods, it is a
suitable method for obtaining accurate derivatives with a low programming effort [8]. There are multiple examples of works in which AD libraries
have been successfully used in the sensitivity analysis of the dynamics of multibody systems. Dürrbaum et al. compared the performance of ADOL-C
(Automatic Differentiation by OverLoading in C + +) against a symbolic differentiation software in [9], giving as result a better performance of the
symbolic program. Ambrosio et al. applied ADIFOR (Automatic DIfferentiation of FORtran) for the optimization of flexible MBS in [10]. Callejo and
collaborators explored the automatic differentiation for the dynamics of MBS in different works [8,3,11], one of which ([3]) represents the most
recent attempt to achieve the sensitivity analysis of a semi-recursive Matrix R formulation. The list of works comprising automatic differentiation is
steadily growing, specially in those problems where analytical differentiation is unmanageable.

The third possibility consists in the analytical differentiation of the dynamic equations of motion. In general, analytical approaches are usually
the fastest and most accurate, but they involve an important theoretical and implementation effort. Despite their complexity, new studies devoted to
the analytical sensitivity analysis of multibody system dynamics are published every year since the appearance of the first works in the field [12–16].

The sensitivity analysis of a set of equations can be accomplished following two different approaches, which are the direct differentiation method
(DDM) and the adjoint variable method (AVM). The application of the DDM to the dynamic equations of motion of a multibody system delivers
a set of systems of equations in which the unknowns are the sensitivities of the variables of the original dynamic problem. The simplicity of the
DDM has made many authors to resort to this method, which converts it in the most spread option in the multibody community. The AVM, on
the contrary, reformulates the sensitivity analysis adding a new set of variables, namely the adjoint variables. Thanks to this transformation, the
number of systems of equations is independent of the number of parameters, which makes it the ideal method for highly parameterized sensitivity
problems.

Sensitivity methods can be classified as well according to the order between differentiation and discretization [17]. In differentiate-then-discretize
approaches, the continuous equations of motion are firstly differentiated and, secondly, they are discretized in time steps to be solved. This option
delivers a numerical approximation of the sensitivities of the continuous problem, and leads to a set of differential equations independent of the
numerical integrator chosen in the dynamics. The discretize-then-differentiate approach studies the sensitivity analysis of the discretized dynamics,
thus yielding the exact derivatives of the numerical approximation of the dynamics. The second approach is expressed in terms of algebraic equations
that are specific for the numerical integrator used to solve the dynamics. Despite their conceptual differences, both approaches converge to the same
results as the time step is decreased. In this work, the differentiate-then-discretize approach is considered in both direct and adjoint methods due to
its conciseness, generality and to the fact that, in practical applications, the differences between both approaches are almost negligible.

The computational effort dedicated to sensitivity analysis is related to the multibody model that describe the mechanism in study, as well as to
the formulation used to obtain the dynamic response. Models based on relative coordinates usually lead to the fastest dynamic simulations, although
they involve more complex computations than other models [18]. In this work, we study if this increase of efficiency is also present in sensitivity
problems.

Among the most efficient methods to handle MBS are the semi-recursive methods, in which any multibody system can be described as an open-
loop system subjected (or not) to a set of kinematic constraints [19,20]. In this method, dynamic terms are composed recursively, but the equations
of motion are solved globally. Thanks to these recursive and global procedures, it is possible to combine relative coordinate modeling with multiple
constraint enforcement schemes typical of global systems. Semi-recursive methods have been combined with the Matrix R formulation in [21–23]
and more recently in [24], with the penalty approach in [25] or with the Augmented Lagrangian index-3 formulation with velocity and acceleration
projections (ALI3-P) in [26,27,18,28].

In this study, the semi-recursive Matrix R formulation in relative coordinates is revisited and extended to support natural coordinates [2] as
degrees of freedom as well. However, the main novelty of this paper is the development of direct and adjoint semi-recursive Matrix R sensitivity
analysis formulations using an analytical differentiation method. Both dynamic and sensitivity formulations have been implemented in the general
purpose multibody library MBSLIM [29], which can solve kinematic, dynamic, sensitivity analysis and optimization problems of rigid multibody
systems, and which is being currently extended to support flexible bodies.

Computers and Structures 308 (2025) 107642

2

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

This work is structured as follows: section 2 presents the kinematics of relative coordinates and introduces the forward dynamic semi-recursive
Matrix R formulation; section 3 covers the sensitivity analysis of the semi-recursive Matrix R formulation by means of both the direct differentiation
and the adjoint variable methods; the dynamic and sensitivity formulations presented are tested in different numerical experiments in section 4;
finally, section 5 gathers the main conclusions of this work.

2. Dynamic formulation

2.1. Kinematics of open-loop systems

Relative coordinate modeling usually constitutes the most natural and efficient method to describe the kinematics of a multibody system. However,
despite the reduced number of coordinates, the generation of the equations of motion is not direct and other set of intermediate coordinates (as
Cartesian coordinates) is needed.

The use of these intermediate coordinates encompasses a double kinematic problem that has to be addressed both in kinematic and dynamic
analyses: first, it is necessary to calculate positions, velocities and accelerations of the intermediate Cartesian coordinates from the relative coordinates
in order to generate the EoM; second, a coordinate transformation takes the equations from Cartesian to relative coordinates, which is carried out
by means of recursive kinematic relations based on the topology of the system.

According to [18], the recursive kinematic relations can be summarized in the following set of equations, valid for any type of joint1:

𝐕𝑖 = 𝐁𝑣
𝑖𝐕𝑖−1 + 𝐛𝑣𝑖 �̇�𝑖 (1a)

�̇�𝑖 = 𝐁𝑣
𝑖 �̇�𝑖−1 + 𝐛𝑣𝑖 �̈�𝑖 + 𝐝𝑣𝑖 (1b)

𝐁𝑣
𝑖 =

[
𝐈 �̃�

𝑖−1 − �̃�
𝑖

𝟎 𝐈

]
(1c)

�̇�𝑣
𝑖 =

[
𝟎 ̇̃𝐫𝑖−1 − ̇̃𝐫𝑖
𝟎 𝟎

]
(1d)

𝐝𝑣𝑖 = �̇�𝑣
𝑖𝐕𝑖−1 + �̇�𝑣𝑖 �̇�𝑖 (1e)

with 𝐕𝑖 =
[
�̇�T
𝑖

𝝎
T
𝑖

]T ∈ R6 and 𝐳𝑖 identifying the set of relative coordinates of joint 𝑖. Remaining terms 𝐛𝑣
𝑖
, �̇�𝑣

𝑖
and 𝐝𝑣

𝑖
are kinematic expressions

related to each joint and body.
Observe that (1) allows a general and simple implementation, with a common structure for every joint type and with only one particular term

required for each type of joint (𝐛𝑣
𝑖
) and its time derivative (�̇�𝑣

𝑖
), whose expressions involve a reduced set of arithmetic operations with the entities

that define the joint [18].

It is possible to reformulate (1) relating a vector 𝐕 =
[
𝐕T
1 𝐕T

2 ...𝐕T
𝑛𝑏

]T
∈R6𝑛𝑏 containing the linear and angular velocities of all the bodies of

the multibody system with the vector of relative coordinates 𝐳 =
[
𝐳1T 𝐳2T … 𝐳𝑛𝑏

T]T ∈R𝑛, with 𝑛𝑏 the number of bodies and 𝑛 the number of
relative coordinates, as:

𝐕 =𝐑𝑣�̇� (2)

𝐕∗ =𝐑𝑣�̇�∗ (3)

�̇� =𝐑𝑣�̈� + �̇�𝑣�̇� (4)

with the superscript ()∗ denoting virtual velocities.2 The expressions (2)-(4) allow a more compact notation that can be exploited in the dynamics
for the generation of concise mass matrix and generalized force vector expressions. However, at implementation level, it is desirable not to build the
matrices 𝐑𝑣 and �̇�𝑣 but to compute the kinematics recursively by means of (1).

It should be remarked that every closed-loop system can be expressed as an open-loop system subjected to a set of kinematic constraints, thus
equations (1), (2), (3) and (4) are general to any MBS.

2.2. Kinematics for non-minimal relative coordinates

Almost any practical multibody system modeled in natural (or reference point) coordinates requires a set of constraint equations to be fully
defined.3 On the contrary, open-loop systems modeled with minimal relative coordinates do not need constraints. However, the presence of kinematic
constraints is common in relative coordinate modeling for the imposition of loop-closure constraints or for complementing the definition of the
multibody model.

In the following lines, the three main kinematic problems are briefly described (the finite displacements problem is assimilated to the position
problem). The three constrained kinematic problems have been implemented in the MBSLIM multibody library as general kinematic formulations.

It is worth mentioning that only two out of these three kinematic problems are needed for the dynamics: initial position (subsection 2.2.1) and
velocity (subsection 2.2.4) analyses are needed for obtaining the initial conditions of the dynamics DAE system.

2.2.1. Position kinematic analysis
The objective of the position kinematic analysis is to nullify the vector of 𝑚 constraint equations 𝚽 ∈R𝑚 for given values of the 𝑑 degrees of

freedom, 𝐳𝑖 ∈R𝑑 , chosen as independent coordinates:

1 These generic expressions represent the generalization of classical approaches like [14,25] to an arbitrary reference point.
2 𝐕∗

𝑖
and �̇�∗

𝑖
are also related by equation (1a).

3 One single rigid body in natural coordinates or one single joint in reference point coordinates need constraints.

Computers and Structures 308 (2025) 107642

3

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

𝚽
(
𝐪, 𝐳,𝝆, 𝑡

)
= 𝟎 (5)

where 𝑡 is the time variable, 𝝆 a set of constant parameters and 𝐪, 𝐳 have been defined before. Expression (5) represents a system of nonlinear
equations, which in general cannot be solved analytically due to the complexity of the equations, and has to be computed numerically. One of the
most resorted approaches to solve these type of equations is the Newton-Raphson method, which exploits the expansion of (5) in a Taylor series
around a given initial approximated solution 𝐳0:

𝚽 (𝐪 (𝐳) , 𝐳,𝝆, 𝑡) ≅𝚽
(
𝐪0, 𝐳0,𝝆, 𝑡

)
+𝚽�̂�

(
𝐪0, 𝐳0𝝆, 𝑡

)(
𝐳 − 𝐳0

)
= 𝟎 (6)

where 𝚽�̂� ∈R𝑚×𝑛 is the Jacobian matrix of the constraint equations vector:

𝚽�̂� =
𝜕𝚽
𝜕𝐪

𝜕𝐪
𝜕𝐳

+ 𝜕𝚽
𝜕𝐳

=𝚽𝐪𝐪𝐳 +𝚽𝐳 (7)

From (7) it can be observed that 𝚽�̂� is not exactly a partial derivative, and for this reason the subscript �̂� is used, according to the notation (A.1).
Equation (6) can be reformulated as:

𝚽�̂�
(
𝐪{𝑗}, 𝐳{𝑗}, 𝑡

)
Δ𝐳{𝑗+1} = −𝚽

(
𝐪{𝑗}, 𝐳{𝑗}, 𝑡

)
(8)

being 𝑗 and 𝑗 + 1 the iteration numbers and Δ𝐳{𝑗+1} = 𝐳{𝑗+1} − 𝐳{𝑗} the increment in the joint coordinates for the present iteration.
Equation (8) cannot be uniquely solved because it is rank deficient in the number 𝑑 of degrees of freedom of the system, since no reference has

been made to the imposition of the values of the degrees of freedom yet. The classical technique and a novel technique for imposing degrees of
freedom are described in subsections 2.2.2 and 2.2.3.

