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Sensitivity analysis is an extremely powerful tool in many applications such as in the optimization of the dynamics 
of multibody systems with gradient-based methods. Sensitivity calculations are computationally burdensome and, 
depending on the method chosen for differentiation and the set of dynamic equations, they could result highly 
inefficient. Semi-recursive dynamic methods are seldom studied analytically in terms of sensitivity analysis due 
to their complexity, even though their dynamic performance is usually among the most efficient.
This work explores the sensitivity analysis of a particular multibody-dynamics formulation, the semi-recursive 
Matrix R formulation, which is based on the nullspace of constraint equations and leads to a system of ordinary 
differential equations. As a result, two sets of sensitivity equations are proposed, one based on the direct differ-
entiation method (DDM) and other on the Adjoint Variable Method (AVM), being these sensitivity formulations 
the main novelty of this work. The main derivatives required in the sensitivity equations are listed in this docu-
ment, paying special attention to conciseness, correctness and completeness. The methods proposed have been 
implemented in the general purpose multibody library MBSLIM (Multibody Systems in Laboratorio de Ingeniería 
Mecánica), and their performance has been tested in two numerical experiments, a five-bar benchmark problem 
and a four-wheeled buggy vehicle.
A review and generalization of constrained and unconstrained kinematic problems in relative coordinates is 
provided as an introduction to the generation of the semi-recursive Matrix R equations of motion. Due to the 
importance of the selection of the set of independent coordinates, a more general description of the Matrix R 
method is presented as a novel contribution as well.

1. Introduction

During the last few decades, the knowledge area which studies the dynamics of systems composed of multiple bodies, commonly known as 
multibody dynamics (MBD), has expanded its boundaries from pure direct and inverse dynamic problems to new topics related to design, optimization 
or control. In all these problems, it is essential to have a measure of the variation of the behavior of a model with respect to a set of parameters. The 
sensitivity analysis is the tool that permits to calculate these variations, but it involves a higher level of complexity than pure dynamic problems.

The quest for the most efficient method for the evaluation of the sensitivity analysis of a multibody system dynamics is still open nowadays since 
its performance is related to: the differentiation method, the sensitivity equations, the multibody model and, specially, the dynamic formulation 
considered. Dynamic recursive methods which exploit the topology of the multibody system usually display the best performance in terms of efficiency 
[1], but they are rarely considered for a sensitivity analysis since they imply much higher complexity than global methods. Moreover, constraint 
enforcement schemes like Matrix R [2], based on a projection from dependent to independent coordinates, are rarely addressed with analytical 
differentiation methods due to the complexity of the resulting derivatives and to the assumption that analytical methods are “time-consuming and 
error-prone” [3]. This work proves that a purely analytical sensitivity analysis of a semi-recursive matrix R formulation is viable, general for any 
multibody system and can be highly efficient.
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Classical Matrix R formulations involve a selection of independent coordinates from the dependent coordinates vector. In some closed-chain 
multibody models, coordinates of points might represent better the degrees of freedom of a multibody system than relative coordinates. For that 
reason, another contribution of this work is the extension of the dynamic semi-recursive Matrix R formulation to support any relative or natural co-
ordinates (Cartesian coordinates of points or vectors) as independent coordinates, and the incorporation of this feature in the sensitivity formulations 
developed.

The sensitivity analysis of the semi-recursive Matrix R formulation has been analytically studied before by Gutiérrez et al. in [4]. This seminal 
work presents a direct sensitivity method and lists the set of derivatives needed in the direct differentiation of the semi-recursive Matrix R formulation. 
Additionally, it provides a comparison between direct (analytical), automatic and numerical differentiation methods, but the comparison at efficiency 
level is hindered by the use of different languages (C and MATLAB). This work represents the first effort to compute analytical semi-recursive Matrix R 
sensitivities in a general form, but it has two main limitations: first, it only allows relative coordinates as independent coordinates (here, coordinates 
of points and vectors are also allowed); and second, it assumes that the Jacobian of the constraints is invertible (the generalization conveys significant 
modifications). The present work addresses these two limitations, leading to more general sensitivity formulations, and completes the study with the 
analytical semi-recursive adjoint method. Moreover, in [4] the dynamic and sensitivity equations are derived considering one particular reference 
point for the recursive evaluation of kinematic, dynamic and sensitivity terms (it uses the point that “instantaneously coincides with the origin of 
the inertial reference frame” [4]). In the current developments, an arbitrary reference point is considered, leading to a more general formulation of 
the equations of motion and their sensitivities.

There are several differentiation techniques which can be used to obtain the sensitivity analysis of a system. The simplest differentiation method 
consists in numerical differentiation (ND), which is based on the numerical perturbation of the parameters in order to approximate the derivative of 
an objective function by means of its variation using a finite difference scheme or similar. This technique suffers from two issues: first, it is extremely 
dependent on the magnitude of the perturbations used which yields the so called “step-size dilemma” [5]; and second, the computational effort is 
directly proportional to the number of parameters. Despite its problems, this method has been used combined with semi-analytical differentiation 
in works such as [6] or [7], and it is commonly used as test method for analytical implementations.

A second option is the automatic differentiation method (AD) (also called algorithmic differentiation method). Automatic differentiation is based 
on the decomposition of complex computations into elemental operations with known direct analytical expressions for their derivatives, and it offers 
high accuracy with low computational expense. Even though its implementation is substantially more complex than numerical methods, it is a 
suitable method for obtaining accurate derivatives with a low programming effort [8]. There are multiple examples of works in which AD libraries 
have been successfully used in the sensitivity analysis of the dynamics of multibody systems. Dürrbaum et al. compared the performance of ADOL-C 
(Automatic Differentiation by OverLoading in C + +) against a symbolic differentiation software in [9], giving as result a better performance of the 
symbolic program. Ambrosio et al. applied ADIFOR (Automatic DIfferentiation of FORtran) for the optimization of flexible MBS in [10]. Callejo and 
collaborators explored the automatic differentiation for the dynamics of MBS in different works [8,3,11], one of which ([3]) represents the most 
recent attempt to achieve the sensitivity analysis of a semi-recursive Matrix R formulation. The list of works comprising automatic differentiation is 
steadily growing, specially in those problems where analytical differentiation is unmanageable.

The third possibility consists in the analytical differentiation of the dynamic equations of motion. In general, analytical approaches are usually 
the fastest and most accurate, but they involve an important theoretical and implementation effort. Despite their complexity, new studies devoted to 
the analytical sensitivity analysis of multibody system dynamics are published every year since the appearance of the first works in the field [12–16].

The sensitivity analysis of a set of equations can be accomplished following two different approaches, which are the direct differentiation method 
(DDM) and the adjoint variable method (AVM). The application of the DDM to the dynamic equations of motion of a multibody system delivers 
a set of systems of equations in which the unknowns are the sensitivities of the variables of the original dynamic problem. The simplicity of the 
DDM has made many authors to resort to this method, which converts it in the most spread option in the multibody community. The AVM, on 
the contrary, reformulates the sensitivity analysis adding a new set of variables, namely the adjoint variables. Thanks to this transformation, the 
number of systems of equations is independent of the number of parameters, which makes it the ideal method for highly parameterized sensitivity 
problems.

Sensitivity methods can be classified as well according to the order between differentiation and discretization [17]. In differentiate-then-discretize
approaches, the continuous equations of motion are firstly differentiated and, secondly, they are discretized in time steps to be solved. This option 
delivers a numerical approximation of the sensitivities of the continuous problem, and leads to a set of differential equations independent of the 
numerical integrator chosen in the dynamics. The discretize-then-differentiate approach studies the sensitivity analysis of the discretized dynamics, 
thus yielding the exact derivatives of the numerical approximation of the dynamics. The second approach is expressed in terms of algebraic equations 
that are specific for the numerical integrator used to solve the dynamics. Despite their conceptual differences, both approaches converge to the same 
results as the time step is decreased. In this work, the differentiate-then-discretize approach is considered in both direct and adjoint methods due to 
its conciseness, generality and to the fact that, in practical applications, the differences between both approaches are almost negligible.

The computational effort dedicated to sensitivity analysis is related to the multibody model that describe the mechanism in study, as well as to 
the formulation used to obtain the dynamic response. Models based on relative coordinates usually lead to the fastest dynamic simulations, although 
they involve more complex computations than other models [18]. In this work, we study if this increase of efficiency is also present in sensitivity 
problems.

Among the most efficient methods to handle MBS are the semi-recursive methods, in which any multibody system can be described as an open-
loop system subjected (or not) to a set of kinematic constraints [19,20]. In this method, dynamic terms are composed recursively, but the equations 
of motion are solved globally. Thanks to these recursive and global procedures, it is possible to combine relative coordinate modeling with multiple 
constraint enforcement schemes typical of global systems. Semi-recursive methods have been combined with the Matrix R formulation in [21–23] 
and more recently in [24], with the penalty approach in [25] or with the Augmented Lagrangian index-3 formulation with velocity and acceleration 
projections (ALI3-P) in [26,27,18,28].

In this study, the semi-recursive Matrix R formulation in relative coordinates is revisited and extended to support natural coordinates [2] as 
degrees of freedom as well. However, the main novelty of this paper is the development of direct and adjoint semi-recursive Matrix R sensitivity 
analysis formulations using an analytical differentiation method. Both dynamic and sensitivity formulations have been implemented in the general 
purpose multibody library MBSLIM [29], which can solve kinematic, dynamic, sensitivity analysis and optimization problems of rigid multibody 
systems, and which is being currently extended to support flexible bodies.
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This work is structured as follows: section 2 presents the kinematics of relative coordinates and introduces the forward dynamic semi-recursive 
Matrix R formulation; section 3 covers the sensitivity analysis of the semi-recursive Matrix R formulation by means of both the direct differentiation 
and the adjoint variable methods; the dynamic and sensitivity formulations presented are tested in different numerical experiments in section 4; 
finally, section 5 gathers the main conclusions of this work.

