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Abstract: Time–domain simulation of electronic and thermal circuits is required by a large array
of applications, such as the design and optimization of electric vehicle powertrain components.
While efficient execution is always a desirable feature of simulation codes, in certain cases like
System-in-the-Loop setups, real-time performance is demanded. Whether real-time code execution
can be achieved or not in a particular case depends on a series of factors, which include the
mathematical formulation of the equations that govern the system dynamics, the techniques used in
code implementation, and the capabilities of the hardware architecture on which the simulation is
run. In this work, we present an evaluation framework of numerical methods for the simulation of
electronic and thermal circuits from the point of view of their ability to deliver real-time performance.
The methods were compared using a set of nontrivial benchmark problems and relevant error metrics.
The computational efficiency of the simulation codes was measured under different software and
hardware environments, to determine the feasibility of using them in industrial applications with
reduced computational power.

Keywords: time–domain circuit simulation; electronic circuits; thermal circuits; real-time simulation;
benchmark problems; ARM processors

1. Introduction

Computer simulation of dynamical systems is currently a necessary and often critical step in
a large number of engineering applications. Accurate and efficient simulations enable considerable
reductions in product development cycles, together with savings in prototyping and testing costs.
The development of computing technologies in the latest decades has made it possible to extend
the simulation of nontrivial engineering systems to real-time (RT) environments [1], including
Hardware-in-the-Loop (HiL) and System-in-the-Loop (SITL) setups, in which computer simulations
are interfaced to physical components. Such simulation processes often describe multiphysics systems
of great complexity, composed by subsystems with very different behavior and physical properties.
This task can be performed in an efficient way by means of co-simulation schemes, integrating the
dynamics of each subsystem with its own dedicated solver, and coupling these through the exchange
of a limited set of input and output variables [2–5]. This is the case of test benches in the automotive
industry, in which physical components of a vehicle are interfaced to an RT simulation of the overall
system, which may include mechanical, thermal, electronic, or hydraulic effects, as well as interactions
with the driving environment. Test benches for e-powertrains, for instance, showcase the interest
of developing effective simulation methods for circuits that represent engineering systems whose
purpose is the management and control of energy flows in industrial applications [6].

Co-simulation in RT platforms requires that every subsystem in the assembly is able to complete
the integration of its dynamics equations in real time. This is particularly critical in HiL and SITL
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environments, where the correct and safe performance of physical components depends on the
inputs generated by the virtual ones being delivered in time. The time spent in computations by the
virtual subsystems must, therefore, be predictable [7]. Such environments frequently require that the
communication between subsystems takes place at fixed time intervals—moreover, using iterative
coupling schemes to improve convergence is restricted by the presence of physical subsystems [8].
As a consequence, explicit coupling schemes with fixed communication step-sizes are the option of
choice in RT co-simulation setups.

Electric and electronics subsystems are present in a wide range of multidisciplinary engineering
applications, like electric vehicles. The numerical methods used for time–domain simulation of
these circuits must meet the efficiency and accuracy requirements of the main application; in
HiL and SITL setups, RT performance with fixed integration step-sizes is required. Time-domain
computer-aided simulation of electric and electronic circuits has been the subject of research since the
early 1970s [9,10]. Circuit dynamics is usually formulated in terms of a set of differential algebraic
equations (DAE), resulting from the application of Kirchhoff laws and the constitutive equations
of the circuit components, and integrated using numerical methods like the Newmark family of
integrators [11] or backward differentiation formulas (BDF) [12]. The accuracy and stability of these
methods have been assessed in a number of research papers and compared to alternative integration
formulas such as implicit Runge–Kutta methods [13,14]. Some of these pay special attention to the
solution of discontinuous systems that result from switching components in electronics circuits [15,16].
Moreover, strategies like index reduction [17] and model order reduction [18,19] have been proposed to
streamline the solution of the system equations. In the latest decades, the need for RT performance has
motivated the development of simulation tools and platforms able to meet this requirement [20–22].
The capability of the proposed solution approaches to deliver RT execution, however, needs further
evaluation. Proper benchmarking of existing techniques requires the definition of clear comparison
criteria and standardized problems, representative and easy to replicate [23,24].