2.2.2. Imposition of degrees of freedom: relative coordinates as DoF
The classical technique for imposing degrees of freedom is described in [2] and assumes that the degrees of freedom are a subset of the full set of

dependent coordinates, 𝐳𝑖 ∈R𝑑 ⊆ 𝐳. Thus, a constant matrix 𝐁 ∈R𝑑×𝑛 composed of “1”s and “0”s can be defined.4 This matrix is constant in time,
straightforward to calculate with a given set of independent coordinates, and satisfies the following relations:

𝐳𝑖 = 𝐁𝐳 (9a)

�̇�𝑖 = 𝐁�̇� (9b)

�̈�𝑖 = 𝐁�̈� (9c)

Equations (5) can be completed with equations (9a) and thus (8) becomes a full-column-rank system of equations:

𝚯
(
𝐪 (𝐳) , 𝐳, 𝐳𝑖,𝝆, 𝑡

)
=
[

𝚽
𝐁𝐳 − 𝐳𝑖

]
= 𝟎⇒𝚯{𝑗}

�̂� Δ𝐳{𝑗+1} = −𝚯
(
𝐳{𝑗}, 𝐳𝑖,𝝆, 𝑡

)
⇒

[
𝚽{𝑗}

�̂�
𝐁

]
Δ𝐳{𝑗+1} =

[
−𝚽{𝑗}

𝐳𝑖 −𝐁𝐳{𝑗}
]

(10)

Equations (10) can be further simplified by starting the iterations with an initial guess matching the desired degrees of freedom, 𝐁𝐳{0} = 𝐳𝑖 and
it can be easily proved, by induction, that 𝐁𝐳{𝑗} = 𝐳𝑖 ∀𝑗 resulting in the simplified system:[

𝚽{𝑗}
�̂�
𝐁

]
Δ𝐳{𝑗+1} =

[
−𝚽{𝑗}

𝟎

]
(11)

2.2.3. Imposition of degrees of freedom: natural coordinates as DoF
In closed-loop systems, the degrees of freedom of a mechanism can sometimes be identified more directly with a set of Cartesian coordinates

rather than joint coordinates. In addition, supporting natural coordinates as DoF is a requirement in the definition of MBSLIM models. Since natural
coordinates are not in the set of relative coordinates, the degrees of freedom are not a subset of the full set of dependent coordinates, 𝐳𝑖 ⊆ 𝐪,𝐪∩ 𝐳 =
∅⇒ 𝐳𝑖 ⊈ 𝐳, and therefore equations (9) do not hold since 𝐁 matrix cannot be defined like in section 2.2.2.

Taking into account that coordinates 𝐳 define completely the kinematics of the system in positions, any other kinematic magnitude can be
expressed as a function of them 5:

𝐳𝑖 = 𝐡(𝐳,𝝆) (12)

Equations (5) can be completed with equations (12) forming a nonlinear system of equations. The application of the Newton-Raphson iteration
to the system, converts (8) into a full-column-rank system of equations:

𝚯
(
𝐪 (𝐳) , 𝐳, 𝐳𝑖,𝝆, 𝑡

)
=
[

𝚽
𝐡(𝐳,𝝆) − 𝐳𝑖

]
= 𝟎⇒𝚯{𝑗}

�̂� Δ𝐳{𝑗+1} = −𝚯
(
𝐳{𝑗}, 𝐳𝑖,𝝆, 𝑡

)
⇒

[
𝚽{𝑗}

�̂�
𝐁{𝑗}

]
Δ𝐳{𝑗+1} =

[
−𝚽{𝑗}

𝐳𝑖 − 𝐡{𝑗}
]

(13)

with 𝚯�̂� =
[
𝚽�̂�
𝐁

]
the Jacobian matrix of 𝚯 and 𝐁 ≡ 𝐡𝐳 the Jacobian matrix of 𝐡.

Observe that equations (13) are equivalent to (10) but they make it possible to use degrees of freedom which are not in the relative coordinates
vector, 𝐳, but at the prize of a non-constant and more complex matrix 𝐁. If, otherwise, the degrees of freedom are selected from the relative coordinates
vector, equations (10) and the simplified 𝐁 from section 2.2.2, arise again.

4 Please do not confuse with 𝐁𝑣
𝑖 , an elemental term of the recursive accumulation.

5 Even in the unusual case of an explicit function difficult to obtain, the implicit function theorem can be used, arriving at the same conclusion.

Computers and Structures 308 (2025) 107642

4

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

Concerning velocities and accelerations, equations (9b) are still valid with the new definition of 𝐁, but (9c) needs to be modified:

�̇�𝑖 = 𝐡𝐳�̇� = 𝐁�̇� (14)

�̈�𝑖 = 𝐁�̈� + �̇��̇� (15)

With this approach, any type of coordinate can be used as degree of freedom, as long as the matrix 𝚯�̂� has a left inverse, 𝚯+
�̂� , which is guaranteed

to exist if a proper selection of degrees of freedom is made:

𝚯+
�̂� 𝚯�̂� =

[
𝐒𝚽 𝐑𝚽] [𝚽�̂�

𝐁

]
= 𝐈𝑛 (16)

with matrices 𝐑𝚽 ∈R𝑛×𝑑 and 𝐒𝚽 ∈R𝑛×𝑚 the last 𝑑 and the first 𝑚 columns of the inverse, respectively.
For the general case of redundant constraints, matrices 𝐑𝚽 and 𝐒𝚽 can be calculated by means of a least-squares problem:[

𝚽T
�̂� 𝚽�̂� +𝐁T𝐁

] [
𝐒𝚽 𝐑𝚽]

=
[
𝚽T

�̂� 𝐁T] (17)

The explicit calculation of matrix 𝐒𝚽 is usually avoided for kinematic and dynamic analyses but it has an important role in sensitivity analyses.

2.2.4. Velocity kinematic analysis
The velocity problem aims to obtain the set of velocities �̇� such that:

�̇� (�̇� (𝐳, �̇�) ,𝐪 (𝐳) , �̇�, 𝐳,𝝆, 𝑡) =𝚽�̂��̇� +𝚽𝑡 =𝟎 (18)

Differentiating (5) with respect to time and completing with equations (9b) or (14), velocity equations can be rewritten as:

�̇�
(
�̇� (𝐳, �̇�) ,𝐪 (𝐳) , �̇�, �̇�𝑖,𝝆, 𝑡

)
=
[

�̇�
𝐁�̇� − �̇�𝑖

]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
�̇� =

[
𝐛
�̇�𝑖
]

(19)

with �̇�𝑖 representing the desired values of the DoF at velocity level, �̇� ̂̇𝐳 =𝚯�̂� =
[
𝚽�̂�
𝐁

]
the leading matrix for velocities and 𝐛 ≡ −𝚽𝑡 is introduced in

accordance with the classical compact notation of this problem6, as presented in [2]. The velocity problem is solved by means of a linear system of
equations and, unlike the position problem, does not need to be iterated.

2.2.5. Acceleration kinematic analysis
The set of dependent accelerations, �̈�, resulting from the kinematic acceleration problem, have to satisfy the acceleration constraints, which can

be found differentiating (5) twice (or (18) once) with respect to time:

�̈� (�̈� (𝐳, �̇�, �̈�) , �̇� (𝐳, �̇�) ,𝐪 (𝐳) , �̈�, �̇�, 𝐳,𝝆, 𝑡) = 𝟎 (20)

Completing with equation (15), a linear system of equations arises,

�̈�
(
�̈� (𝐳, �̇�, �̈�) , �̇� (𝐳, �̇�) ,𝐪 (𝐳) , �̈�, �̈�𝑖, �̇�, 𝐳,𝝆, 𝑡

)
=
[

�̈�
𝐁�̈� + �̇��̇� − �̈�𝑖

]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
�̈� =

[
𝐜

�̈�𝑖 − �̇��̇�

]
(21)

with �̈�𝑖 the desired values of the DoF accelerations, �̈� ̂̈𝐳 =𝚯�̂� =
[
𝚽�̂�
𝐁

]
the leading matrix for accelerations and 𝐜 ≡ −�̇�𝑡 − �̇��̂��̇�. In the acceleration

problem, the new term �̇��̂� appears:

�̇��̂� =
d𝚽�̂�
d𝑡

= �̇�𝐪𝐪𝐳 +𝚽𝐪�̇�𝐳 + �̇�𝐳 (22)

Thus, 𝐜 can be rewritten as:

𝐜 = −
(
�̇�𝐪𝐪𝐳 +𝚽𝐪�̇�𝐳 + �̇�𝐳

)
�̇� − �̇�𝑡 (23)

In general, �̇� is expressed in terms of positions and velocities of points, vectors, angles, distances and/or the time, and consequently, the
assessment of the derivatives �̇�𝐪 , �̇�𝐳 and �̇�𝑡 (all with respect to the explicit dependencies of each constraint) are straightforward to obtain. On the
contrary, the derivatives of the natural coordinates �̇�𝐳 and 𝐪𝐳 depend on the topology of the mechanism and their evaluation is more challenging.

2.3. Semi-recursive Matrix R formulation

The formulation presented in this section was originally introduced by García de Jalón and Bayo in [30], based on previous results derived in
[31]. A modern description with the notation used in this work can be found in [2] and later, in [21], [22] and more recently in [32] the formulation
was applied to semi-recursive methods. As long as the method is profusely described in those works, only the main structure of the formulation is
outlined. A new notation is employed here so as to avoid possible misunderstandings between the 𝐑 matrix of the semi-recursive method (see [18])
and the projection matrix 𝐑𝚽 of this formulation.