2. Dynamic formulation

2.1. Kinematics of open-loop systems

Relative coordinate modeling usually constitutes the most natural and efficient method to describe the kinematics of a multibody system. However, 
despite the reduced number of coordinates, the generation of the equations of motion is not direct and other set of intermediate coordinates (as 
Cartesian coordinates) is needed.

The use of these intermediate coordinates encompasses a double kinematic problem that has to be addressed both in kinematic and dynamic 
analyses: first, it is necessary to calculate positions, velocities and accelerations of the intermediate Cartesian coordinates from the relative coordinates 
in order to generate the EoM; second, a coordinate transformation takes the equations from Cartesian to relative coordinates, which is carried out 
by means of recursive kinematic relations based on the topology of the system.

According to [18], the recursive kinematic relations can be summarized in the following set of equations, valid for any type of joint1:

𝐕𝑖 = 𝐁𝑣
𝑖𝐕𝑖−1 + 𝐛𝑣𝑖 �̇�𝑖 (1a)

�̇�𝑖 = 𝐁𝑣
𝑖 �̇�𝑖−1 + 𝐛𝑣𝑖 �̈�𝑖 + 𝐝𝑣𝑖 (1b)

𝐁𝑣
𝑖 =

[
𝐈 �̃�

𝑖−1 − �̃�
𝑖

𝟎 𝐈

]
(1c)

�̇�𝑣
𝑖 =

[
𝟎 ̇̃𝐫𝑖−1 − ̇̃𝐫𝑖
𝟎 𝟎

]
(1d)

𝐝𝑣𝑖 = �̇�𝑣
𝑖𝐕𝑖−1 + �̇�𝑣𝑖 �̇�𝑖 (1e)

with 𝐕𝑖 =
[
�̇�T
𝑖

𝝎
T
𝑖

]T ∈ R6 and 𝐳𝑖 identifying the set of relative coordinates of joint 𝑖. Remaining terms 𝐛𝑣
𝑖
, �̇�𝑣

𝑖
and 𝐝𝑣

𝑖
are kinematic expressions 

related to each joint and body.
Observe that (1) allows a general and simple implementation, with a common structure for every joint type and with only one particular term 

required for each type of joint (𝐛𝑣
𝑖
) and its time derivative (�̇�𝑣

𝑖
), whose expressions involve a reduced set of arithmetic operations with the entities 

that define the joint [18].

It is possible to reformulate (1) relating a vector 𝐕 =
[
𝐕T
1 𝐕T

2 ...𝐕T
𝑛𝑏

]T
∈R6𝑛𝑏 containing the linear and angular velocities of all the bodies of 

the multibody system with the vector of relative coordinates 𝐳 =
[
𝐳1T 𝐳2T … 𝐳𝑛𝑏

T ]T ∈R𝑛, with 𝑛𝑏 the number of bodies and 𝑛 the number of 
relative coordinates, as:

𝐕 =𝐑𝑣�̇� (2)

𝐕∗ =𝐑𝑣�̇�∗ (3)

�̇� =𝐑𝑣�̈� + �̇�𝑣�̇� (4)

with the superscript ( )∗ denoting virtual velocities.2 The expressions (2)-(4) allow a more compact notation that can be exploited in the dynamics 
for the generation of concise mass matrix and generalized force vector expressions. However, at implementation level, it is desirable not to build the 
matrices 𝐑𝑣 and �̇�𝑣 but to compute the kinematics recursively by means of (1).

It should be remarked that every closed-loop system can be expressed as an open-loop system subjected to a set of kinematic constraints, thus 
equations (1), (2), (3) and (4) are general to any MBS.

2.2. Kinematics for non-minimal relative coordinates

Almost any practical multibody system modeled in natural (or reference point) coordinates requires a set of constraint equations to be fully 
defined.3 On the contrary, open-loop systems modeled with minimal relative coordinates do not need constraints. However, the presence of kinematic 
constraints is common in relative coordinate modeling for the imposition of loop-closure constraints or for complementing the definition of the 
multibody model.

In the following lines, the three main kinematic problems are briefly described (the finite displacements problem is assimilated to the position 
problem). The three constrained kinematic problems have been implemented in the MBSLIM multibody library as general kinematic formulations.

It is worth mentioning that only two out of these three kinematic problems are needed for the dynamics: initial position (subsection 2.2.1) and 
velocity (subsection 2.2.4) analyses are needed for obtaining the initial conditions of the dynamics DAE system.

2.2.1. Position kinematic analysis
The objective of the position kinematic analysis is to nullify the vector of 𝑚 constraint equations 𝚽 ∈R𝑚 for given values of the 𝑑 degrees of 

freedom, 𝐳𝑖 ∈R𝑑 , chosen as independent coordinates:

1 These generic expressions represent the generalization of classical approaches like [14,25] to an arbitrary reference point.
2 𝐕∗

𝑖
and �̇�∗

𝑖
are also related by equation (1a).

3 One single rigid body in natural coordinates or one single joint in reference point coordinates need constraints.
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𝚽
(
𝐪, 𝐳,𝝆, 𝑡

)
= 𝟎 (5)

where 𝑡 is the time variable, 𝝆 a set of constant parameters and 𝐪, 𝐳 have been defined before. Expression (5) represents a system of nonlinear 
equations, which in general cannot be solved analytically due to the complexity of the equations, and has to be computed numerically. One of the 
most resorted approaches to solve these type of equations is the Newton-Raphson method, which exploits the expansion of (5) in a Taylor series 
around a given initial approximated solution 𝐳0:

𝚽 (𝐪 (𝐳) , 𝐳,𝝆, 𝑡) ≅𝚽
(
𝐪0, 𝐳0,𝝆, 𝑡

)
+𝚽�̂�

(
𝐪0, 𝐳0𝝆, 𝑡

)(
𝐳 − 𝐳0

)
= 𝟎 (6)

where 𝚽�̂� ∈R𝑚×𝑛 is the Jacobian matrix of the constraint equations vector:

𝚽�̂� =
𝜕𝚽
𝜕𝐪 

𝜕𝐪
𝜕𝐳

+ 𝜕𝚽
𝜕𝐳

=𝚽𝐪𝐪𝐳 +𝚽𝐳 (7)

From (7) it can be observed that 𝚽�̂� is not exactly a partial derivative, and for this reason the subscript �̂� is used, according to the notation (A.1).
Equation (6) can be reformulated as:

𝚽�̂�
(
𝐪{𝑗}, 𝐳{𝑗}, 𝑡

)
Δ𝐳{𝑗+1} = −𝚽

(
𝐪{𝑗}, 𝐳{𝑗}, 𝑡

)
(8)

being 𝑗 and 𝑗 + 1 the iteration numbers and Δ𝐳{𝑗+1} = 𝐳{𝑗+1} − 𝐳{𝑗} the increment in the joint coordinates for the present iteration.
Equation (8) cannot be uniquely solved because it is rank deficient in the number 𝑑 of degrees of freedom of the system, since no reference has 

been made to the imposition of the values of the degrees of freedom yet. The classical technique and a novel technique for imposing degrees of 
freedom are described in subsections 2.2.2 and 2.2.3.

2.2.2. Imposition of degrees of freedom: relative coordinates as DoF
The classical technique for imposing degrees of freedom is described in [2] and assumes that the degrees of freedom are a subset of the full set of 

dependent coordinates, 𝐳𝑖 ∈R𝑑 ⊆ 𝐳. Thus, a constant matrix 𝐁 ∈R𝑑×𝑛 composed of “1”s and “0”s can be defined.4 This matrix is constant in time, 
straightforward to calculate with a given set of independent coordinates, and satisfies the following relations:

𝐳𝑖 = 𝐁𝐳 (9a)

�̇�𝑖 = 𝐁�̇� (9b)

�̈�𝑖 = 𝐁�̈� (9c)

Equations (5) can be completed with equations (9a) and thus (8) becomes a full-column-rank system of equations:

𝚯
(
𝐪 (𝐳) , 𝐳, 𝐳𝑖,𝝆, 𝑡

)
=
[

𝚽
𝐁𝐳 − 𝐳𝑖

]
= 𝟎⇒𝚯{𝑗}

�̂� Δ𝐳{𝑗+1} = −𝚯
(
𝐳{𝑗}, 𝐳𝑖,𝝆, 𝑡

)
⇒

[
𝚽{𝑗}

�̂�
𝐁

]
Δ𝐳{𝑗+1} =

[
−𝚽{𝑗}

𝐳𝑖 −𝐁𝐳{𝑗}
]

(10)

Equations (10) can be further simplified by starting the iterations with an initial guess matching the desired degrees of freedom, 𝐁𝐳{0} = 𝐳𝑖 and 
it can be easily proved, by induction, that 𝐁𝐳{𝑗} = 𝐳𝑖 ∀𝑗 resulting in the simplified system:[

𝚽{𝑗}
�̂�
𝐁

]
Δ𝐳{𝑗+1} =

[
−𝚽{𝑗}

𝟎

]
(11)

2.2.3. Imposition of degrees of freedom: natural coordinates as DoF
In closed-loop systems, the degrees of freedom of a mechanism can sometimes be identified more directly with a set of Cartesian coordinates 

rather than joint coordinates. In addition, supporting natural coordinates as DoF is a requirement in the definition of MBSLIM models. Since natural 
coordinates are not in the set of relative coordinates, the degrees of freedom are not a subset of the full set of dependent coordinates, 𝐳𝑖 ⊆ 𝐪,𝐪∩ 𝐳 =
∅⇒ 𝐳𝑖 ⊈ 𝐳, and therefore equations (9) do not hold since 𝐁 matrix cannot be defined like in section 2.2.2.