This paper puts forward a framework for the evaluation of the efficiency and accuracy of
simulation methods for electric and electronic circuits, consisting in a series of benchmark examples
and a set of criteria to assess simulation results. This framework was used to determine the suitability
of general-purpose simulation formalisms for their execution in RT environments. Methods for the
simulation of circuits that used the trapezoidal rule (TR) and BDFs as integration formulas were used to
solve four benchmark problems. These were defined in a simple way and designed to capture at least
one challenging aspect of circuit simulation. The examples included linear electric circuits, nonlinear
electronics, and a thermal equivalent model of an electric motor; this last example extends the scope
of the proposed testing framework to systems characterized by slow dynamics and time-varying
physical properties [25]. The performance of the simulation methods was verified using conventional,
off-the-shelf PCs; additionally, they were also tested in ARM processors, with limited computing
power and memory, which are currently gaining importance in distributed and non-homogeneous
co-simulation applications [1].

Besides computational performance aspects, the benchmark problems also enabled the
identification of numerical issues in circuit simulation. Some methods can be ruled out for general
purpose applications, based on aspects like their inability to deal with redundant algebraic constraints
or their tendency to introduce numerical drift in the solution. Problems with the evaluation of the
derivatives of the variables were observed with some integrators and a correction strategy consisting
in the projection of the derivatives onto the constraint manifold was developed to address this issue.

Results showed that the selection of a certain algorithm has a significant impact on simulation
efficiency for a required level of accuracy, and that the most suitable simulation method in each case
depends on the nature and properties of the problem under study. Iterative algorithms based on BDF2,
BDF3, and TR displayed comparable performance features, compatible with real-time execution in
most of the examples, also on ARM single-board computers. The proposed benchmarking framework
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made it possible to compare several integration approaches in terms of accuracy and computational
efficiency, evaluating their performance with a standard procedure.

2. Numerical Methods

An electric or electronic circuit can be described as a series of connected elements that obey
Kirchhoff laws. Each element has one or more terminals, connected to nodes, i.e., points with a given
voltage. The flow of electrons between nodes gives rise to currents through the components. In general,
electronic circuits are nonlinear systems.

In this work, the variables used to describe the system are the node voltages V and the currents I
that flow through the components. The node voltages of a circuit are grouped in nv × 1 term xv, while
the currents that flow through each component are contained in the nc × 1 term xc. Together, these
constitute the system variables

x =
[

xT
v xT

c

]T
(1)

which, in general, are not independent, but are subjected to constraints. The total number of variables
in the system is n = nv + nc. Algebraic constrains can be imposed by the satisfaction of Kirchhoff’s
current law at the circuit nodes, by the specification of the voltage of a node, e.g., by connecting it
to ground, and by the constitutive equations of some components, such as resistors. These algebraic
constraints are grouped in an m × 1 term Φ (x, t), where m is the total number of algebraic constraint
equations imposed on the system. The system variables x must satisfy

Φ = 0. (2)

Other components, like capacitors and coils, introduce differential constraint equations that involve
the variables x and their derivatives ẋ with respect to time. In most cases, these equations can be
expressed with the following set of p linear ordinary differential equations (ODE)

Aẋ + b = 0 (3)

where A = A (x) is a p × n matrix and b = b (x, t) is a p × 1 array.
The time–domain simulation of the circuit dynamics requires the solution of the system of DAEs

formed by Equations (2) and (3). Several methods exist in the literature to address this problem [12].