In this approach, a second velocity transformation (Matrix R transformation) is carried out in order to remove some dependent coordinates and
all the constraints from the equations. Let us consider a multibody system modeled with 𝑛 relative coordinates subjected to 𝑚 constraints and with

6 Do not confuse with 𝐛𝑣𝑖 , an elemental term of the recursive accumulation.

Computers and Structures 308 (2025) 107642

5

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

𝑑 DoF. A vector of degrees of freedom 𝐳𝑖 ∈R𝑑 can be selected such that the dependent velocities, �̇�, accelerations, �̈�, and virtual velocities, �̇�∗, can
be expressed in terms of the independent ones by using the left inverse matrices 𝐑𝚽 and 𝐒𝚽 from (16) in equations (19) and (21):

�̇� =𝐑𝚽�̇�𝑖 + 𝐒𝚽𝐛 (24)

�̈� =𝐑𝚽 (
�̈�𝑖 − �̇��̇�

)
+ 𝐒𝚽𝐜 (25)

�̇�∗ =𝐑𝚽�̇�∗𝑖 (26)

being 𝐛 and 𝐜 the terms related to the temporal constraints derivatives described in sections 2.2.4 and 2.2.5 respectively.7

The expressions of the semi-recursive Matrix R formulation can be derived from the virtual power principle applied to a multibody system. For
a general multibody system modeled with joint coordinates, the virtual power principle delivers the following system of equations:

�̇�∗T
[(
𝐑𝑣T𝐌𝑣𝐑𝑣

)
�̈� −𝐑𝑣T (𝐐𝑣 −𝐌𝑣�̇�𝑣�̇�

)]
= 0 (27)

with 𝐌𝑣 and 𝐐𝑣 denoting the mass matrix and generalized forces vector referred to the reference coordinates of each body [18]. Equation (27) can
be rewritten using 𝐌𝑑 =𝐑𝑣T𝐌𝑣𝐑𝑣, 𝐐𝑑 =𝐑𝑣T (𝐐𝑣 −𝐌𝑣�̇�𝑣�̇�

)
and the relation (26) between virtual velocities, as:

�̇�𝑖∗T𝐑𝚽T [𝐌𝑑 �̈� −𝐐𝑑
]
= 0⇒𝐑𝚽T (𝐌𝑑 �̈� −𝐐𝑑

)
= 𝟎 (28)

The last identity in (28) holds because the virtual velocities �̇�𝑖∗ are independent. Finally, replacing (25), one obtains(
𝐑𝚽T𝐌𝑑𝐑𝚽) �̈�𝑖 =𝐑𝚽T (𝐐𝑑 −𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

))
(29)

which constitute the general Matrix R equations for closed loops or non-minimal joint coordinates. Observe that (29) supports the definition of any
type of coordinates as independent variables (relative coordinates, natural coordinates, etc.) enhancing the generality of the classical approach.

In the dynamic formulation proposed, the kinematic position and velocity problems as well as the evaluation of the matrix 𝐑𝚽 have to be
computed at each time step with (17). Taking into account that the three problems have identical leading matrices, they can be factorized once
(for the position problem) and then reused, minimizing the computational cost. The evaluation of the matrix 𝐒𝚽 is not necessary in the dynamics,
because the term 𝐒𝚽𝐜 can be calculated directly by means of the kinematic acceleration analysis (21) with �̈�𝑖 − �̇��̇� = 𝟎.

3. Sensitivity analysis

The semi-recursive Matrix R formulation for a non-constant 𝐁 matrix is analytically differentiated in this section with respect to a set of parameters
𝝆 ∈R𝑝 applying a direct differentiation scheme and the adjoint variable method.

Let us consider an integral objective function dependent on a set of natural coordinates 𝐪, �̇� and �̈�, a set of joint coordinates 𝐳, �̇� and �̈�, a set of
degrees of freedom 𝐳𝑖, �̇�𝑖 and �̈�𝑖 and a set of parameters 𝝆:

𝝍 =

𝑡𝐹

∫
𝑡0

𝐠
(
𝐪 (𝐳) , �̇� (𝐳, �̇�) , �̈� (𝐳, �̇�, �̈�) , 𝐳, �̇�, �̈�, 𝐳𝑖, �̇�𝑖, �̈�𝑖,𝝆

)
d𝑡 (30)

Note that each degree of freedom is usually part of the natural coordinates vector 𝐪 or the relative coordinates vector, 𝐳. In this regard, explicit
dependencies of the objective function 𝐠 on the degrees of freedom might not be necessary since they can be included in the natural and joint
coordinate dependencies, but they are considered separately because they allow particular simplifications in the sensitivity equations. On the other
hand, we avoid explicit dependencies with the natural coordinates, 𝐪, considered as implicit dependencies on relative dependent coordinates, 𝐳, in
order to avoid longer expressions.

3.1. Forward sensitivity

Taking derivatives on (30) with respect to a set of parameters 𝝆 and considering the implicit dependencies of 𝐠, the sensitivity of the objective
function (30) can be represented by the following gradient:

𝝍
′ =

𝑡𝐹

∫
𝑡0

(
𝐠𝐳𝑖𝐳𝑖′ + 𝐠�̇�𝑖 �̇�𝑖′ + 𝐠�̈�𝑖 �̈�𝑖′ + 𝐠�̂�𝐳′ + 𝐠 ̂̇𝐳�̇�

′ + 𝐠 ̂̈𝐳�̈�
′ + 𝐠

�̂�

)
d𝑡 (31)

where (⋅)′ denotes state derivatives with respect to the design parameters and subscripts indicate partial derivatives.
The Matrix R formulation imposes to the dependent states, 𝐳, �̇� and �̈� the fulfillment of the constraints vectors at position, velocity and acceleration

levels, in terms of a proper selection of degrees of freedom, 𝐳𝑖 , �̇�𝑖 and �̈�𝑖, by means of equations (13), (19) and (21). The sensitivities, 𝐳′ , �̇�′ and �̈�′,
of these dependent states, in terms of the degrees of freedom sensitivities, 𝐳𝑖′ , �̇�𝑖′ and �̈�𝑖′, read:

𝚯′ =
[

𝚽′

𝐁𝐳′ + 𝐡�̂� − 𝐳𝑖′
]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
𝐳′ =

[
−𝚽�̂�

𝐳𝑖′ − 𝐡
�̂�

]
⇒ 𝐳′ =𝐑𝚽 (

𝐳𝑖′ − 𝐡�̂�
)
− 𝐒𝚽𝚽�̂� (32a)

�̇�′ =
[

�̇�′

𝐁�̇�′ +𝐁′�̇� − 𝐳𝑖′
]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
�̇�′ =

[
−𝐛𝝆

�̇�𝑖′ − �̄�𝝆
]
⇒ �̇�′ =𝐑𝚽 (

�̇�𝑖′ − �̄�𝝆
)
− 𝐒𝚽𝐛𝝆 (32b)

�̈�′ =
[

�̈�′

𝐁�̈�′ +𝐁′�̈� + �̇�′�̇� + �̇��̇�′ − �̈�𝑖′
]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
�̈�′ =

[
−𝐜𝝆

�̈�𝑖′ − �̄�𝝆
]
⇒ �̈�′ =𝐑𝚽 (

�̈�𝑖′ − �̄�𝝆
)
− 𝐒𝚽𝐜𝝆 (32c)

7 Note that term 𝐛 does not show up in the virtual velocity equations because they are instantaneous variations by definition.

Computers and Structures 308 (2025) 107642

6

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

where equation (16) has been considered and 𝐛𝝆, 𝐜𝝆, ̄𝐛𝝆 and �̄�𝝆 defined as:

𝐛𝝆 = �̇��̂�𝐳′ + �̇��̂� (33)

𝐜𝝆 = 2�̇��̂��̇�′ + �̈��̂�𝐳′ + �̈��̂� (34)

�̄�𝝆 = �̇�𝐳′ +𝐁
�̂�
�̇� (35)

�̄�𝝆 = 2�̇��̇�′ + �̈�𝐳′ +𝐁�̂��̈� + �̇��̂��̇� (36)

with �̇� = 𝐁�̂��̇� and �̈� = 𝐁�̂��̈� + �̇��̂� �̇�.
Expanding terms to make explicit the dependencies on the sensitivities of the independent coordinates in positions, velocities and accelerations,

equations (32) are transformed:

𝐳′ =𝐑𝚽 (
𝐳𝑖′ − 𝐡�̂�

)
− 𝐒𝚽𝚽�̂� (37a)

�̇�′ =𝐑𝚽 (
�̇�𝑖′ −

(
�̇�𝐳′ +𝐁

�̂�
�̇�
))

− 𝐒𝚽
(
�̇��̂�𝐳′ + �̇�

�̂�

)
(37b)

�̈�′ =𝐑𝚽 (
�̈�𝑖′ −

(
2�̇��̇�′ + �̈�𝐳′ +𝐁

�̂�
�̈� + �̇�

�̂�
�̇�
))

− 𝐒𝚽
(
2�̇��̂��̇�′ + �̈��̂�𝐳′ + �̈�

�̂�

)
(37c)

Identifying terms in equations (37), the following relations can be inferred:

𝐳𝐳𝑖 = �̇��̇�𝑖 = �̈��̈�𝑖 =𝐑𝚽 (38a)

𝐳
𝝆
= −𝐒𝚽𝚽

�̂�
−𝐑𝚽𝐡

�̂�
(38b)

�̇�𝐳 = −𝐒𝚽�̇��̂� −𝐑𝚽�̇� (38c)

�̇�𝝆 = −𝐒𝚽�̇��̂� −𝐑𝚽𝐁�̂��̇� (38d)

�̈��̇� = −2𝐒𝚽�̇��̂� − 2𝐑𝚽�̇� (38e)

�̈�𝐳 = −𝐒𝚽�̈��̂� −𝐑𝚽�̈� (38f)

�̈�𝝆 = −𝐒𝚽�̈��̂� −𝐑𝚽 (
𝐁�̂��̈� + �̇��̂��̇�

)
(38g)

The expressions whose sensitivity analysis is being addressed include the definition of a non-constant 𝐁 matrix, hence the expressions developed
are generic for any selection of degrees of freedom, including the particular case of a constant matrix 𝐁, in which case the derivatives of 𝐁 are null.