Taking into account that coordinates 𝐳 define completely the kinematics of the system in positions, any other kinematic magnitude can be 
expressed as a function of them 5:

𝐳𝑖 = 𝐡(𝐳,𝝆) (12)

Equations (5) can be completed with equations (12) forming a nonlinear system of equations. The application of the Newton-Raphson iteration 
to the system, converts (8) into a full-column-rank system of equations:

𝚯
(
𝐪 (𝐳) , 𝐳, 𝐳𝑖,𝝆, 𝑡

)
=
[

𝚽
𝐡(𝐳,𝝆) − 𝐳𝑖

]
= 𝟎⇒𝚯{𝑗}

�̂� Δ𝐳{𝑗+1} = −𝚯
(
𝐳{𝑗}, 𝐳𝑖,𝝆, 𝑡

)
⇒

[
𝚽{𝑗}

�̂�
𝐁{𝑗}

]
Δ𝐳{𝑗+1} =

[
−𝚽{𝑗}

𝐳𝑖 − 𝐡{𝑗}
]

(13)

with 𝚯�̂� =
[
𝚽�̂�
𝐁

]
the Jacobian matrix of 𝚯 and 𝐁 ≡ 𝐡𝐳 the Jacobian matrix of 𝐡.

Observe that equations (13) are equivalent to (10) but they make it possible to use degrees of freedom which are not in the relative coordinates 
vector, 𝐳, but at the prize of a non-constant and more complex matrix 𝐁. If, otherwise, the degrees of freedom are selected from the relative coordinates 
vector, equations (10) and the simplified 𝐁 from section 2.2.2, arise again.

4 Please do not confuse with 𝐁𝑣
𝑖 , an elemental term of the recursive accumulation.

5 Even in the unusual case of an explicit function difficult to obtain, the implicit function theorem can be used, arriving at the same conclusion.
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Concerning velocities and accelerations, equations (9b) are still valid with the new definition of 𝐁, but (9c) needs to be modified:

�̇�𝑖 = 𝐡𝐳�̇� = 𝐁�̇� (14)

�̈�𝑖 = 𝐁�̈� + �̇��̇� (15)

With this approach, any type of coordinate can be used as degree of freedom, as long as the matrix 𝚯�̂� has a left inverse, 𝚯+
�̂� , which is guaranteed 

to exist if a proper selection of degrees of freedom is made:

𝚯+
�̂� 𝚯�̂� =

[
𝐒𝚽 𝐑𝚽 ] [𝚽�̂�

𝐁

]
= 𝐈𝑛 (16)

with matrices 𝐑𝚽 ∈R𝑛×𝑑 and 𝐒𝚽 ∈R𝑛×𝑚 the last 𝑑 and the first 𝑚 columns of the inverse, respectively.
For the general case of redundant constraints, matrices 𝐑𝚽 and 𝐒𝚽 can be calculated by means of a least-squares problem:[

𝚽T
�̂� 𝚽�̂� +𝐁T𝐁

] [
𝐒𝚽 𝐑𝚽 ]

=
[
𝚽T

�̂� 𝐁T ] (17)

The explicit calculation of matrix 𝐒𝚽 is usually avoided for kinematic and dynamic analyses but it has an important role in sensitivity analyses.

2.2.4. Velocity kinematic analysis
The velocity problem aims to obtain the set of velocities �̇� such that:

�̇� (�̇� (𝐳, �̇�) ,𝐪 (𝐳) , �̇�, 𝐳,𝝆, 𝑡) =𝚽�̂��̇� +𝚽𝑡 =𝟎 (18)

Differentiating (5) with respect to time and completing with equations (9b) or (14), velocity equations can be rewritten as:

�̇�
(
�̇� (𝐳, �̇�) ,𝐪 (𝐳) , �̇�, �̇�𝑖,𝝆, 𝑡

)
=
[

�̇�
𝐁�̇� − �̇�𝑖

]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
�̇� =

[
𝐛
�̇�𝑖
]

(19)

with �̇�𝑖 representing the desired values of the DoF at velocity level, �̇� ̂̇𝐳 =𝚯�̂� =
[
𝚽�̂�
𝐁

]
the leading matrix for velocities and 𝐛 ≡ −𝚽𝑡 is introduced in 

accordance with the classical compact notation of this problem6, as presented in [2]. The velocity problem is solved by means of a linear system of 
equations and, unlike the position problem, does not need to be iterated.

2.2.5. Acceleration kinematic analysis
The set of dependent accelerations, �̈�, resulting from the kinematic acceleration problem, have to satisfy the acceleration constraints, which can 

be found differentiating (5) twice (or (18) once) with respect to time:

�̈� (�̈� (𝐳, �̇�, �̈�) , �̇� (𝐳, �̇�) ,𝐪 (𝐳) , �̈�, �̇�, 𝐳,𝝆, 𝑡) = 𝟎 (20)

Completing with equation (15), a linear system of equations arises,

�̈�
(
�̈� (𝐳, �̇�, �̈�) , �̇� (𝐳, �̇�) ,𝐪 (𝐳) , �̈�, �̈�𝑖, �̇�, 𝐳,𝝆, 𝑡

)
=
[

�̈�
𝐁�̈� + �̇��̇� − �̈�𝑖

]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
�̈� =

[
𝐜

�̈�𝑖 − �̇��̇�

]
(21)

with �̈�𝑖 the desired values of the DoF accelerations, �̈� ̂̈𝐳 =𝚯�̂� =
[
𝚽�̂�
𝐁

]
the leading matrix for accelerations and 𝐜 ≡ −�̇�𝑡 − �̇��̂��̇�. In the acceleration 

problem, the new term �̇��̂� appears:

�̇��̂� =
d𝚽�̂�
d𝑡 

= �̇�𝐪𝐪𝐳 +𝚽𝐪�̇�𝐳 + �̇�𝐳 (22)

Thus, 𝐜 can be rewritten as:

𝐜 = −
(
�̇�𝐪𝐪𝐳 +𝚽𝐪�̇�𝐳 + �̇�𝐳

)
�̇� − �̇�𝑡 (23)

In general, �̇� is expressed in terms of positions and velocities of points, vectors, angles, distances and/or the time, and consequently, the 
assessment of the derivatives �̇�𝐪 , �̇�𝐳 and �̇�𝑡 (all with respect to the explicit dependencies of each constraint) are straightforward to obtain. On the 
contrary, the derivatives of the natural coordinates �̇�𝐳 and 𝐪𝐳 depend on the topology of the mechanism and their evaluation is more challenging.

2.3. Semi-recursive Matrix R formulation

The formulation presented in this section was originally introduced by García de Jalón and Bayo in [30], based on previous results derived in 
[31]. A modern description with the notation used in this work can be found in [2] and later, in [21], [22] and more recently in [32] the formulation 
was applied to semi-recursive methods. As long as the method is profusely described in those works, only the main structure of the formulation is 
outlined. A new notation is employed here so as to avoid possible misunderstandings between the 𝐑 matrix of the semi-recursive method (see [18]) 
and the projection matrix 𝐑𝚽 of this formulation.

In this approach, a second velocity transformation (Matrix R transformation) is carried out in order to remove some dependent coordinates and 
all the constraints from the equations. Let us consider a multibody system modeled with 𝑛 relative coordinates subjected to 𝑚 constraints and with 

6 Do not confuse with 𝐛𝑣𝑖 , an elemental term of the recursive accumulation.
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𝑑 DoF. A vector of degrees of freedom 𝐳𝑖 ∈R𝑑 can be selected such that the dependent velocities, �̇�, accelerations, �̈�, and virtual velocities, �̇�∗, can 
be expressed in terms of the independent ones by using the left inverse matrices 𝐑𝚽 and 𝐒𝚽 from (16) in equations (19) and (21):

�̇� =𝐑𝚽�̇�𝑖 + 𝐒𝚽𝐛 (24)

�̈� =𝐑𝚽 (
�̈�𝑖 − �̇��̇�

)
+ 𝐒𝚽𝐜 (25)

�̇�∗ =𝐑𝚽�̇�∗𝑖 (26)

being 𝐛 and 𝐜 the terms related to the temporal constraints derivatives described in sections 2.2.4 and 2.2.5 respectively.7

The expressions of the semi-recursive Matrix R formulation can be derived from the virtual power principle applied to a multibody system. For 
a general multibody system modeled with joint coordinates, the virtual power principle delivers the following system of equations:

�̇�∗T
[(
𝐑𝑣T𝐌𝑣𝐑𝑣

)
�̈� −𝐑𝑣T (𝐐𝑣 −𝐌𝑣�̇�𝑣�̇�

)]
= 0 (27)

with 𝐌𝑣 and 𝐐𝑣 denoting the mass matrix and generalized forces vector referred to the reference coordinates of each body [18]. Equation (27) can 
be rewritten using 𝐌𝑑 =𝐑𝑣T𝐌𝑣𝐑𝑣, 𝐐𝑑 =𝐑𝑣T (𝐐𝑣 −𝐌𝑣�̇�𝑣�̇�

)
and the relation (26) between virtual velocities, as:

�̇�𝑖∗T𝐑𝚽T [𝐌𝑑 �̈� −𝐐𝑑
]
= 0⇒𝐑𝚽T (𝐌𝑑 �̈� −𝐐𝑑

)
= 𝟎 (28)

The last identity in (28) holds because the virtual velocities �̇�𝑖∗ are independent. Finally, replacing (25), one obtains(
𝐑𝚽T𝐌𝑑𝐑𝚽) �̈�𝑖 =𝐑𝚽T (𝐐𝑑 −𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

))
(29)

which constitute the general Matrix R equations for closed loops or non-minimal joint coordinates. Observe that (29) supports the definition of any 
type of coordinates as independent variables (relative coordinates, natural coordinates, etc.) enhancing the generality of the classical approach.