2.1. Formulation of the Problem as a System of ODEs

It is possible to transform the DAE system defined by Equations (2) and (3) into a system of ODEs
by differentiating Equation (2) with respect to time to obtain

Φ̇ = Φxẋ + Φt = 0 (4)

where Φx = ∂Φ/∂x is the m × n Jacobian matrix of the algebraic constraints, and Φt = ∂Φ/∂t is an
m × 1 term. Grouping Equations (3) and (4), the following system of ODEs is obtained:[

Φx

A

]
ẋ =

[
−Φt

−b

]
i.e., Âẋ = −b̂. (5)

The leading matrix Â in Equation (5) is (m + p) × n and, for most circuits, it is a square,
non-symmetric matrix. In principle, it is possible to evaluate ẋ from Equation (5) at time step k
and integrate its value by means of a numerical integration formula to arrive at the variables x at
time step k + 1. However, this approach to obtain ẋ suffers from two shortcomings. First, only
the derivative-level expression of the algebraic constraints is explicitly enforced by Equation (5).
Accordingly, the accumulation of integration errors causes the solution to drift away from the exact



Energies 2020, 13, 1354 4 of 26

satisfaction of Φ = 0. Second, the leading matrix in Equation (5) will not have a full rank if some
constraint equations are linearly dependent. This causes the failure of most commonly used linear
equation solvers, making it necessary to use special algorithms to arrive at the solution of this system
of equations.

2.2. Solvers for Systems of DAE

An alternative approach to solve the system of DAEs under study consists of introducing a
numerical integration formula in Equations (2) and (3) to obtain the expression of their satisfaction at
the next integration step, k + 1, as a function of the system variables xk+1, but not their derivatives[

Φ

Aẋ + b

]
k+1

= f (xk+1) = 0. (6)

The resulting system of nonlinear equations can be solved by means of Newton–Raphson iteration[
df (x)

dx

]i
∆xi+1 = − [f (x)]i (7)

xi+1 = xi + ∆xi+1 (8)

where i stands for the iteration number. The procedure in Equations (7) and (8) is repeated until
convergence is achieved; several criteria can be used as stopping criterion to determine when this
takes place. In this work, the iteration was terminated when the norm of the residual f in Equation (6)
descended below a predetermined admissible value, ε.

Different numerical integration formulas can be used to arrive at Equation (6). BDFs are a popular
choice in circuit simulation. A BDF is a multistep method that uses values of the system variables
computed at previous steps to evaluate the variables and their derivatives at time tk+1. The order
k̂ of the BDF is the number of already known steps used by the formula. In this research, BDF1,
BDF2, and BDF3 methods were tested. It must be noted that the derivatives ẋ are calculated by the
method, but they are not used to evaluate x or ẋ in future time steps. The equilibrium in Equation (6)
is expressed as a function of the variables x alone, replacing their derivatives with

ẋk+1 = −1
h

k̂

∑
j=0

αj xk+1−j (9)

where h is the integration step-size, and the αj coefficients depend on the order of the BDF [12]; their
values are shown in Table 1 for BDF orders 1 to 3.

Table 1. Coefficients of BDF integration method.

k̂ α0 α1 α2 α3

1 −1 1 - -

2 −3/2 2 −1/2 -

3 −11/6 3 −3/2 1/3

With these integration formulas, the system of nonlinear equations to be solved (6) becomes

f (xk+1) =

 Φ

A

(
−1

h

k̂

∑
j=0

αj xk+1−j

)
+ b


k+1

= 0 (10)
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and the tangent matrix in Equation (7) is

df
dx

=


Φx

−α0

h
A − ∂A

∂x

(
1
h

k̂

∑
j=0

αj xk+1−j

)
+

∂b
∂x

 (11)

which is an (m + p)× n matrix. This tangent matrix is less likely to be singular than the leading term
in Equation (5), due to the presence of term ∂b/∂x.