Expressions (37) and (38) allow removing 𝐳′, �̇�′, �̈�′ from the gradient of the objective function (31). Then, all the contributions involving 𝐳𝑖′ , �̇�𝑖′
and �̈�𝑖′ can be gathered together:

𝐠�̌�𝑖 = 𝐠𝐳𝑖 +
[
𝐠�̂� + 𝐠 ̂̇𝐳�̇�𝐳 + 𝐠 ̂̈𝐳

(
�̈��̇� �̇�𝐳 + �̈�𝐳

)]
𝐳𝐳𝑖 (39a)

𝐠 ̌̇𝐳i = 𝐠�̇�𝑖 +
[
𝐠 ̂̇𝐳 + 𝐠 ̂̈𝐳�̈��̇�

]
�̇��̇�𝑖 (39b)

𝐠 ̌̈𝐳i = 𝐠�̈�𝑖 + 𝐠 ̂̈𝐳�̈��̈�𝑖 (39c)

𝐠
�̌�
= 𝐠

�̂�
+ 𝐠�̂�𝐳𝝆 + 𝐠 ̂̇𝐳

(
�̇�𝐳𝐳𝝆 + �̇�

𝝆

)
+ 𝐠 ̂̈𝐳

(
�̈��̇�
(
�̇�𝐳𝐳𝝆 + �̇�

𝝆

)
+ �̈�𝐳𝐳𝝆 + �̈�

𝝆

)
(39d)

where (⋅)⋅̌ identifies a partial derivative including implicit dependencies with respect to relative coordinates:

(⋅)�̌� = (⋅)�̂� + (⋅)�̂�𝐳𝐱 + (⋅) ̂̇𝐳
(
�̇�𝐱 + �̇�𝐳𝐳𝐱

)
+ (⋅) ̂̈𝐳

(
�̈�𝐱 + �̈��̇� �̇�𝐱 +

(
�̈�𝐳 + �̈��̇� �̇�𝐳

)
𝐳𝐱
)

(40)

Finally, gathering the terms with respect to 𝐳𝑖′ , �̇�𝑖′ and �̈�𝑖′, the expression of the gradient results:

𝝍
′ =

𝑡𝐹

∫
𝑡0

(
𝐠�̌�i𝐳𝑖′ + 𝐠 ̌̇𝐳i �̇�𝑖′ + 𝐠 ̌̈𝐳i �̈�𝑖′ + 𝐠

�̌�

)
d𝑡 (41)

The sensitivities 𝐳𝑖′ , �̇�𝑖′ and �̈�𝑖′ can be obtained differentiating (29) with respect to the vector of parameters. First of all, let us transform the
system (29) to allow a more compact notation:

�̄��̈�𝑖 = �̄� (42)

with

�̄� =
(
𝐑𝚽T𝐌𝑑𝐑𝚽) (43)

�̄� =𝐑𝚽T (𝐐𝑑 −𝐌𝑑
(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

))
(44)

Then, taking derivatives in (42) with respect to the set of parameters 𝝆:

�̄�′�̈�𝑖 + �̄��̈�𝑖′ = �̄�′ (45)

where:

�̄�′ = d�̄�
d𝝆

= �̄��̌�𝑖𝐳𝑖′ + �̄� ̌̇𝐳i �̇�𝑖′ + �̄��̌� = −�̄�𝐳𝑖′ − �̄��̇�𝑖′ + �̄��̌� (46)

Computers and Structures 308 (2025) 107642

7

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

�̄�′�̈�𝑖 = d�̄�
d𝝆

�̈�𝑖 =
(
�̄��̌�𝑖 �̈�𝑖

)
𝐳𝑖′ + �̄��̌��̈�𝑖 (47)

The resulting Tangent Linear Model (hereinafter TLM) takes the form:

�̄��̈�𝑖′ + �̄��̇�𝑖′ +
(
�̄�+ �̄��̌�𝑖 �̈�𝑖

)
𝐳𝑖′ = �̄��̌� − �̄��̌��̈�𝑖 (48a)

𝐳𝑖′
(
𝑡0
)
= 𝐳𝑖′0 (48b)

�̇�𝑖′
(
𝑡0
)
= �̇�𝑖′0 (48c)

wherein:

�̄��̌� − �̄��̌��̈�𝑖 = �̄��̂� − �̄��̂��̈�𝑖 +
(
�̄��̂� + �̄� ̂̇𝐳�̇�𝐳 − �̄��̂��̈�𝑖

)
𝐳𝝆 + �̄� ̂̇𝐳�̇�𝝆 (49)

�̄� = −�̄��̌�𝑖 = −
(
�̄��̂� + �̄� ̂̇𝐳�̇�𝐳

)
𝐳𝐳𝑖 (50)

�̄� = −�̄� ̌̇𝐳𝑖 = −�̄� ̂̇𝐳�̇��̇�𝑖 (51)

�̄��̌�𝑖 �̈�𝑖 =
(
�̄��̂��̈�𝑖

)
𝐳𝐳𝑖 (52)

Back into expressions (49) to (52), the following derivatives are needed as well:

�̄��̂� =𝐑𝚽T
𝐳

[
𝐐𝑑 −𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)]
−𝐑𝚽T [𝐊+𝐌𝑑

�̂�
(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
+𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
�̂�
]
, (53)

�̄� ̂̇𝐳 = −𝐑𝚽T (𝐂+𝐌𝑑
(
𝐒𝚽𝐜 ̂̇𝐳 − 2𝐑𝚽�̇�

))
, (54)

�̄��̂� =𝐑𝚽T
𝝆

[
𝐐𝑑 −𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)]
+𝐑𝚽T

[
𝐐𝑑
�̂�
−𝐌𝑑

�̂�

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
−𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
�̂�

]
(55)

The derivatives of matrix 𝐑𝚽 can be attained using its definition as a basis of the nullspace of 𝚽�̂� for the degrees of freedom selected:

𝚯�̂�𝐑𝚽 =
[
𝟎𝑚×𝑑
𝐈𝑑

]
⇒𝐑𝚽

�̂� = −𝚯+
�̂� 𝚯�̂��̂�𝐑𝚽 = −

(
𝐒𝚽𝚽�̂��̂� +𝐑𝚽𝐁�̂�

)
𝐑𝚽 (56)

𝐑𝚽
�̂�
= −𝚯+

�̂� 𝚯�̂��̂�𝐑𝚽 = −
(
𝐒𝚽𝚽�̂��̂� +𝐑𝚽𝐁

�̂�

)
𝐑𝚽 (57)

Concerning the term
(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
�̂� , it can be obtained from the definition of 𝐒𝚽𝐜−𝐑𝚽�̇��̇� as a particular solution for the acceleration problem

(21), with �̈�𝑖 = 𝟎:

𝚯�̂�
(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
=
[

𝐜
−�̇��̇�

]
⇒

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
�̂� = 𝐒𝚽𝐜�̂� −𝐑𝚽�̇��̂��̇� −

(
𝐒𝚽𝚽�̂��̂� +𝐑𝚽𝐁�̂�

)(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
(58)(

𝐒𝚽𝐜−𝐑𝚽�̇��̇�
)
�̂�
= 𝐒𝚽𝐜�̂� −𝐑𝚽�̇��̂��̇� −

(
𝐒𝚽𝚽�̂��̂� +𝐑𝚽𝐁�̂�

)(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
(59)

Finally, the derivatives of the mass matrix times acceleration �̄��̂� �̈�𝑖 and �̄��̂��̈�𝑖 make use of some of the previously calculated terms as well.

�̄��̂��̈� =𝐑𝚽T
�̂� 𝐌𝑑𝐑𝚽�̈�𝑖 +𝐑𝚽T𝐌𝑑

�̂� 𝐑
𝚽�̈�𝑖 +𝐑𝚽T𝐌𝑑𝐑𝚽

�̂� �̈�
𝑖 (60)

�̄��̂��̈� =𝐑𝚽T
�̂�

𝐌𝑑𝐑𝚽�̈�𝑖 +𝐑𝚽T𝐌𝑑
�̂�
𝐑𝚽�̈�𝑖 +𝐑𝚽T𝐌𝑑𝐑𝚽

�̂�
�̈�𝑖 (61)

Observe that if a constant 𝐁 matrix is selected, many terms in the expressions will be canceled. Detailed expressions of the derivatives of masses
(𝐌𝑑), forces (𝐐𝑑) and constraints (𝚽, �̇�, �̈�) with respect to relative coordinates and parameters can be found in [33].

The direct sensitivity analysis of the semi-recursive Matrix R formulation has been implemented in the MBSLIM multibody library as a general
sensitivity formulation considering a non-constant 𝐁 matrix and the RTdyn0 (center of mass of each body as reference point) and RTdyn1 (global
origin of coordinates as reference point) approaches.

Algorithm 1 Direct sensitivity.
1: procedure SolveDirectSensitivities
2: 𝑡← 𝑡0
3: 𝐳0, �̇�0 ← 𝑖𝑛𝑖𝑃 𝑜𝑠𝑉 𝑒𝑙(𝐳𝑖0, �̇�

𝑖
0)

4: 𝐳′0, �̇�
′
0 ← 𝑖𝑛𝑖𝑆𝑒𝑛𝑠𝑖𝑡𝑃 𝑜𝑠𝑉 𝑒𝑙(𝐳𝑖′0 , �̇�

𝑖′
0)

5: �̈�0 ← 𝑖𝑛𝑖𝐴𝑐𝑒𝑙(𝐳0, �̇�0)
6: �̈�′0 ←

(
�̄��̈�𝑖′ + �̄��̇�𝑖′ +

(
�̄�+ �̄��̌�𝑖 �̈�𝑖

)
𝐳𝑖′ = �̄�

�̌�
− �̄�

�̌�
�̈�𝑖
)

7: while 𝑡 <= 𝑡𝑒𝑛𝑑 do
8: 𝑡 = 𝑡+Δ𝑡
9: 𝐳, �̇�, �̈�← 𝑠𝑜𝑙𝑣𝑒𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠()

10: 𝐳𝑖′𝑖 , �̇�
𝑖′
𝑖 , �̈�

𝑖′
𝑖 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

(
𝐳𝑖′
𝑖−1, �̇�

𝑖′
𝑖−1, �̈�

𝑖′
𝑖−1

)
11: �̄��̌�𝑖 �̈�𝑖, �̄�, �̄�, �̄�

�̌�
← 𝑒𝑣𝑎𝑙𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠()

12: 𝐳𝑖′
𝑖
←

(
�̄��̈�𝑖′ + �̄��̇�𝑖′ +

(
�̄�+ �̄��̌�𝑖 �̈�𝑖

)
𝐳𝑖′ = �̄�

�̌�
− �̄�

�̌�
�̈�𝑖
)

13: �̇�𝑖′𝑖 , �̈�
𝑖′
𝑖 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟

(
𝐳𝑖′𝑖 , 𝐳

𝑖′
𝑖−1, �̇�

𝑖′
𝑖−1, �̈�

𝑖′
𝑖−1

)
14: 𝝍

′ T ← 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒
(∫ 𝑡𝐹

𝑡0

(
𝐠�̌�i𝐳𝑖′ + 𝐠 ̌̇𝐳i �̇�𝑖′ + 𝐠 ̌̈𝐳i �̈�𝑖′ + 𝐠

�̌�

)
d𝑡
)

15: end

The basic steps of the direct sensitivity formulation presented, are summarized in the pseudo-code 1. The process begins with the calculation of
positions, velocities and accelerations at the initial time, as well as their corresponding sensitivities. Then, the time can be increased and the states

Computers and Structures 308 (2025) 107642

8

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

can be computed by solving the dynamic equations. With the new states, the TLM (48) can be evaluated and solved applying a numerical integrator.
With the computed sensitivities of the states it is possible to integrate the objective function. This process is executed each time step until the final
time is reached.