In the dynamic formulation proposed, the kinematic position and velocity problems as well as the evaluation of the matrix 𝐑𝚽 have to be 
computed at each time step with (17). Taking into account that the three problems have identical leading matrices, they can be factorized once 
(for the position problem) and then reused, minimizing the computational cost. The evaluation of the matrix 𝐒𝚽 is not necessary in the dynamics, 
because the term 𝐒𝚽𝐜 can be calculated directly by means of the kinematic acceleration analysis (21) with �̈�𝑖 − �̇��̇� = 𝟎.

3. Sensitivity analysis

The semi-recursive Matrix R formulation for a non-constant 𝐁 matrix is analytically differentiated in this section with respect to a set of parameters 
𝝆 ∈R𝑝 applying a direct differentiation scheme and the adjoint variable method.

Let us consider an integral objective function dependent on a set of natural coordinates 𝐪, �̇� and �̈�, a set of joint coordinates 𝐳, �̇� and �̈�, a set of 
degrees of freedom 𝐳𝑖, �̇�𝑖 and �̈�𝑖 and a set of parameters 𝝆:

𝝍 =

𝑡𝐹

∫
𝑡0

𝐠
(
𝐪 (𝐳) , �̇� (𝐳, �̇�) , �̈� (𝐳, �̇�, �̈�) , 𝐳, �̇�, �̈�, 𝐳𝑖, �̇�𝑖, �̈�𝑖,𝝆

)
d𝑡 (30)

Note that each degree of freedom is usually part of the natural coordinates vector 𝐪 or the relative coordinates vector, 𝐳. In this regard, explicit 
dependencies of the objective function 𝐠 on the degrees of freedom might not be necessary since they can be included in the natural and joint 
coordinate dependencies, but they are considered separately because they allow particular simplifications in the sensitivity equations. On the other 
hand, we avoid explicit dependencies with the natural coordinates, 𝐪, considered as implicit dependencies on relative dependent coordinates, 𝐳, in 
order to avoid longer expressions.

3.1. Forward sensitivity

Taking derivatives on (30) with respect to a set of parameters 𝝆 and considering the implicit dependencies of 𝐠, the sensitivity of the objective 
function (30) can be represented by the following gradient:

𝝍
′ =

𝑡𝐹

∫
𝑡0

(
𝐠𝐳𝑖𝐳𝑖′ + 𝐠�̇�𝑖 �̇�𝑖′ + 𝐠�̈�𝑖 �̈�𝑖′ + 𝐠�̂�𝐳′ + 𝐠 ̂̇𝐳�̇�

′ + 𝐠 ̂̈𝐳�̈�
′ + 𝐠

�̂�

)
d𝑡 (31)

where (⋅)′ denotes state derivatives with respect to the design parameters and subscripts indicate partial derivatives.
The Matrix R formulation imposes to the dependent states, 𝐳, �̇� and �̈� the fulfillment of the constraints vectors at position, velocity and acceleration 

levels, in terms of a proper selection of degrees of freedom, 𝐳𝑖 , �̇�𝑖 and �̈�𝑖, by means of equations (13), (19) and (21). The sensitivities, 𝐳′ , �̇�′ and �̈�′, 
of these dependent states, in terms of the degrees of freedom sensitivities, 𝐳𝑖′ , �̇�𝑖′ and �̈�𝑖′, read:

𝚯′ =
[

𝚽′

𝐁𝐳′ + 𝐡�̂� − 𝐳𝑖′
]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
𝐳′ =

[
−𝚽�̂�

𝐳𝑖′ − 𝐡
�̂�

]
⇒ 𝐳′ =𝐑𝚽 (

𝐳𝑖′ − 𝐡�̂�
)
− 𝐒𝚽𝚽�̂� (32a)

�̇�′ =
[

�̇�′

𝐁�̇�′ +𝐁′�̇� − 𝐳𝑖′
]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
�̇�′ =

[
−𝐛𝝆

�̇�𝑖′ − �̄�𝝆
]
⇒ �̇�′ =𝐑𝚽 (

�̇�𝑖′ − �̄�𝝆
)
− 𝐒𝚽𝐛𝝆 (32b)

�̈�′ =
[

�̈�′

𝐁�̈�′ +𝐁′�̈� + �̇�′�̇� + �̇��̇�′ − �̈�𝑖′
]
= 𝟎⇒

[
𝚽�̂�
𝐁

]
�̈�′ =

[
−𝐜𝝆

�̈�𝑖′ − �̄�𝝆
]
⇒ �̈�′ =𝐑𝚽 (

�̈�𝑖′ − �̄�𝝆
)
− 𝐒𝚽𝐜𝝆 (32c)

7 Note that term 𝐛 does not show up in the virtual velocity equations because they are instantaneous variations by definition.

Computers and Structures 308 (2025) 107642 

6 



Á. López Varela, D. Dopico Dopico and A. Luaces Fernández 

where equation (16) has been considered and 𝐛𝝆, 𝐜𝝆, ̄𝐛𝝆 and �̄�𝝆 defined as:

𝐛𝝆 = �̇��̂�𝐳′ + �̇��̂� (33)

𝐜𝝆 = 2�̇��̂��̇�′ + �̈��̂�𝐳′ + �̈��̂� (34)

�̄�𝝆 = �̇�𝐳′ +𝐁
�̂�
�̇� (35)

�̄�𝝆 = 2�̇��̇�′ + �̈�𝐳′ +𝐁�̂��̈� + �̇��̂��̇� (36)

with �̇� = 𝐁�̂��̇� and �̈� = 𝐁�̂��̈� + �̇��̂� �̇�.
Expanding terms to make explicit the dependencies on the sensitivities of the independent coordinates in positions, velocities and accelerations, 

equations (32) are transformed:

𝐳′ =𝐑𝚽 (
𝐳𝑖′ − 𝐡�̂�

)
− 𝐒𝚽𝚽�̂� (37a)

�̇�′ =𝐑𝚽 (
�̇�𝑖′ −

(
�̇�𝐳′ +𝐁

�̂�
�̇�
))

− 𝐒𝚽
(
�̇��̂�𝐳′ + �̇�

�̂�

)
(37b)

�̈�′ =𝐑𝚽 (
�̈�𝑖′ −

(
2�̇��̇�′ + �̈�𝐳′ +𝐁

�̂�
�̈� + �̇�

�̂�
�̇�
))

− 𝐒𝚽
(
2�̇��̂��̇�′ + �̈��̂�𝐳′ + �̈�

�̂�

)
(37c)

Identifying terms in equations (37), the following relations can be inferred:

𝐳𝐳𝑖 = �̇��̇�𝑖 = �̈��̈�𝑖 =𝐑𝚽 (38a)

𝐳
𝝆
= −𝐒𝚽𝚽

�̂�
−𝐑𝚽𝐡

�̂�
(38b)

�̇�𝐳 = −𝐒𝚽�̇��̂� −𝐑𝚽�̇� (38c)

�̇�𝝆 = −𝐒𝚽�̇��̂� −𝐑𝚽𝐁�̂��̇� (38d)

�̈��̇� = −2𝐒𝚽�̇��̂� − 2𝐑𝚽�̇� (38e)

�̈�𝐳 = −𝐒𝚽�̈��̂� −𝐑𝚽�̈� (38f)

�̈�𝝆 = −𝐒𝚽�̈��̂� −𝐑𝚽 (
𝐁�̂��̈� + �̇��̂��̇�

)
(38g)

The expressions whose sensitivity analysis is being addressed include the definition of a non-constant 𝐁 matrix, hence the expressions developed 
are generic for any selection of degrees of freedom, including the particular case of a constant matrix 𝐁, in which case the derivatives of 𝐁 are null.

Expressions (37) and (38) allow removing 𝐳′, �̇�′, �̈�′ from the gradient of the objective function (31). Then, all the contributions involving 𝐳𝑖′ , �̇�𝑖′
and �̈�𝑖′ can be gathered together:

𝐠�̌�𝑖 = 𝐠𝐳𝑖 +
[
𝐠�̂� + 𝐠 ̂̇𝐳�̇�𝐳 + 𝐠 ̂̈𝐳

(
�̈��̇� �̇�𝐳 + �̈�𝐳

)]
𝐳𝐳𝑖 (39a)

𝐠 ̌̇𝐳i = 𝐠�̇�𝑖 +
[
𝐠 ̂̇𝐳 + 𝐠 ̂̈𝐳�̈��̇�

]
�̇��̇�𝑖 (39b)

𝐠 ̌̈𝐳i = 𝐠�̈�𝑖 + 𝐠 ̂̈𝐳�̈��̈�𝑖 (39c)

𝐠
�̌�
= 𝐠

�̂�
+ 𝐠�̂�𝐳𝝆 + 𝐠 ̂̇𝐳

(
�̇�𝐳𝐳𝝆 + �̇�

𝝆

)
+ 𝐠 ̂̈𝐳

(
�̈��̇�
(
�̇�𝐳𝐳𝝆 + �̇�

𝝆

)
+ �̈�𝐳𝐳𝝆 + �̈�

𝝆

)
(39d)

where (⋅)⋅̌ identifies a partial derivative including implicit dependencies with respect to relative coordinates:

(⋅)�̌� = (⋅)�̂� + (⋅)�̂�𝐳𝐱 + (⋅) ̂̇𝐳
(
�̇�𝐱 + �̇�𝐳𝐳𝐱

)
+ (⋅) ̂̈𝐳

(
�̈�𝐱 + �̈��̇� �̇�𝐱 +

(
�̈�𝐳 + �̈��̇� �̇�𝐳

)
𝐳𝐱
)

(40)

Finally, gathering the terms with respect to 𝐳𝑖′ , �̇�𝑖′ and �̈�𝑖′, the expression of the gradient results:

𝝍
′ =

𝑡𝐹

∫
𝑡0

(
𝐠�̌�i𝐳𝑖′ + 𝐠 ̌̇𝐳i �̇�𝑖′ + 𝐠 ̌̈𝐳i �̈�𝑖′ + 𝐠

�̌�

)
d𝑡 (41)

The sensitivities 𝐳𝑖′ , �̇�𝑖′ and �̈�𝑖′ can be obtained differentiating (29) with respect to the vector of parameters. First of all, let us transform the 
system (29) to allow a more compact notation:

�̄��̈�𝑖 = �̄� (42)

with

�̄� =
(
𝐑𝚽T𝐌𝑑𝐑𝚽) (43)

�̄� =𝐑𝚽T (𝐐𝑑 −𝐌𝑑
(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

))
(44)

Then, taking derivatives in (42) with respect to the set of parameters 𝝆:

�̄�′�̈�𝑖 + �̄��̈�𝑖′ = �̄�′ (45)

where:

�̄�′ = d�̄�
d𝝆

= �̄��̌�𝑖𝐳𝑖′ + �̄� ̌̇𝐳i �̇�𝑖′ + �̄��̌� = −�̄�𝐳𝑖′ − �̄��̇�𝑖′ + �̄��̌� (46)
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�̄�′�̈�𝑖 = d�̄�
d𝝆

�̈�𝑖 =
(
�̄��̌�𝑖 �̈�𝑖

)
𝐳𝑖′ + �̄��̌��̈�𝑖 (47)

The resulting Tangent Linear Model (hereinafter TLM) takes the form:

�̄��̈�𝑖′ + �̄��̇�𝑖′ +
(
�̄�+ �̄��̌�𝑖 �̈�𝑖

)
𝐳𝑖′ = �̄��̌� − �̄��̌��̈�𝑖 (48a)

𝐳𝑖′
(
𝑡0
)
= 𝐳𝑖′0 (48b)

�̇�𝑖′
(
𝑡0
)
= �̇�𝑖′0 (48c)

wherein:

�̄��̌� − �̄��̌��̈�𝑖 = �̄��̂� − �̄��̂��̈�𝑖 +
(
�̄��̂� + �̄� ̂̇𝐳�̇�𝐳 − �̄��̂��̈�𝑖

)
𝐳𝝆 + �̄� ̂̇𝐳�̇�𝝆 (49)

�̄� = −�̄��̌�𝑖 = −
(
�̄��̂� + �̄� ̂̇𝐳�̇�𝐳

)
𝐳𝐳𝑖 (50)

�̄� = −�̄� ̌̇𝐳𝑖 = −�̄� ̂̇𝐳�̇��̇�𝑖 (51)

�̄��̌�𝑖 �̈�𝑖 =
(
�̄��̂��̈�𝑖

)
𝐳𝐳𝑖 (52)

Back into expressions (49) to (52), the following derivatives are needed as well:

�̄��̂� =𝐑𝚽T
𝐳

[
𝐐𝑑 −𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)]
−𝐑𝚽T [𝐊+𝐌𝑑

�̂�
(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
+𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
�̂�
]
, (53)

�̄� ̂̇𝐳 = −𝐑𝚽T (𝐂+𝐌𝑑
(
𝐒𝚽𝐜 ̂̇𝐳 − 2𝐑𝚽�̇�

))
, (54)

�̄��̂� =𝐑𝚽T
𝝆

[
𝐐𝑑 −𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)]
+𝐑𝚽T

[
𝐐𝑑
�̂�
−𝐌𝑑

�̂�

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
−𝐌𝑑

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
�̂�

]
(55)

The derivatives of matrix 𝐑𝚽 can be attained using its definition as a basis of the nullspace of 𝚽�̂� for the degrees of freedom selected:

𝚯�̂�𝐑𝚽 =
[
𝟎𝑚×𝑑
𝐈𝑑

]
⇒𝐑𝚽

�̂� = −𝚯+
�̂� 𝚯�̂��̂�𝐑𝚽 = −

(
𝐒𝚽𝚽�̂��̂� +𝐑𝚽𝐁�̂�

)
𝐑𝚽 (56)

𝐑𝚽
�̂�
= −𝚯+

�̂� 𝚯�̂��̂�𝐑𝚽 = −
(
𝐒𝚽𝚽�̂��̂� +𝐑𝚽𝐁

�̂�

)
𝐑𝚽 (57)

Concerning the term 
(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
�̂� , it can be obtained from the definition of 𝐒𝚽𝐜−𝐑𝚽�̇��̇� as a particular solution for the acceleration problem 

(21), with �̈�𝑖 = 𝟎:

𝚯�̂�
(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
=
[

𝐜
−�̇��̇�

]
⇒

(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
�̂� = 𝐒𝚽𝐜�̂� −𝐑𝚽�̇��̂��̇� −

(
𝐒𝚽𝚽�̂��̂� +𝐑𝚽𝐁�̂�

)(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
(58)(

𝐒𝚽𝐜−𝐑𝚽�̇��̇�
)
�̂�
= 𝐒𝚽𝐜�̂� −𝐑𝚽�̇��̂��̇� −

(
𝐒𝚽𝚽�̂��̂� +𝐑𝚽𝐁�̂�

)(
𝐒𝚽𝐜−𝐑𝚽�̇��̇�

)
(59)

Finally, the derivatives of the mass matrix times acceleration �̄��̂� �̈�𝑖 and �̄��̂��̈�𝑖 make use of some of the previously calculated terms as well.

�̄��̂��̈� =𝐑𝚽T
�̂� 𝐌𝑑𝐑𝚽�̈�𝑖 +𝐑𝚽T𝐌𝑑

�̂� 𝐑
𝚽�̈�𝑖 +𝐑𝚽T𝐌𝑑𝐑𝚽

�̂� �̈�
𝑖 (60)

�̄��̂��̈� =𝐑𝚽T
�̂�

𝐌𝑑𝐑𝚽�̈�𝑖 +𝐑𝚽T𝐌𝑑
�̂�
𝐑𝚽�̈�𝑖 +𝐑𝚽T𝐌𝑑𝐑𝚽

�̂�
�̈�𝑖 (61)

Observe that if a constant 𝐁 matrix is selected, many terms in the expressions will be canceled. Detailed expressions of the derivatives of masses 
(𝐌𝑑 ), forces (𝐐𝑑 ) and constraints (𝚽, �̇�, �̈�) with respect to relative coordinates and parameters can be found in [33].

The direct sensitivity analysis of the semi-recursive Matrix R formulation has been implemented in the MBSLIM multibody library as a general 
sensitivity formulation considering a non-constant 𝐁 matrix and the RTdyn0 (center of mass of each body as reference point) and RTdyn1 (global 
origin of coordinates as reference point) approaches.

Algorithm 1 Direct sensitivity.
1: procedure SolveDirectSensitivities
2: 𝑡← 𝑡0
3: 𝐳0, �̇�0 ← 𝑖𝑛𝑖𝑃 𝑜𝑠𝑉 𝑒𝑙(𝐳𝑖0, �̇�

𝑖
0)

4: 𝐳′0, �̇�
′
0 ← 𝑖𝑛𝑖𝑆𝑒𝑛𝑠𝑖𝑡𝑃 𝑜𝑠𝑉 𝑒𝑙(𝐳𝑖′0 , �̇�

𝑖′
0 )

5: �̈�0 ← 𝑖𝑛𝑖𝐴𝑐𝑒𝑙(𝐳0, �̇�0)
6: �̈�′0 ←

(
�̄��̈�𝑖′ + �̄��̇�𝑖′ +

(
�̄�+ �̄��̌�𝑖 �̈�𝑖

)
𝐳𝑖′ = �̄�

�̌�
− �̄�

�̌�
�̈�𝑖
)

7: while 𝑡 <= 𝑡𝑒𝑛𝑑 do
8: 𝑡 = 𝑡+Δ𝑡
9: 𝐳, �̇�, �̈�← 𝑠𝑜𝑙𝑣𝑒𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠()

10: 𝐳𝑖′𝑖 , �̇�
𝑖′
𝑖 , �̈�

𝑖′
𝑖 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

(
𝐳𝑖′
𝑖−1, �̇�

𝑖′
𝑖−1, �̈�

𝑖′
𝑖−1

)
11: �̄��̌�𝑖 �̈�𝑖, �̄�, �̄�, �̄�

�̌�
← 𝑒𝑣𝑎𝑙𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠()

12: 𝐳𝑖′
𝑖
←

(
�̄��̈�𝑖′ + �̄��̇�𝑖′ +

(
�̄�+ �̄��̌�𝑖 �̈�𝑖

)
𝐳𝑖′ = �̄�

�̌�
− �̄�

�̌�
�̈�𝑖
)

13: �̇�𝑖′𝑖 , �̈�
𝑖′
𝑖 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟

(
𝐳𝑖′𝑖 , 𝐳

𝑖′
𝑖−1, �̇�

𝑖′
𝑖−1, �̈�

𝑖′
𝑖−1

)
14: 𝝍

′ T ← 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒
(∫ 𝑡𝐹

𝑡0

(
𝐠�̌�i𝐳𝑖′ + 𝐠 ̌̇𝐳i �̇�𝑖′ + 𝐠 ̌̈𝐳i �̈�𝑖′ + 𝐠

�̌�

)
d𝑡
)

15: end

The basic steps of the direct sensitivity formulation presented, are summarized in the pseudo-code 1. The process begins with the calculation of 
positions, velocities and accelerations at the initial time, as well as their corresponding sensitivities. Then, the time can be increased and the states 
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can be computed by solving the dynamic equations. With the new states, the TLM (48) can be evaluated and solved applying a numerical integrator. 
With the computed sensitivities of the states it is possible to integrate the objective function. This process is executed each time step until the final 
time is reached.