The trapezoidal rule, a particular case of the Newmark family of integrators [11], can also be used
to obtain Equation (6). The derivatives ẋ at time step k + 1 are evaluated as

ẋk+1 =
2
h

xk+1 + ˆ̇xk ; ˆ̇xk = −
(

2
h

xk + ẋk

)
. (12)

Equation (6) then becomes

f (xk+1) =

 Φ

A
(

2
h

xk+1 + ˆ̇xk

)
+ b


k+1

= 0 (13)

and its corresponding tangent matrix is

df
dx

=

 Φx

2
h

A +
∂A
∂x

(
2
h

x + ˆ̇xk

)
+

∂b
∂x

 (14)

which has a similar structure to that of the tangent matrix in Equation (11).
The trapezoidal rule may suffer from numerical problems in the evaluation of the derivatives

ẋ. This stems from the fact that Equation (6) imposes the satisfaction of the algebraic constraints
Φ = 0, but not their derivative-level expression, Φ̇ = 0 in Equation (4); the only conditions that
the derivatives ẋ comply with are the p differential equations in (3). As a result, term ẋk+1 obtained
during the solution of Equation (6) is not unique. The BDF integration evaluates the derivatives ẋk+1
only from the values of the variables x, which are uniquely determined by the satisfaction of Φ = 0.
The trapezoidal rule, on the other hand, uses the derivatives in the previous step, ẋk, to evaluate
ẋk+1, as shown by Equation (12); they also affect the evaluation of xk+1 through term ˆ̇xk. This may
give rise to the accumulation of errors and the steady growth of some elements in term ẋ, which
may eventually cause numerical inaccuracies or even the failure of the simulation. This problem can
be dealt with in a number of ways. In some problems, the errors in the derivative-level constraint
equations do not affect noticeably the accuracy of the solution, and can be left untreated. When this
is not the case, a possible solution to avoid incurring into these constraint violations is to explicitly
include the derivative-level algebraic constraints in Equation (4) in the system of equations to be solved,
Equation (6). This presents the disadvantage of making the tangent matrix in Equations (11) and (14)
no longer square. An alternative solution consists of the projection of the system derivatives ẋ onto
the plane tangent to the manifold defined by the algebraic constraints and the ordinary differential
equations. The method is similar to the one described in [26,27]. The system derivatives ẋ∗ obtained
upon convergence of the DAE solver in Equations (7) and (8) do not necessarily satisfy Equation (4).
The projection step aims to find the closest set of derivatives ẋ that is compatible with these constraints
via the following minimization problem:
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min
1
2
(ẋ − ẋ∗)T I (ẋ − ẋ∗) ,

subjected to
(

Âẋ + b̂
)
= 0. (15)

The solution of this problem using a Lagrangian approach leads to the following projection formula(
I + ÂTαÂ

)
ẋ = ẋ∗ − ÂTαb̂ − ÂTσ (16)

where α is a scalar penalty factor and σ is a set of Lagrange multipliers, whose value can initially be
set to zero. The leading matrix in Equation (16) is symmetric and positive semi-definite. The projection
step can be performed iteratively via the update of the Lagrange multipliers

σi+1 = σi + α
(

Âẋ + b̂
)i

(17)

and the subsequent re-evaluation of Equation (16).

2.3. Implementation

The formulations in this section were implemented using C++ to build an in-house simulation
software tool. The Eigen template library (http://eigen.tuxfamily.org) was used to provide the
fundamental data structures and algebraic routines; sparse matrices with compressed-column storage
(CCS) were used as containers. KLU [28], a direct solver for square non-symmetric matrices, especially
conceived for circuit simulation problems, was used for the sparse linear systems in Equations (5), (7),
and (16). This solver has been shown to be very efficient in the solution of small- and moderate-size
problems, whose leading matrix is very sparse, i.e., less than 20% of its elements are structural
non-zeros [29]. All the C++ classes and methods to manage information about circuit topology and
properties, the numerical solution methods described in this section, and the control of code execution
were developed and implemented by the authors.