In the semi-recursive Matrix R direct sensitivity formulation, most of the computational effort is devoted to the calculation of derivatives, while
the time required for the solution of the TLM is usually negligible for a low number of parameters. The computational burden associated to the
calculation of derivatives can be reduced using a combination of dense and sparse methods (sparse is convenient for constraint derivatives), by
means of the storage and reuse of terms (there are many elemental derivatives repeated which can be efficiently computed and stored), by means
of the exploitation of symmetry in matrices and hyper-matrices and by means of the use of recursive procedures whenever it is possible (for the
evaluation of derivatives in the open-loop model, for instance).

Because the number of sensitivity systems of equations grows with the number of parameters, the computational effort devoted to solve them
scales linearly with it, and for a number high enough, it is desirable to resort to other sensitivity schemes in which the computational effort is
independent of this dimension, like the adjoint method.

3.2. Adjoint sensitivity analysis

The adjoint variable method applied to Matrix R formulations was presented and discussed in [34], starting from three different constructions of
the equations of motion: a first-order explicit ODE system, a first-order implicit ODE system and a second-order implicit ODE system. The first option
delivers the simplest possible expressions for the adjoint equations, avoiding the time derivative of the mass matrix (as in the first-order implicit
ODE system) and the time derivative of the damping matrix and the second time derivative of the mass matrix (as in the second-order implicit ODE
system). In the current work, the developments presented in [34] for the first-order explicit ODE system will be recalled and combined with the
semi-recursive formalism.

First of all, the semi-recursive Matrix R equations of motion (42) should be reformulated as a first-order implicit system by means of the definition
of a new vector of states 𝐲 =

[
𝐳𝑖T 𝐯T

]T
, being �̇�𝑖 = 𝐯.[

𝐈 𝟎
𝟎 �̄�

][
�̇�𝑖
�̇�

]
=

[
𝐯
�̄�

]
(62a)

�̂� (𝐲,𝝆) �̇� = �̂� (𝑡,𝐲,𝝆) (62b)

Considering that the leading matrix of (62b) always has an inverse (for a proper selection of DoF), (62b) can be transformed into a first-order
explicit system:

�̇� = �̂�−1 (𝐲,𝝆) �̂� (𝑡,𝐲,𝝆) = 𝐟 (𝑡,𝐲,𝝆) (63)

Let us now consider the following Lagrangian:

 (𝝆) =𝝍 −

𝑡𝐹

∫
𝑡0

𝝁
T (�̇� − 𝐟 (𝑡,𝐲,𝝆)) d𝑡 (64)

where 𝝍 =𝝍 (𝐲, �̇�,𝝆) is the objective function defined in (30), with all the dependencies considered as implicit.
Since �̇� − 𝐟 (𝑡,𝐲,𝝆) = 𝟎, the value of the Lagrangian is equal to the value of the objective function, and also its derivatives for any value of 𝝁.
Computing the infinitesimal variations of ,

𝛿 =

𝑡𝐹

∫
𝑡0

(
𝐠�̌�𝛿𝐲 + 𝐠 ̌̇𝐲𝛿�̇� + 𝐠

�̌�
𝛿𝝆

)
d𝑡−

𝑡𝐹

∫
𝑡0

𝛿𝝁T (�̇� − 𝐟 (𝑡,𝐲,𝝆)) d𝑡−
𝑡𝐹

∫
𝑡0

𝝁
T (𝛿�̇� − 𝐟�̌�𝛿𝐲 − 𝐟

�̌�
𝛿𝝆

)
d𝑡 (65)

in which the notation explained in equation (40) has been used to include implicit dependencies on relative coordinates in the partial derivatives
with respect to 𝐲, �̇� and 𝝆.

Integrating by parts in time and rearranging terms:

𝛿 =
[(

𝐠 ̌̇𝐲 − 𝝁
T
)
𝛿𝐲

]𝑡𝐹
𝑡0

+

𝑡𝐹

∫
𝑡0

(
𝐠�̌� − �̇� ̌̇𝐲 + 𝝁

T𝐟�̌� + �̇�T
)
𝛿𝐲d𝑡+

𝑡𝐹

∫
𝑡0

(
𝐠
�̌�
+ 𝝁T𝐟

�̌�

)
𝛿𝝆d𝑡 (66)

The objective of the adjoint approach is to eliminate the need of calculating the derivatives of the states. In this case the objective is to nullify
the expression multiplying 𝛿𝐲, leading to the following adjoint ODE systems:

�̇� = −𝐟T�̌� 𝝁− 𝐠T�̌� + �̇�T
̌̇𝐲

(67a)

𝝁
𝑡𝐹 =

[
𝐠T
̌̇𝐲

]𝑡𝐹
(67b)

Nevertheless, these equations involve some problems related to the dependencies on �̇� and the derivative �̇��̇� , which could need the calculation
of the jerks ⃛𝐳𝑖. These problems can be solved through the transformation of the dependencies on �̇� to implicit dependencies on 𝐲 and 𝝆 using (62b),
resulting the final adjoint system:

�̇� = −𝐟T�̌�
(
𝝁+ 𝐠T

̌̇𝐲

)
− 𝐠T�̌� (68a)

𝝁
𝑡𝐹 = 𝟎 (68b)

Computers and Structures 308 (2025) 107642

9

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

𝐟�̌� = �̂�−1
(
�̂��̌� − �̂��̌�𝐟

)
=
[

𝟎 𝐈
−�̄�−1 (�̄�+ �̄��̌�𝑖 �̇�

)
−�̄�−1�̄�

]
(68c)

𝐠�̌� =
[
𝐠�̌�𝑖 𝐠 ̌̇𝐳i

]
(68d)

𝐠 ̌̇𝐲 =
[
𝟎 𝐠 ̌̈𝐳i

]
(68e)

The objective function gradient can be calculated with the remaining terms:

𝝍
′ T = −

[
𝐲T
�̌�
𝝁

]
𝑡0
+

𝑡𝐹

∫
𝑡0

(
𝐟T
�̌�

(
𝝁+ 𝐠T

̌̇𝐲

)
+ 𝐠T

�̌�

)
d𝑡 (69a)

𝐟
�̌�
= �̂�−1

(
�̂�
�̌�
− �̂�

�̌�
𝐟
)
=
[

𝟎
�̄�−1 (�̄��̌� − �̄��̌��̈�𝑖

)] (69b)

The implementation of the adjoint variable method requires the storage of information at each time step of the dynamic simulation. Once the
simulation is complete, the adjoint equations can be solved backward in time, for which the same partial derivatives needed in the direct method
have to be computed. The objective function gradient can be calculated from the values of the adjoint variables at each time step. This process is
summarized in the pseudo-code 2.

Comparing (48) and (68), it can be inferred that both systems might be advantageous in different circumstances. The direct method leads to
as many systems of equations as parameters, while the adjoint method requires to solve as many systems of equations as objective functions. In
highly parameterized problems (like optimal control) the adjoint method would be the preferred option, while in other problems which require the
evaluation of many objective functions (or optimization constraints), the direct method is desirable.

Algorithm 2 Adjoint sensitivity.
1: procedure SolveAdjointSensitivities
2: 𝑡← 𝑡0
3: 𝐳0, �̇�0 ← 𝑖𝑛𝑖𝑃 𝑜𝑠𝑉 𝑒𝑙(𝐳𝑖0, �̇�

𝑖
0)

4: 𝐳′0, �̇�
′
0 ← 𝑖𝑛𝑖𝑆𝑒𝑛𝑠𝑖𝑡𝑃 𝑜𝑠𝑉 𝑒𝑙(𝐳𝑖′0 , �̇�

𝑖′
0)

5: �̈�0 ← 𝑖𝑛𝑖𝐴𝑐𝑒𝑙(𝐳0, �̇�0)
6: �̈�′0 ← 𝑖𝑛𝑖𝑆𝑒𝑛𝑠𝑖𝑡𝐴𝑐𝑒𝑙(𝐳′0, �̇�

′
0)

7: while 𝑡 <= 𝑡𝑒𝑛𝑑 do
8: 𝑡 = 𝑡+Δ𝑡
9: 𝐳, �̇�, �̈�← 𝑠𝑜𝑙𝑣𝑒𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠()

10: 𝝁
𝑡𝐹 ← 𝟎

11: �̇�
𝑡𝐹 ← −𝐟�̌�T

(
𝝁+ 𝐠 ̌̇𝐲

T)− 𝐠�̌�T
12: while 𝑡 >= 𝑡0 do
13: 𝝁𝑖, �̇�𝑖 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

(
𝝁𝑖+1, �̇�𝑖+1

)
14: �̄��̌�𝑖 �̈�𝑖, �̄�, �̄�, �̄�

�̌�
← 𝑒𝑣𝑎𝑙𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠()

15: 𝝁𝑖 ←
(
�̇�𝑖 = −𝐟�̌�T

(
𝝁𝑖 + 𝐠 ̌̇𝐲

T)− 𝐠�̌�T
)

16: �̇�𝑖 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟
(
𝝁𝑖,𝝁𝑖+1, �̇�𝑖+1

)
17: 𝝍

′ T ← 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒
(∫ 𝑡𝐹

𝑡0

(
𝐟T
�̌�

(
𝝁+ 𝐠 ̌̇𝐲

T)+ 𝐠T
�̌�

)
d𝑡
)

18: 𝝍
′ T ←𝝍

′ T −
[
𝐲T
�̌�
𝝁

]
𝑡0

19: end

Extending the comparison to other direct and adjoint sensitivity formulations [14,16,35,36], the proposed methods result in simpler direct and
adjoint equations (systems of ODEs rather than DAEs) in which the size of the system is proportional to the number of DoF rather than the number
of dependent coordinates. On the contrary, the derivative calculation is more involved in the Matrix R method.

3.3. Gradient-based optimal design

The semi-recursive sensitivity methods presented in the previous subsections make possible the analytical evaluation of the gradient of one or
multiple objective functions. The information provided by the gradients is of paramount importance in the optimization of multibody systems, and
it can be used as input in one of the several long-known optimization algorithms that use gradients to calculate the direction and the size of the step
at each optimization iteration [37].