In the semi-recursive Matrix R direct sensitivity formulation, most of the computational effort is devoted to the calculation of derivatives, while 
the time required for the solution of the TLM is usually negligible for a low number of parameters. The computational burden associated to the 
calculation of derivatives can be reduced using a combination of dense and sparse methods (sparse is convenient for constraint derivatives), by 
means of the storage and reuse of terms (there are many elemental derivatives repeated which can be efficiently computed and stored), by means 
of the exploitation of symmetry in matrices and hyper-matrices and by means of the use of recursive procedures whenever it is possible (for the 
evaluation of derivatives in the open-loop model, for instance).

Because the number of sensitivity systems of equations grows with the number of parameters, the computational effort devoted to solve them 
scales linearly with it, and for a number high enough, it is desirable to resort to other sensitivity schemes in which the computational effort is 
independent of this dimension, like the adjoint method.

3.2. Adjoint sensitivity analysis

The adjoint variable method applied to Matrix R formulations was presented and discussed in [34], starting from three different constructions of 
the equations of motion: a first-order explicit ODE system, a first-order implicit ODE system and a second-order implicit ODE system. The first option 
delivers the simplest possible expressions for the adjoint equations, avoiding the time derivative of the mass matrix (as in the first-order implicit 
ODE system) and the time derivative of the damping matrix and the second time derivative of the mass matrix (as in the second-order implicit ODE 
system). In the current work, the developments presented in [34] for the first-order explicit ODE system will be recalled and combined with the 
semi-recursive formalism.

First of all, the semi-recursive Matrix R equations of motion (42) should be reformulated as a first-order implicit system by means of the definition 
of a new vector of states 𝐲 =

[
𝐳𝑖T 𝐯T

]T
, being �̇�𝑖 = 𝐯.[

𝐈 𝟎
𝟎 �̄�

][
�̇�𝑖
�̇�

]
=

[
𝐯
�̄�

]
(62a)

�̂� (𝐲,𝝆) �̇� = �̂� (𝑡,𝐲,𝝆) (62b)

Considering that the leading matrix of (62b) always has an inverse (for a proper selection of DoF), (62b) can be transformed into a first-order 
explicit system:

�̇� = �̂�−1 (𝐲,𝝆) �̂� (𝑡,𝐲,𝝆) = 𝐟 (𝑡,𝐲,𝝆) (63)

Let us now consider the following Lagrangian:

 (𝝆) =𝝍 −

𝑡𝐹

∫
𝑡0

𝝁
T (�̇� − 𝐟 (𝑡,𝐲,𝝆)) d𝑡 (64)

where 𝝍 =𝝍 (𝐲, �̇�,𝝆) is the objective function defined in (30), with all the dependencies considered as implicit.
Since �̇� − 𝐟 (𝑡,𝐲,𝝆) = 𝟎, the value of the Lagrangian is equal to the value of the objective function, and also its derivatives for any value of 𝝁.
Computing the infinitesimal variations of ,

𝛿 =

𝑡𝐹

∫
𝑡0

(
𝐠�̌�𝛿𝐲 + 𝐠 ̌̇𝐲𝛿�̇� + 𝐠

�̌�
𝛿𝝆

)
d𝑡−

𝑡𝐹

∫
𝑡0

𝛿𝝁T (�̇� − 𝐟 (𝑡,𝐲,𝝆)) d𝑡−
𝑡𝐹

∫
𝑡0

𝝁
T (𝛿�̇� − 𝐟�̌�𝛿𝐲 − 𝐟

�̌�
𝛿𝝆

)
d𝑡 (65)

in which the notation explained in equation (40) has been used to include implicit dependencies on relative coordinates in the partial derivatives 
with respect to 𝐲, �̇� and 𝝆.

Integrating by parts in time and rearranging terms:

𝛿 =
[(

𝐠 ̌̇𝐲 − 𝝁
T
)
𝛿𝐲

]𝑡𝐹
𝑡0

+

𝑡𝐹

∫
𝑡0

(
𝐠�̌� − �̇� ̌̇𝐲 + 𝝁

T𝐟�̌� + �̇�T
)
𝛿𝐲d𝑡+

𝑡𝐹

∫
𝑡0

(
𝐠
�̌�
+ 𝝁T𝐟

�̌�

)
𝛿𝝆d𝑡 (66)

The objective of the adjoint approach is to eliminate the need of calculating the derivatives of the states. In this case the objective is to nullify 
the expression multiplying 𝛿𝐲, leading to the following adjoint ODE systems:

�̇� = −𝐟T�̌� 𝝁− 𝐠T�̌� + �̇�T
̌̇𝐲

(67a)

𝝁
𝑡𝐹 =

[
𝐠T
̌̇𝐲

]𝑡𝐹
(67b)

Nevertheless, these equations involve some problems related to the dependencies on �̇� and the derivative �̇��̇� , which could need the calculation 
of the jerks ⃛𝐳𝑖. These problems can be solved through the transformation of the dependencies on �̇� to implicit dependencies on 𝐲 and 𝝆 using (62b), 
resulting the final adjoint system:

�̇� = −𝐟T�̌�
(
𝝁+ 𝐠T

̌̇𝐲

)
− 𝐠T�̌� (68a)

𝝁
𝑡𝐹 = 𝟎 (68b)
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𝐟�̌� = �̂�−1
(
�̂��̌� − �̂��̌�𝐟

)
=
[

𝟎 𝐈
−�̄�−1 (�̄�+ �̄��̌�𝑖 �̇�

)
−�̄�−1�̄�

]
(68c)

𝐠�̌� =
[
𝐠�̌�𝑖 𝐠 ̌̇𝐳i

]
(68d)

𝐠 ̌̇𝐲 =
[
𝟎 𝐠 ̌̈𝐳i

]
(68e)

The objective function gradient can be calculated with the remaining terms:

𝝍
′ T = −

[
𝐲T
�̌�
𝝁

]
𝑡0
+

𝑡𝐹

∫
𝑡0

(
𝐟T
�̌�

(
𝝁+ 𝐠T

̌̇𝐲

)
+ 𝐠T

�̌�

)
d𝑡 (69a)

𝐟
�̌�
= �̂�−1

(
�̂�
�̌�
− �̂�

�̌�
𝐟
)
=
[

𝟎
�̄�−1 (�̄��̌� − �̄��̌��̈�𝑖

) ] (69b)

The implementation of the adjoint variable method requires the storage of information at each time step of the dynamic simulation. Once the 
simulation is complete, the adjoint equations can be solved backward in time, for which the same partial derivatives needed in the direct method 
have to be computed. The objective function gradient can be calculated from the values of the adjoint variables at each time step. This process is 
summarized in the pseudo-code 2.

Comparing (48) and (68), it can be inferred that both systems might be advantageous in different circumstances. The direct method leads to 
as many systems of equations as parameters, while the adjoint method requires to solve as many systems of equations as objective functions. In 
highly parameterized problems (like optimal control) the adjoint method would be the preferred option, while in other problems which require the 
evaluation of many objective functions (or optimization constraints), the direct method is desirable.

Algorithm 2 Adjoint sensitivity.
1: procedure SolveAdjointSensitivities
2: 𝑡← 𝑡0
3: 𝐳0, �̇�0 ← 𝑖𝑛𝑖𝑃 𝑜𝑠𝑉 𝑒𝑙(𝐳𝑖0, �̇�

𝑖
0)

4: 𝐳′0, �̇�
′
0 ← 𝑖𝑛𝑖𝑆𝑒𝑛𝑠𝑖𝑡𝑃 𝑜𝑠𝑉 𝑒𝑙(𝐳𝑖′0 , �̇�

𝑖′
0 )

5: �̈�0 ← 𝑖𝑛𝑖𝐴𝑐𝑒𝑙(𝐳0, �̇�0)
6: �̈�′0 ← 𝑖𝑛𝑖𝑆𝑒𝑛𝑠𝑖𝑡𝐴𝑐𝑒𝑙(𝐳′0, �̇�

′
0)

7: while 𝑡 <= 𝑡𝑒𝑛𝑑 do
8: 𝑡 = 𝑡+Δ𝑡
9: 𝐳, �̇�, �̈�← 𝑠𝑜𝑙𝑣𝑒𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠()

10: 𝝁
𝑡𝐹 ← 𝟎

11: �̇�
𝑡𝐹 ← −𝐟�̌�T

(
𝝁+ 𝐠 ̌̇𝐲

T)− 𝐠�̌�T
12: while 𝑡 >= 𝑡0 do
13: 𝝁𝑖, �̇�𝑖 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

(
𝝁𝑖+1, �̇�𝑖+1

)
14: �̄��̌�𝑖 �̈�𝑖, �̄�, �̄�, �̄�

�̌�
← 𝑒𝑣𝑎𝑙𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠()

15: 𝝁𝑖 ←
(
�̇�𝑖 = −𝐟�̌�T

(
𝝁𝑖 + 𝐠 ̌̇𝐲

T)− 𝐠�̌�T
)

16: �̇�𝑖 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟
(
𝝁𝑖,𝝁𝑖+1, �̇�𝑖+1

)
17: 𝝍

′ T ← 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒
(∫ 𝑡𝐹

𝑡0

(
𝐟T
�̌�

(
𝝁+ 𝐠 ̌̇𝐲

T)+ 𝐠T
�̌�

)
d𝑡
)

18: 𝝍
′ T ←𝝍

′ T −
[
𝐲T
�̌�
𝝁

]
𝑡0

19: end

Extending the comparison to other direct and adjoint sensitivity formulations [14,16,35,36], the proposed methods result in simpler direct and 
adjoint equations (systems of ODEs rather than DAEs) in which the size of the system is proportional to the number of DoF rather than the number 
of dependent coordinates. On the contrary, the derivative calculation is more involved in the Matrix R method.

3.3. Gradient-based optimal design

The semi-recursive sensitivity methods presented in the previous subsections make possible the analytical evaluation of the gradient of one or 
multiple objective functions. The information provided by the gradients is of paramount importance in the optimization of multibody systems, and 
it can be used as input in one of the several long-known optimization algorithms that use gradients to calculate the direction and the size of the step 
at each optimization iteration [37].

Let us consider the following optimization problem as an example of application of the sensitivity methods presented:

min
𝝆

𝜓 =

𝑡𝐹

∫
𝑡0

𝑔 (𝐳, �̇�, �̈�,𝝆, 𝑡) d𝑡 (70)

s.t. 𝚽𝑒 (𝐳, �̇�, �̈�,𝝆, 𝑡) = 𝟎 (71)

𝚽𝑖 (𝐳, �̇�, �̈�,𝝆, 𝑡) ≥ 𝟎 (72)

where the superscript 𝑒 stands for equality and 𝑖 stands for inequality. For the evaluation of objective function and constraints gradient, it is possible 
to define an extended objective function 𝝍𝑒𝑥𝑡 such that:
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𝝍
𝑒𝑥𝑡 =

⎡⎢⎢⎣
𝜓

𝚽𝑒

𝚽𝑖

⎤⎥⎥⎦ ⇒ 
(
𝝍

𝑒𝑥𝑡
)′ = ⎡⎢⎢⎣

𝜓 ′

(𝚽𝑒)′(
𝚽𝑖

)′
⎤⎥⎥⎦ (73)

The gradient of the new objective function 𝝍 𝑒𝑥𝑡 can be computed using the sensitivity methods presented, thus objective function and constraint 
gradients can be evaluated in a single sensitivity calculation.

With this information, a general gradient-based optimization algorithm can be used for the minimization of (70), like those available in MATLAB 
in the context of the fmincon function, others available in languages like Python or Fortran (LBFGS-B [38]) or by means of in-house implementations 
of well-known algorithms [37].

4. Numerical experiments

The dynamic and sensitivity semi-recursive matrix R formulations described in this work, have been implemented in the MBSLIM multibody 
library [29] as general sensitivity formulations. The implementation has been tested with a five-bar linkage and in two maneuvers of a vehicle. The 
integration method used in all the experiments is the implicit trapezoidal rule, used on both the dynamics and sensitivity equations, and the time 
step for each numerical experiment has been selected as the maximum time step that delivers a response within the range of accuracy specified in 
each benchmark problem description [39]. The experiments have been conducted in an Intel Core i7-8700 CPU at 3.20 GHz. The methods have been 
coded in Fortran using the latest features of the standard Fortran 2018, with the Fortran Intel Parallel Studio XE 2018 as compiler on a Windows 
10 operating system. Although the equations presented are valid for a generic reference point, the results included in this section correspond to the 
RTdyn0 semi-recursive method, with the center of mass of each body as reference point.

The semi-recursive Matrix R sensitivity methods have been implemented according to the following guidelines:

• Recursive procedures: recursive procedures have been exploited in both dynamics and derivative calculations whenever possible in order to 
minimize the number of algebraic operations.

• Storage and reuse of terms: there are some terms that appear repeatedly in the sensitivity equations and in the derivative expressions, thus the 
most efficient approach is to compute them once, store and then reuse them when they are needed.

• Combination of sparse and dense algebra: independent coordinate formulations like the semi-recursive Matrix R usually lead to small and very 
dense problems that can be solved with dense solvers. Here, both dynamic and sensitivity systems of equations are solved using LAPACK (Linear 
Algebra PACKage). On the contrary, sparse algebra is used in kinematic problems like in the evaluation of Matrix 𝐑𝚽 and in the storage of sparse 
structures like the derivatives of kinematic constraints.

• Symmetry: the symmetry of some dynamic and kinematic terms can be harnessed for saving calculations and storing terms. For example, only 
the derivatives of the diagonal and the upper triangular part of the mass matrix have to be computed and stored, and then it is possible to 
operate with them using appropriate routines.

4.1. Five-bar mechanism

The sensitivity formulations introduced in this document are firstly tested in the five-bar benchmark problem included in the IFToMM benchmark 
library [39] under the title “Sensitivity analysis of a five-bar mechanism”. There, the reader can find extensive information about topology, geometry, 
initial position and velocity, simulation time, objective functions and sensitivity parameters.

The mechanism, displayed in Fig. 1, is composed of five bars (one of them fixed) linked by means of five revolute joints with parallel axes, which 
converts it in a 2-DoF linkage. 

Fig. 1. Five-bar linkage. 

In this experiment, the goal is to evaluate the gradient of the following array of objective functions:

𝝍 =
[
𝜓1 𝜓2 𝜓3

]T
(74a)

𝜓1 =

𝑡F

∫
𝑡0

(
𝐫2 − 𝐫20

)T (𝐫2 − 𝐫20
)
d𝑡 , 𝜓2 =

𝑡F

∫
𝑡0

�̇�T2 �̇�2d𝑡 , 𝜓3 =

𝑡F

∫
𝑡0

�̈�T2 �̈�2d𝑡 . (74b)

wherein 𝐫2 and 𝐫20 represent the instant and initial position of the point identified as 2 in Fig. 1, respectively.
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Fig. 2. Evolution in time of the gradient of 𝜓3 evaluated with direct (left) and adjoint (right) sensitivity formulations. 

The gradient of each objective function is calculated with respect to the parameters below:

𝝆 =
[
𝐿s1 𝐿s2 𝑚A1 𝑥GA1 𝐿A1

]
(75)

being 𝐿s1 and 𝐿s2 the natural lengths of the springs, and 𝑚A1 , 𝑥GA1 and 𝐿A1 the mass, 𝑋-local coordinate of the center of mass and length of the bar 
between vertices 𝐴 and 1, respectively.

The sensitivity analysis of a 5-seconds dynamic simulation of this linkage under the action of gravity and spring forces has been performed 
with the semi-recursive Matrix R sensitivity formulations detailed in this document. The accuracy of the results is compared in Table 1 against the 
reference provided in the IFToMM benchmark library [39]. Fig. 2 includes a comparison between each component of the gradient of the objective 
function 𝜓3 evaluated with global and semi-recursive Matrix R direct and adjoint sensitivity formulations. It can be observed that, since the set of 
independent coordinates used is identical in global and semi-recursive methods, the results coincide in both cases. Moreover, Fig. 2 shows how the 
value of the gradient at time 𝑡 = 5𝑠 in direct methods (left column) matches the results at times 𝑡 = 0𝑠 in adjoint methods (right column) due to the 
backward integration of the gradient in the adjoint case.

Computers and Structures 308 (2025) 107642 

12 



Á. López Varela, D. Dopico Dopico and A. Luaces Fernández 

Table 1
Objective functions gradient evaluated with different sensitivity 
formulations.

Direct SR-Matrix R Adjoint SR-Matrix R Reference (
𝝍

1)′
𝐿𝑠1

-4.2288 -4.2288 -4.2288 (
𝝍

1)′
𝐿𝑠2

3.2116 3.2116 3.2116 (
𝝍

1)′
𝑚𝐴1

0.31866 0.31866 0.31866 (
𝝍

1)′
𝑥𝐺
𝐴1

0.44235 0.44235 0.44235 (
𝝍

1)′
𝐿𝐴1

3.3598 3.3599 3.3598(
𝝍

2)′
𝐿𝑠1

-15.452 -15.452 -15.452 (
𝝍

2)′
𝐿𝑠2

50.309 50.308 50.309 (
𝝍

2)′
𝑚𝐴1

0.97017 0.97016 0.97012 (
𝝍

2)′
𝑥𝐺
𝐴1

0.74569 0.74569 0.74560 (
𝝍

2)′
𝐿𝐴1

-27.359 -27.358 -27.359(
𝝍

3)′
𝐿𝑠1

221.64 221.65 221.64 (
𝝍

3)′
𝐿𝑠2

2436.6 2436.6 2436.6 (
𝝍

3)′
𝑚𝐴1

-32.497 -32.498 -32.497 (
𝝍

3)′
𝑥𝐺
𝐴1

-85.658 -85.658 -85.657 (
𝝍

3)′
𝐿𝐴1

-2546.6 -2546.6 -2546.6 

This example aims to check the accuracy of the methods rather than their efficiency, which is assessed in the following more complex numerical 
experiment.

4.2. Buggy vehicle

The second numerical experiment employed to test the accuracy and efficiency of the sensitivity methods presented is a buggy vehicle with 
articulated suspensions and with tire-ground interaction modeled by means contact-frictional tire forces, displayed in Fig. 3. The complete model 
description along with the initial conditions, simulation time, forces description, objective functions and sensitivity parameters is documented in the 
IFToMM benchmark library [39] in two separate benchmark problems entitled “Sensitivity analysis of a step descent maneuver of a buggy vehicle” 
and “Sensitivity analysis of a double lane change maneuver of a buggy vehicle”.

Fig. 3. Buggy vehicle with the points and vectors defining the model. 

In the first maneuver, the vehicle moves in a straight line with its steering blocked and descents a step of 1 cm placed at a distance of 5.5m from 
the origin. Considering a forward initial linear speed of 3m s−1, the step is reached approximately at t=2.0 s. The 4.5-second simulation is executed 
with the dynamic formulation presented in this document with a time step of 1ms.

As objective function, a measurement of the chassis accelerations is considered:

𝜓 =

𝑡F

∫
𝑡0

�̈�21𝑧
d𝑡 (76)

being �̈�1𝑧 the 𝑍 (vertical) component of the acceleration of a point in the front of the chassis.

Computers and Structures 308 (2025) 107642 

13 



Á. López Varela, D. Dopico Dopico and A. Luaces Fernández 

Table 2
Objective function gradient for the step descent maneuver.