Let us consider the following optimization problem as an example of application of the sensitivity methods presented:

min
𝝆

𝜓 =

𝑡𝐹

∫
𝑡0

𝑔 (𝐳, �̇�, �̈�,𝝆, 𝑡) d𝑡 (70)

s.t. 𝚽𝑒 (𝐳, �̇�, �̈�,𝝆, 𝑡) = 𝟎 (71)

𝚽𝑖 (𝐳, �̇�, �̈�,𝝆, 𝑡) ≥ 𝟎 (72)

where the superscript 𝑒 stands for equality and 𝑖 stands for inequality. For the evaluation of objective function and constraints gradient, it is possible
to define an extended objective function 𝝍𝑒𝑥𝑡 such that:

Computers and Structures 308 (2025) 107642

10

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

𝝍
𝑒𝑥𝑡 =

⎡⎢⎢⎣
𝜓

𝚽𝑒

𝚽𝑖

⎤⎥⎥⎦ ⇒
(
𝝍

𝑒𝑥𝑡
)′ = ⎡⎢⎢⎣

𝜓 ′

(𝚽𝑒)′(
𝚽𝑖

)′
⎤⎥⎥⎦ (73)

The gradient of the new objective function 𝝍 𝑒𝑥𝑡 can be computed using the sensitivity methods presented, thus objective function and constraint
gradients can be evaluated in a single sensitivity calculation.

With this information, a general gradient-based optimization algorithm can be used for the minimization of (70), like those available in MATLAB
in the context of the fmincon function, others available in languages like Python or Fortran (LBFGS-B [38]) or by means of in-house implementations
of well-known algorithms [37].

4. Numerical experiments

The dynamic and sensitivity semi-recursive matrix R formulations described in this work, have been implemented in the MBSLIM multibody
library [29] as general sensitivity formulations. The implementation has been tested with a five-bar linkage and in two maneuvers of a vehicle. The
integration method used in all the experiments is the implicit trapezoidal rule, used on both the dynamics and sensitivity equations, and the time
step for each numerical experiment has been selected as the maximum time step that delivers a response within the range of accuracy specified in
each benchmark problem description [39]. The experiments have been conducted in an Intel Core i7-8700 CPU at 3.20 GHz. The methods have been
coded in Fortran using the latest features of the standard Fortran 2018, with the Fortran Intel Parallel Studio XE 2018 as compiler on a Windows
10 operating system. Although the equations presented are valid for a generic reference point, the results included in this section correspond to the
RTdyn0 semi-recursive method, with the center of mass of each body as reference point.

The semi-recursive Matrix R sensitivity methods have been implemented according to the following guidelines:

• Recursive procedures: recursive procedures have been exploited in both dynamics and derivative calculations whenever possible in order to
minimize the number of algebraic operations.

• Storage and reuse of terms: there are some terms that appear repeatedly in the sensitivity equations and in the derivative expressions, thus the
most efficient approach is to compute them once, store and then reuse them when they are needed.

• Combination of sparse and dense algebra: independent coordinate formulations like the semi-recursive Matrix R usually lead to small and very
dense problems that can be solved with dense solvers. Here, both dynamic and sensitivity systems of equations are solved using LAPACK (Linear
Algebra PACKage). On the contrary, sparse algebra is used in kinematic problems like in the evaluation of Matrix 𝐑𝚽 and in the storage of sparse
structures like the derivatives of kinematic constraints.

• Symmetry: the symmetry of some dynamic and kinematic terms can be harnessed for saving calculations and storing terms. For example, only
the derivatives of the diagonal and the upper triangular part of the mass matrix have to be computed and stored, and then it is possible to
operate with them using appropriate routines.

4.1. Five-bar mechanism

The sensitivity formulations introduced in this document are firstly tested in the five-bar benchmark problem included in the IFToMM benchmark
library [39] under the title “Sensitivity analysis of a five-bar mechanism”. There, the reader can find extensive information about topology, geometry,
initial position and velocity, simulation time, objective functions and sensitivity parameters.

The mechanism, displayed in Fig. 1, is composed of five bars (one of them fixed) linked by means of five revolute joints with parallel axes, which
converts it in a 2-DoF linkage.

Fig. 1. Five-bar linkage.

In this experiment, the goal is to evaluate the gradient of the following array of objective functions:

𝝍 =
[
𝜓1 𝜓2 𝜓3

]T
(74a)

𝜓1 =

𝑡F

∫
𝑡0

(
𝐫2 − 𝐫20

)T (𝐫2 − 𝐫20
)
d𝑡 , 𝜓2 =

𝑡F

∫
𝑡0

�̇�T2 �̇�2d𝑡 , 𝜓3 =

𝑡F

∫
𝑡0

�̈�T2 �̈�2d𝑡 . (74b)

wherein 𝐫2 and 𝐫20 represent the instant and initial position of the point identified as 2 in Fig. 1, respectively.

Computers and Structures 308 (2025) 107642

11

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

Fig. 2. Evolution in time of the gradient of 𝜓3 evaluated with direct (left) and adjoint (right) sensitivity formulations.

The gradient of each objective function is calculated with respect to the parameters below:

𝝆 =
[
𝐿s1 𝐿s2 𝑚A1 𝑥GA1 𝐿A1

]
(75)

being 𝐿s1 and 𝐿s2 the natural lengths of the springs, and 𝑚A1 , 𝑥GA1 and 𝐿A1 the mass, 𝑋-local coordinate of the center of mass and length of the bar
between vertices 𝐴 and 1, respectively.

The sensitivity analysis of a 5-seconds dynamic simulation of this linkage under the action of gravity and spring forces has been performed
with the semi-recursive Matrix R sensitivity formulations detailed in this document. The accuracy of the results is compared in Table 1 against the
reference provided in the IFToMM benchmark library [39]. Fig. 2 includes a comparison between each component of the gradient of the objective
function 𝜓3 evaluated with global and semi-recursive Matrix R direct and adjoint sensitivity formulations. It can be observed that, since the set of
independent coordinates used is identical in global and semi-recursive methods, the results coincide in both cases. Moreover, Fig. 2 shows how the
value of the gradient at time 𝑡 = 5𝑠 in direct methods (left column) matches the results at times 𝑡 = 0𝑠 in adjoint methods (right column) due to the
backward integration of the gradient in the adjoint case.

Computers and Structures 308 (2025) 107642

12

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

Table 1
Objective functions gradient evaluated with different sensitivity
formulations.

Direct SR-Matrix R Adjoint SR-Matrix R Reference (
𝝍

1)′
𝐿𝑠1

-4.2288 -4.2288 -4.2288 (
𝝍

1)′
𝐿𝑠2

3.2116 3.2116 3.2116 (
𝝍

1)′
𝑚𝐴1

0.31866 0.31866 0.31866 (
𝝍

1)′
𝑥𝐺
𝐴1

0.44235 0.44235 0.44235 (
𝝍

1)′
𝐿𝐴1

3.3598 3.3599 3.3598(
𝝍

2)′
𝐿𝑠1

-15.452 -15.452 -15.452 (
𝝍

2)′
𝐿𝑠2

50.309 50.308 50.309 (
𝝍

2)′
𝑚𝐴1

0.97017 0.97016 0.97012 (
𝝍

2)′
𝑥𝐺
𝐴1

0.74569 0.74569 0.74560 (
𝝍

2)′
𝐿𝐴1

-27.359 -27.358 -27.359(
𝝍

3)′
𝐿𝑠1

221.64 221.65 221.64 (
𝝍

3)′
𝐿𝑠2

2436.6 2436.6 2436.6 (
𝝍

3)′
𝑚𝐴1

-32.497 -32.498 -32.497 (
𝝍

3)′
𝑥𝐺
𝐴1

-85.658 -85.658 -85.657 (
𝝍

3)′
𝐿𝐴1

-2546.6 -2546.6 -2546.6

This example aims to check the accuracy of the methods rather than their efficiency, which is assessed in the following more complex numerical
experiment.

4.2. Buggy vehicle

The second numerical experiment employed to test the accuracy and efficiency of the sensitivity methods presented is a buggy vehicle with
articulated suspensions and with tire-ground interaction modeled by means contact-frictional tire forces, displayed in Fig. 3. The complete model
description along with the initial conditions, simulation time, forces description, objective functions and sensitivity parameters is documented in the
IFToMM benchmark library [39] in two separate benchmark problems entitled “Sensitivity analysis of a step descent maneuver of a buggy vehicle”
and “Sensitivity analysis of a double lane change maneuver of a buggy vehicle”.

Fig. 3. Buggy vehicle with the points and vectors defining the model.

In the first maneuver, the vehicle moves in a straight line with its steering blocked and descents a step of 1 cm placed at a distance of 5.5m from
the origin. Considering a forward initial linear speed of 3m s−1, the step is reached approximately at t=2.0 s. The 4.5-second simulation is executed
with the dynamic formulation presented in this document with a time step of 1ms.

As objective function, a measurement of the chassis accelerations is considered:

𝜓 =

𝑡F

∫
𝑡0

�̈�21𝑧
d𝑡 (76)

being �̈�1𝑧 the 𝑍 (vertical) component of the acceleration of a point in the front of the chassis.

Computers and Structures 308 (2025) 107642

13

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

Table 2
Objective function gradient for the step descent maneuver.

Semi-recursive methods Global methods Reference
Direct Matrix R Adjoint Matrix R Direct Matrix R Adjoint Matrix R

𝝍
′
𝑘f

2.0483 × 10−4 2.0493 × 10−4 2.0538 × 10−4 2.0547 × 10−4 2.06 × 10−4

𝝍
′
𝑐f

9.3358 × 10−4 9.3358 × 10−4 9.3357 × 10−4 9.3357 × 10−4 9.34 × 10−4

𝝍
′
𝑘r

−3.8189 × 10−5 −3.8252 × 10−5 −3.8138 × 10−5 −3.8202 × 10−5 −3.90 × 10−5

𝝍
′
𝑐r

7.5319 × 10−4 7.5319 × 10−4 7.5319 × 10−4 7.5319 × 10−4 7.53 × 10−4

𝝍
′
𝑚c

4.0976 × 10−2 4.0979 × 10−2 4.0895 × 10−2 4.0899 × 10−2 4.06 × 10−2

Fig. 4. CPU times of objective function and gradient evaluations for the step descent maneuver.

The sensitivity parameters include:

𝝆 =
[
𝑘f 𝑐f 𝑘r 𝑐r 𝑚c

]
(77)

with 𝑘f , 𝑐f , 𝑘r and 𝑐r representing the stiffness and damping coefficients of the frontal and rear suspensions, respectively, and 𝑚c identifying the
mass of the chassis.

In order to assess the efficiency of the semi-recursive sensitivity formulations presented in this document, they are compared with equivalent
Matrix R sensitivity formulations in natural (or fully-Cartesian) coordinates. It is important to remark that the independent variables are identical
in natural and relative coordinate models, thus matching results could be expected (despising numerical errors). Therefore, this experiment allows
to evaluate the computational gains of using semi-recursive methods instead of global methods.

In Table 2, the results of the step descent objective function gradient are presented for different formulations. The differences observed are due
to the collision in the step descent, which involves impact forces which require a very low time step to be perfectly simulated. In fact, the level of
convergence between formulations and reference response can be increased by decreasing the time step. However, no time step reduction has been
executed since all the results presented fulfill the error criteria required by the benchmark problem.

Fig. 4 presents the efficiency for the direct and adjoint, global and semi-recursive Matrix R formulations, showing that the semi-recursive formu-
lation saves around 48.2% of CPU-time in the case of the direct method and up to 50.2% in the case of the adjoint, for this particular example and
maneuver. This figure also reflects that semi-recursive methods outperform global methods in both dynamics and sensitivities, representing the time
devoted to sensitivity calculations around 31% of the total time in semi-recursive methods (32.2% in adjoint and 30.1% in direct sensitivities) and
27.8% in global methods. Apart from the dynamics calculation, almost all the computational time in the four sensitivity formulations compared is
spent in the evaluation of derivatives, while the time needed for the solution of the sensitivity equations is almost negligible. This is explained by
the fact that direct and adjoint systems of equations are linear and of very small size.

The second maneuver consists in a 12-second double lane change maneuver as described in the benchmark problem “Sensitivity analysis of a
double lane change maneuver of a buggy vehicle” (see [39]). In this case, the objective function measures the square of the roll rate of the chassis,

𝝍 =

𝑡F

∫
𝑡0

�̇�2d𝑡 (78)

while the set of parameters is preserved from the step descent maneuver, declared in (77).
The time step for both dynamics and sensitivity analysis is increased in this maneuver to 15ms due to the smoothness of the motion (no abrupt

force variation appears).
In Table 3 and Fig. 5, the accuracy and efficiency of the sensitivity methods are assessed, respectively. These data exhibit the correctness and

validity of the expressions presented as well as the higher efficiency of the semi-recursive methods.
Fig. 5 confirms the speed-ups of semi-recursive methods for this maneuver, around 49.3% of CPU-time for the direct semi-recursive compared

to the direct global and around 50.1% in the case of the adjoint semi-recursive compared to the adjoint global. It is worth to mention that the joint
calculation of dynamics and sensitivities is executed in real time, with a factor of 1.6 in global methods and 3.1 in semi-recursive methods. This
highlights the efficiency of the methods presented and makes patent the advantages of analytical differentiation in sensitivity calculations.

It is worth mentioning that, even if the topological semi-recursive Matrix R sensitivity formulations are faster than their global counterparts,
the comparison with the global and semi-recursive ALI3-P sensitivity formulations presented in [33], reveals that Matrix R formulations are slower

Computers and Structures 308 (2025) 107642

14

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

Table 3
Objective function gradient for the double lane change maneuver.

Semi-recursive methods Global methods Reference
Direct Matrix R Adjoint Matrix R Direct Matrix R Adjoint Matrix R

𝝍
′
𝑘f

3.9538 × 10−8 3.9538 × 10−8 3.9533 × 10−8 3.9533 × 10−8 3.96 × 10−8

𝝍
′
𝑐f

−1.2736 × 10−8 −1.2736 × 10−8 −1.2737 × 10−8 −1.2737 × 10−8 −1.28 × 10−8

𝝍
′
𝑘r

−5.1100 × 10−8 −5.1100 × 10−8 −5.1100 × 10−8 −5.1100 × 10−8 −5.11 × 10−8

𝝍
′
𝑐r

−4.1108 × 10−8 −4.1108 × 10−8 −4.1108 × 10−8 −4.1108 × 10−8 −4.12 × 10−8

𝝍
′
𝑚c

2.5574 × 10−6 2.5574 × 10−6 2.5580 × 10−6 2.5580 × 10−6 2.56 × 10−6

Fig. 5. CPU times of objective function and gradient evaluations for the double lane change maneuver.

than ALI3-P for the examples presented. The same conclusion can likely be extended to other multibody systems with similar sizes, coordinates and
degrees of freedom.

5. Conclusions

In this document, the combination of the Matrix R constraint enforcement scheme with topological semi-recursive methods is reviewed. The
classical Matrix R formulation is extended to support degrees of freedom which are not a subset of the dependent coordinates, thus the method
presented is more general and cannot be considered equivalent to a coordinate partitioning method. Constrained and unconstrained kinematic
problems in joint coordinates are revisited as an introductory step for the generation of semi-recursive Matrix R equations of motion.

The sensitivity analysis of the semi-recursive dynamic formulation introduced has been derived using a direct differentiation method and an
adjoint variable method, reaching a set of compact expressions involving derivatives with respect to relative coordinates and parameters.

A detailed description of the main derivatives required in both sensitivity methods has been provided. Additionally, some new differentiation
rules and notation have been declared with the aim of keeping sensitivity equations as concise and clear as possible.

The sensitivity methods have been implemented in the MBSLIM general purpose multibody library, in which each derivative required has been
analytically calculated, programmed and tested. The sensitivity methods have been evaluated in a five-bar linkage and in two maneuvers of a buggy
vehicle with articulated suspensions. Results show an important computational gain of semi-recursive methods with respect to the sensitivity analysis
of Matrix R in natural coordinates for the same level of accuracy.

CRediT authorship contribution statement

Álvaro López Varela: Writing – original draft, Validation, Investigation, Formal analysis. Daniel Dopico Dopico: Writing – review & edit-
ing, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Alberto
Luaces Fernández: Software, Resources, Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgements

The support of the Spanish Ministry of Economy and Competitiveness (MINECO) under project DPI2016-81005-P and the support of Spanish
Ministry of Science and Innovation (MICINN) under project PID2020-120270GB-C21 are greatly acknowledged. Furthermore, the first author would
like to greatly acknowledge the support of MINECO by means of the doctoral research contract BES-2017-080727, co-financed by the European
Union through the ESF program, and Centro Mixto de Investigación UDC – Navantia Astillero 5.0. El Astillero del Futuro.

Computers and Structures 308 (2025) 107642

15

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

Appendix A. Notation

Consider a model defined by 𝐳 ∈R𝑛 relative coordinates, with 𝐪(𝐳) ∈R𝑛𝑞 natural coordinates referred to points and vectors and with a set 𝝆 ∈R𝑝

of system parameters. Let us define a new differentiation rule of a generic function 𝑓
(
𝐳, �̇�, �̈�,𝐪(𝐳), �̇�(𝐳, �̇�), �̈�(𝐳, �̇�, �̈�),𝝆

)
as:

𝑓�̂� = 𝑓𝐪𝐪𝐱 + 𝑓�̇��̇�𝐱 + 𝑓�̈��̈�𝐱 + 𝑓𝐱 (A.1)

being 𝐱 any of the dependencies of function 𝑓 , ̇() a first temporal derivative and (̈) a second time derivative. In brief, the ℎ𝑎𝑡 notation in a subscript
indicates that the derivative is evaluated considering all the dependencies of the function on natural coordinates and the dependencies of natural
coordinates on 𝐱.

As an example, let us consider the vector of kinematic constraints as the function 𝑓 . The derivatives with respect to the relative coordinates,
natural coordinates and system parameters according to (A.1) are:

𝚽�̂� =𝚽𝐪𝐪𝐳 +𝚽𝐳 (A.2a)

𝚽�̂� =𝚽𝐪𝐪𝐪 +𝚽𝐪 (A.2b)

𝚽
�̂�
=𝚽𝐪𝐪𝝆 +𝚽

𝝆
(A.2c)

Observe that the derivatives with respect to �̇�, �̈�, �̇� and �̈� are null in this case and have been removed from (A.2a).
The total derivative of a function 𝑓 with respect to the set of system parameters can be calculated as:

𝑓 ′ =
(
𝑓𝐪𝐪𝐳 + 𝑓�̇��̇�𝐳 + 𝑓�̈��̈�𝐳 + 𝑓𝐳

)
𝐳′ +

(
𝑓�̇��̇��̇� + 𝑓�̈��̈��̇� + 𝑓�̇�

)
�̇�′ +

(
𝑓�̈��̈��̈� + 𝑓�̈�

)
�̈�′ + 𝑓

�̂�
(A.3)

being

𝑓 ′ = d𝑓
d𝝆

, 𝐳′ = d𝐳
d𝝆

, �̇�′ = d�̇�
d𝝆

, �̈�′ = d�̈�
d𝝆

(A.4)

Using (A.1), it is possible to define it more concisely:

𝑓 ′ = 𝑓�̂�𝐳′ + 𝑓̂̇𝐳�̇�
′ + 𝑓̂̈𝐳�̈�

′ + 𝑓
�̂�

(A.5)

as long as the intermediate dependencies on 𝐪, �̇� and �̈� are included in the new differentiation rule.

Data availability

Data will be made available on request.

References

[1] Cuadrado J, Dopico D, Naya M, Gonzalez M. Penalty, semi-recursive and hybrid methods for mbs real-time dynamics in the context of structural integrators. Multibody Syst Dyn
2004;12(2):117–32. https://doi.org/10.1023/B:MUBO.0000044421.04658.de.

[2] García de Jalón J, Bayo E. Kinematic and dynamic simulation of multibody systems: the real-time challenge. New York USA: Springer-Verlag; 1994.
[3] Callejo A, García de Jalón J, Luque P, Mántaras DA. Sensitivity-based, multi-objective design of vehicle suspension systems. J Comput Nonlinear Dyn 2015;10(3):031008. https://

doi.org/10.1115/1.4028858.
[4] Gutiérrez-López M, Callejo A, García de Jalón J. Computation of independent sensitivities using Maggi’s formulation. 2012.
[5] Martins J, Sturdza P, Alonso J. The complex-step derivative approximation. ACM Trans Math Softw 2003;29(3):245–62. https://doi.org/10.1145/838250.838251.
[6] Maly T, Petzold LR. Numerical methods and software for sensitivity analysis of differential-algebraic systems. Appl Numer Math 1996;20(1):57–79. https://doi.org/10.1016/0168-

9274(95)00117-4.
[7] Feehery W, Tolsma J, Barton P. Efficient sensitivity analysis of large-scale differential-algebraic systems. Appl Numer Math 1997;25(1):41–54. https://doi.org/10.1016/S0168-

9274(97)00050-0.
[8] Callejo A, Narayanan S, García de Jalón J, Norris B. Performance of automatic differentiation tools in the dynamic simulation of multibody systems. Adv Eng Softw 2014;73:35–44.

https://doi.org/10.1016/j.advengsoft.2014.03.002.
[9] Dürrbaum A, Klier W, Hahn H. Comparison of automatic and symbolic differentiation in mathematical modeling and computer simulation of rigid-body systems. Multibody Syst

Dyn 2002;7(4):331–55. https://doi.org/10.1023/A:1015523018029.
[10] Ambrósio J, Neto M, Leal R. Optimization of a complex flexible multibody systems with composite materials. Multibody Syst Dyn 2007;18(2):117–44. https://doi.org/10.1007/

s11044-007-9086-y.
[11] Callejo A, Dopico D. Direct sensitivity analysis of multibody systems: a vehicle dynamics benchmark. J Comput Nonlinear Dyn 2019;14(2):021004. https://doi.org/10.1115/1.