Semi-recursive methods Global methods Reference 
Direct Matrix R Adjoint Matrix R Direct Matrix R Adjoint Matrix R 

𝝍
′
𝑘f

2.0483 × 10−4 2.0493 × 10−4 2.0538 × 10−4 2.0547 × 10−4 2.06 × 10−4

𝝍
′
𝑐f

9.3358 × 10−4 9.3358 × 10−4 9.3357 × 10−4 9.3357 × 10−4 9.34 × 10−4

𝝍
′
𝑘r

−3.8189 × 10−5 −3.8252 × 10−5 −3.8138 × 10−5 −3.8202 × 10−5 −3.90 × 10−5

𝝍
′
𝑐r

7.5319 × 10−4 7.5319 × 10−4 7.5319 × 10−4 7.5319 × 10−4 7.53 × 10−4

𝝍
′
𝑚c

4.0976 × 10−2 4.0979 × 10−2 4.0895 × 10−2 4.0899 × 10−2 4.06 × 10−2

Fig. 4. CPU times of objective function and gradient evaluations for the step descent maneuver. 

The sensitivity parameters include:

𝝆 =
[
𝑘f 𝑐f 𝑘r 𝑐r 𝑚c

]
(77)

with 𝑘f , 𝑐f , 𝑘r and 𝑐r representing the stiffness and damping coefficients of the frontal and rear suspensions, respectively, and 𝑚c identifying the 
mass of the chassis.

In order to assess the efficiency of the semi-recursive sensitivity formulations presented in this document, they are compared with equivalent 
Matrix R sensitivity formulations in natural (or fully-Cartesian) coordinates. It is important to remark that the independent variables are identical 
in natural and relative coordinate models, thus matching results could be expected (despising numerical errors). Therefore, this experiment allows 
to evaluate the computational gains of using semi-recursive methods instead of global methods.

In Table 2, the results of the step descent objective function gradient are presented for different formulations. The differences observed are due 
to the collision in the step descent, which involves impact forces which require a very low time step to be perfectly simulated. In fact, the level of 
convergence between formulations and reference response can be increased by decreasing the time step. However, no time step reduction has been 
executed since all the results presented fulfill the error criteria required by the benchmark problem.

Fig. 4 presents the efficiency for the direct and adjoint, global and semi-recursive Matrix R formulations, showing that the semi-recursive formu-
lation saves around 48.2% of CPU-time in the case of the direct method and up to 50.2% in the case of the adjoint, for this particular example and 
maneuver. This figure also reflects that semi-recursive methods outperform global methods in both dynamics and sensitivities, representing the time 
devoted to sensitivity calculations around 31% of the total time in semi-recursive methods (32.2% in adjoint and 30.1% in direct sensitivities) and 
27.8% in global methods. Apart from the dynamics calculation, almost all the computational time in the four sensitivity formulations compared is 
spent in the evaluation of derivatives, while the time needed for the solution of the sensitivity equations is almost negligible. This is explained by 
the fact that direct and adjoint systems of equations are linear and of very small size.

The second maneuver consists in a 12-second double lane change maneuver as described in the benchmark problem “Sensitivity analysis of a 
double lane change maneuver of a buggy vehicle” (see [39]). In this case, the objective function measures the square of the roll rate of the chassis,

𝝍 =

𝑡F

∫
𝑡0

�̇�2d𝑡 (78)

while the set of parameters is preserved from the step descent maneuver, declared in (77).
The time step for both dynamics and sensitivity analysis is increased in this maneuver to 15ms due to the smoothness of the motion (no abrupt 

force variation appears).
In Table 3 and Fig. 5, the accuracy and efficiency of the sensitivity methods are assessed, respectively. These data exhibit the correctness and 

validity of the expressions presented as well as the higher efficiency of the semi-recursive methods.
Fig. 5 confirms the speed-ups of semi-recursive methods for this maneuver, around 49.3% of CPU-time for the direct semi-recursive compared 

to the direct global and around 50.1% in the case of the adjoint semi-recursive compared to the adjoint global. It is worth to mention that the joint 
calculation of dynamics and sensitivities is executed in real time, with a factor of 1.6 in global methods and 3.1 in semi-recursive methods. This 
highlights the efficiency of the methods presented and makes patent the advantages of analytical differentiation in sensitivity calculations.

It is worth mentioning that, even if the topological semi-recursive Matrix R sensitivity formulations are faster than their global counterparts, 
the comparison with the global and semi-recursive ALI3-P sensitivity formulations presented in [33], reveals that Matrix R formulations are slower 
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Table 3
Objective function gradient for the double lane change maneuver.

Semi-recursive methods Global methods Reference 
Direct Matrix R Adjoint Matrix R Direct Matrix R Adjoint Matrix R 

𝝍
′
𝑘f

3.9538 × 10−8 3.9538 × 10−8 3.9533 × 10−8 3.9533 × 10−8 3.96 × 10−8

𝝍
′
𝑐f

−1.2736 × 10−8 −1.2736 × 10−8 −1.2737 × 10−8 −1.2737 × 10−8 −1.28 × 10−8

𝝍
′
𝑘r

−5.1100 × 10−8 −5.1100 × 10−8 −5.1100 × 10−8 −5.1100 × 10−8 −5.11 × 10−8

𝝍
′
𝑐r

−4.1108 × 10−8 −4.1108 × 10−8 −4.1108 × 10−8 −4.1108 × 10−8 −4.12 × 10−8

𝝍
′
𝑚c

2.5574 × 10−6 2.5574 × 10−6 2.5580 × 10−6 2.5580 × 10−6 2.56 × 10−6

Fig. 5. CPU times of objective function and gradient evaluations for the double lane change maneuver. 

than ALI3-P for the examples presented. The same conclusion can likely be extended to other multibody systems with similar sizes, coordinates and 
degrees of freedom.

5. Conclusions

In this document, the combination of the Matrix R constraint enforcement scheme with topological semi-recursive methods is reviewed. The 
classical Matrix R formulation is extended to support degrees of freedom which are not a subset of the dependent coordinates, thus the method 
presented is more general and cannot be considered equivalent to a coordinate partitioning method. Constrained and unconstrained kinematic 
problems in joint coordinates are revisited as an introductory step for the generation of semi-recursive Matrix R equations of motion.

The sensitivity analysis of the semi-recursive dynamic formulation introduced has been derived using a direct differentiation method and an 
adjoint variable method, reaching a set of compact expressions involving derivatives with respect to relative coordinates and parameters.

A detailed description of the main derivatives required in both sensitivity methods has been provided. Additionally, some new differentiation 
rules and notation have been declared with the aim of keeping sensitivity equations as concise and clear as possible.

The sensitivity methods have been implemented in the MBSLIM general purpose multibody library, in which each derivative required has been 
analytically calculated, programmed and tested. The sensitivity methods have been evaluated in a five-bar linkage and in two maneuvers of a buggy 
vehicle with articulated suspensions. Results show an important computational gain of semi-recursive methods with respect to the sensitivity analysis 
of Matrix R in natural coordinates for the same level of accuracy.
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Appendix A. Notation

Consider a model defined by 𝐳 ∈R𝑛 relative coordinates, with 𝐪(𝐳) ∈R𝑛𝑞 natural coordinates referred to points and vectors and with a set 𝝆 ∈R𝑝

of system parameters. Let us define a new differentiation rule of a generic function 𝑓
(
𝐳, �̇�, �̈�,𝐪(𝐳), �̇�(𝐳, �̇�), �̈�(𝐳, �̇�, �̈�),𝝆

)
as:

𝑓�̂� = 𝑓𝐪𝐪𝐱 + 𝑓�̇��̇�𝐱 + 𝑓�̈��̈�𝐱 + 𝑓𝐱 (A.1)

being 𝐱 any of the dependencies of function 𝑓 , ̇( ) a first temporal derivative and (̈ ) a second time derivative. In brief, the ℎ𝑎𝑡 notation in a subscript 
indicates that the derivative is evaluated considering all the dependencies of the function on natural coordinates and the dependencies of natural 
coordinates on 𝐱.

As an example, let us consider the vector of kinematic constraints as the function 𝑓 . The derivatives with respect to the relative coordinates, 
natural coordinates and system parameters according to (A.1) are:

𝚽�̂� =𝚽𝐪𝐪𝐳 +𝚽𝐳 (A.2a)

𝚽�̂� =𝚽𝐪𝐪𝐪 +𝚽𝐪 (A.2b)

𝚽
�̂�
=𝚽𝐪𝐪𝝆 +𝚽

𝝆
(A.2c)

Observe that the derivatives with respect to �̇�, �̈�, �̇� and �̈� are null in this case and have been removed from (A.2a).
The total derivative of a function 𝑓 with respect to the set of system parameters can be calculated as:

𝑓 ′ =
(
𝑓𝐪𝐪𝐳 + 𝑓�̇��̇�𝐳 + 𝑓�̈��̈�𝐳 + 𝑓𝐳

)
𝐳′ +

(
𝑓�̇��̇��̇� + 𝑓�̈��̈��̇� + 𝑓�̇�

)
�̇�′ +

(
𝑓�̈��̈��̈� + 𝑓�̈�

)
�̈�′ + 𝑓

�̂�
(A.3)

being

𝑓 ′ = d𝑓
d𝝆

, 𝐳′ = d𝐳
d𝝆

, �̇�′ = d�̇�
d𝝆

, �̈�′ = d�̈�
d𝝆

(A.4)

Using (A.1), it is possible to define it more concisely:

𝑓 ′ = 𝑓�̂�𝐳′ + 𝑓̂̇𝐳�̇�
′ + 𝑓̂̈𝐳�̈�

′ + 𝑓
�̂�

(A.5)

as long as the intermediate dependencies on 𝐪, �̇� and �̈� are included in the new differentiation rule.

Data availability

Data will be made available on request.
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