4041960.
[12] Haug EJ, Neel K, Krishnaswami P. Design sensitivity analysis and optimization of dynamically driven systems. In: Computer aided analysis and optimization of mechanical system

dynamics, vol. 9. 1984. p. 555–635.
[13] Mani N, Haug E. Singular value decomposition for dynamic system design sensitivity analysis. Eng Comput 1985;1(2):103–9. https://doi.org/10.1007/BF01200068.
[14] Haug EJ. Design sensitivity analysis of dynamic systems. In: Mota Soares CA, editor. Computer aided optimal design: structural and mechanical systems. Berlin, Heidelberg: Springer

Berlin Heidelberg; 1987. p. 705–55.
[15] Ashrafiuon H, Mani N. Analysis and optimal design of spatial mechanical systems. J Mech Des, Trans ASME 1990. https://doi.org/10.1115/1.2912593.
[16] Bestle D, Seybold J. Sensitivity analysis of constrained multibody systems. Arch Appl Mech 1992;62(3):181–90. https://doi.org/10.1007/BF00787958.
[17] Callejo A, Sonneville V, Bauchau O. Discrete adjoint method for the sensitivity analysis of flexible multibody systems. J Comput Nonlinear Dyn 2019;14(2). https://doi.org/10.

1115/1.4041237.
[18] Dopico Dopico D, López Varela Á, Luaces Fernández A. Augmented Lagrangian index-3 semi-recursive formulations with projections. Multibody Syst Dyn 2020. https://doi.org/10.

1007/s11044-020-09771-9.
[19] Kim SS, Vanderploeg MJ. A general and efficient method for dynamic analysis of mechanical systems using velocity transformations. J Mech Des, Trans ASME 1986;108(2):176–82.

https://doi.org/10.1115/1.3260799.
[20] Nikravesh P, Gim G. Systematic construction of the equations of motion for multibody systems containing closed kinematic loops. J Mech Des, Trans ASME 1993;115(1):143–9.

https://doi.org/10.1115/1.2919310.
[21] Rodriguez JI, Jimenez JM, Funes FJ, de Jalón JG. Recursive and residual algorithms for the efficient numerical integration of multi-body systems. Multibody Syst Dyn

2004;11(4):295–320.

Computers and Structures 308 (2025) 107642

16

https://doi.org/10.1023/B:MUBO.0000044421.04658.de
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib073E0D69BF7E290B2DF4B86C50419C10s1
https://doi.org/10.1115/1.4028858
https://doi.org/10.1115/1.4028858
https://doi.org/10.1145/838250.838251
https://doi.org/10.1016/0168-9274(95)00117-4
https://doi.org/10.1016/0168-9274(95)00117-4
https://doi.org/10.1016/S0168-9274(97)00050-0
https://doi.org/10.1016/S0168-9274(97)00050-0
https://doi.org/10.1016/j.advengsoft.2014.03.002
https://doi.org/10.1023/A:1015523018029
https://doi.org/10.1007/s11044-007-9086-y
https://doi.org/10.1007/s11044-007-9086-y
https://doi.org/10.1115/1.4041960
https://doi.org/10.1115/1.4041960
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib0423A2A5D91E9A34206BDC796589C2EFs1
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib0423A2A5D91E9A34206BDC796589C2EFs1
https://doi.org/10.1007/BF01200068
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib054CED7618B003774D4AF9A5CCF3A260s1
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib054CED7618B003774D4AF9A5CCF3A260s1
https://doi.org/10.1115/1.2912593
https://doi.org/10.1007/BF00787958
https://doi.org/10.1115/1.4041237
https://doi.org/10.1115/1.4041237
https://doi.org/10.1007/s11044-020-09771-9
https://doi.org/10.1007/s11044-020-09771-9
https://doi.org/10.1115/1.3260799
https://doi.org/10.1115/1.2919310
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib1D169219CD668DAEF2D742939DE79D69s1
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib1D169219CD668DAEF2D742939DE79D69s1

Á. López Varela, D. Dopico Dopico and A. Luaces Fernández

[22] García de Jalón J, Alvarez E, De Ribera F, Rodriguez I, Funes F. A fast and simple semi-recursive formulation for multi-rigid-body systems. Comput Methods Appl Sci 2005;2:1–23.
https://doi.org/10.1007/1-4020-3393-1_1.

[23] Funes FJ, García de Jalón J. An efficient dynamic formulation for solving rigid and flexible multibody systems based on semirecursive method and implicit integration. J Comput
Nonlinear Dyn 2016;11(5). https://doi.org/10.1115/1.4032246.

[24] Pan Y, Dai W, Xiong Y, Xiang S, Mikkola A. Tree-topology-oriented modeling for the real-time simulation of sedan vehicle dynamics using independent coordinates and the
rod-removal technique. Mech Mach Theory 2020;143. https://doi.org/10.1016/j.mechmachtheory.2019.103626.

[25] Avello A, Jiménez J, Bayo E, García de Jalón J. A simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations. Comput Methods
Appl Mech Eng 1993;107(3):313–39. https://doi.org/10.1016/0045-7825(93)90072-6.

[26] Cuadrado J, Dopico D. A hybrid global-topological real-time formulation for multibody systems. Volume 5: 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B,
and C of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Available from: https://asmedigitalcollection.asme.
org/IDETC-CIE/proceedings-pdf/IDETC-CIE2003/37033/115/2597128/115_1.pdf. https://doi.org/10.1115/DETC2003/VIB-48315.

[27] Cuadrado J, Dopico D, Gonzalez M, Naya M. A combined penalty and recursive real-time formulation for multibody dynamics. J Mech Des, Trans ASME 2004;126(4):602–8. https://
doi.org/10.1115/1.1758257.

[28] Jaiswal S, Rahikainen J, Khadim Q, Sopanen J, Mikkola A. Comparing double-step and penalty-based semirecursive formulations for hydraulically actuated multibody systems in
a monolithic approach. Multibody Syst Dyn 2021;52(2):169–91. https://doi.org/10.1007/s11044-020-09776-4.

[29] Dopico D, Luaces A, Lugrís U, Saura M, González F, Sanjurjo E, et al. MBSLIM: multibody systems in laboratorio de ingeniería mecánica. Available from: http://lim.ii.udc.es/MBSLIM,
2009–2016.

[30] García de Jalón J, Jiménez JM, Avello A, Martín F, Cuadrado J. Real time simulation of complex 3-D multibody systems with realistic graphics. In: Haug EJ, Deyo RC, editors.
Real-time integration methods for mechanical system simulation. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. p. 265–92.

[31] García de Jalón J, Unda J, Avello A. Natural coordinates for the computer analysis of multibody systems. Comput Methods Appl Mech Eng 1986;56(3):309–27. https://doi.org/10.
1016/0045-7825(86)90044-7.

[32] García de Jalón J, Callejo A, Hidalgo A, Gutierrez M. Efficient solution of Maggi’s equations. In: Proceedings of the ASME design engineering technical conference 4 (PARTS A AND
B); 2011. p. 115–24.

[33] López Varela A, Dopico Dopico D, Luaces Fernández A. Augmented Lagrangian index-3 semi-recursive formulations with projections: direct sensitivity analysis. Multibody Syst Dyn
2023. https://doi.org/10.1007/s11044-023-09928-2.

[34] Dopico D, Zhu Y, Sandu A, Sandu C. Direct and adjoint sensitivity analysis of ordinary differential equation multibody formulations. J Comput Nonlinear Dyn 2014;10(1):1–8.
https://doi.org/10.1115/1.4026492.

[35] Dopico D, González F, Luaces A, Saura M, García-Vallejo D. Direct sensitivity analysis of multibody systems with holonomic and nonholonomic constraints via an index-3 augmented
Lagrangian formulation with projections. Nonlinear Dyn May 2018. https://doi.org/10.1007/s11071-018-4306-y.

[36] Dopico D, Sandu A, Sandu C. Adjoint sensitivity index-3 augmented Lagrangian formulation with projections. Mech Based Des Struct Mach 2021. https://doi.org/10.1080/15397734.
2021.1890614.

[37] Nocedal J, Wright S. Numerical optimization. 2nd edition. New York: Springer-Verlag; 2006.
[38] Morales J, Nocedal J. Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans Math Softw 2011;38(1). https://

doi.org/10.1145/2049662.2049669.
[39] I. T. C. for Multibody Dynamics. Library of computational benchmark problems. Available from: http://www.iftomm-multibody.org/benchmark, 2014.

Computers and Structures 308 (2025) 107642

17

https://doi.org/10.1007/1-4020-3393-1_1
https://doi.org/10.1115/1.4032246
https://doi.org/10.1016/j.mechmachtheory.2019.103626
https://doi.org/10.1016/0045-7825(93)90072-6
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2003/37033/115/2597128/115_1.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2003/37033/115/2597128/115_1.pdf
https://doi.org/10.1115/DETC2003/VIB-48315
https://doi.org/10.1115/1.1758257
https://doi.org/10.1115/1.1758257
https://doi.org/10.1007/s11044-020-09776-4
http://lim.ii.udc.es/MBSLIM
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib733029570C1AA22A214BB30345774855s1
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib733029570C1AA22A214BB30345774855s1
https://doi.org/10.1016/0045-7825(86)90044-7
https://doi.org/10.1016/0045-7825(86)90044-7
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib7B52FF25F07A0D728C8B479AF3453D17s1
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib7B52FF25F07A0D728C8B479AF3453D17s1
https://doi.org/10.1007/s11044-023-09928-2
https://doi.org/10.1115/1.4026492
https://doi.org/10.1007/s11071-018-4306-y
https://doi.org/10.1080/15397734.2021.1890614
https://doi.org/10.1080/15397734.2021.1890614
http://refhub.elsevier.com/S0045-7949(24)00371-7/bib51A92244D83A5099138C7A07BDCE5697s1
https://doi.org/10.1145/2049662.2049669
https://doi.org/10.1145/2049662.2049669
http://www.iftomm-multibody.org/benchmark

	An analytical approach to the sensitivity analysis of semi-recursive ODE formulations for multibody dynamics
	1 Introduction
	2 Dynamic formulation
	2.1 Kinematics of open-loop systems
	2.2 Kinematics for non-minimal relative coordinates
	2.2.1 Position kinematic analysis
	2.2.2 Imposition of degrees of freedom: relative coordinates as DoF
	2.2.3 Imposition of degrees of freedom: natural coordinates as DoF
	2.2.4 Velocity kinematic analysis
	2.2.5 Acceleration kinematic analysis

	2.3 Semi-recursive Matrix R formulation

	3 Sensitivity analysis
	3.1 Forward sensitivity
	3.2 Adjoint sensitivity analysis
	3.3 Gradient-based optimal design

	4 Numerical experiments
	4.1 Five-bar mechanism
	4.2 Buggy vehicle

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Notation
	Data availability
	References