Most of the matrices required by the methods in this section have a constant sparsity pattern.
This makes it possible to preprocess and reuse the factorizations of the leading matrices required
to solve Equations (5), (7), and (16). This is also the case of the symmetric rank-k update used to
evaluate the leading matrix I + ÂTαA in Equation (16) [29]. Moreover, some circuit components
such as constant-value capacitors and inductors lead to Φx and A matrices that do not need to be
re-evaluated at runtime. Unless otherwise specified, this fact was taken into consideration to speed-up
code execution.

3. Benchmark Problems

The numerical methods described in Section 2 were evaluated by means of four test problems,
which are put forward as benchmarks to evaluate the efficiency and accuracy of time–domain
circuit simulations.

3.1. RLC Circuit

The first example is an RLC circuit with constant coefficients and relatively slow dynamics, shown
in Figure 1. As is the case with the rest of benchmark examples in this paper, this problem is intended
to be easy to replicate and to implement, while providing relevant information about the performance
of the methods under study.

http://eigen.tuxfamily.org
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1

2
3

GND

E1

IE1

R1

IR1

C1

IC1

L1

IL1

C2

IC2

Figure 1. Diagram of an RLC circuit with constant coefficients.

Source E1 is defined by the sinusoidal function of time E1 (t) = 100 sin (10π t) V. The passive
elements in the circuit have constant values R1 = 10 Ω, L1 = 100 mH, C1 = 400 mF, and C2 = 200 mF.
The benchmark simulation consists of a 10-s integration of the system dynamics, for which the initial
values of the current through the inductor, IL10 , and the voltage of the capacitors, VC10 and VC20 , are
set to zero.

In this circuit, capacitors C1 and C2 connect nodes 1 and 3 in parallel; their voltages will be related
by the two following differential equations:

C1V̇3 − C1V̇1 − IC1 = 0 (18)

C2V̇3 − C2V̇1 − IC2 = 0 (19)

which are linearly dependent in terms of the system derivatives ẋ. This means that matrix A in
Equation (3) is row-rank deficient, which may cause some solvers to fail during the solution of the
system dynamics. For instance, the leading matrix in Equation (5) becomes singular, thus preventing
most conventional linear solvers from finding a solution for the system derivatives.

3.2. Scalable RLC Circuit

The second example is a scalable RLC circuit with constant coefficients. The number of system
variables can be increased by adding new loops to the circuit, as shown in Figure 2.

1

2
3

4

2N + 1

2N + 2

GND

E1

IE1

R1

IR1

L1

ILC1

C1

RN

IRN

LN

ILCN

CN

Figure 2. Diagram of a scalable RLC circuit with constant coefficients.

Source E1 is the sinusoidal function of time E1 (t) = 100 sin (10π t) V. The passive elements in
the circuit have the same values in every loop, Ri = 10 Ω, Li = 100 mH and Ci = 100 mF, where
i = 1 . . . N is the loop number. The benchmark simulation consists of a 1-s integration of the system
dynamics, starting from an initial state in which the currents through the inductors, ILi0 , and the
voltage of the capacitors, VCi0 , are set to zero.
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This circuit provides a way to test the computational performance of a method as a function of
the problem size, which can be adjusted by selecting a number of loops N. In this work, problems with
up to N = 5000 loops were selected for simulation.

3.3. Full Wave Rectifier

The third example is a model of a full wave rectifier, shown in Figure 3. Source E1 is defined by
the sinusoidal function E1 (t) = 100 sin (10π t) V. The passive elements in the circuit have constant
values R1 = 10 Ω, and L1 = 100 mH.

1

2

3 4
5

GND

E1

IE1 ID1

ID2

R1

IRL

L1

ID3

ID4

D1 D2

D3 D4

Figure 3. Model of a full wave rectifier.

The diodes in this circuit are described using Shockley’s model, shown in Figure 4, and defined
by the constitutive equation [30]

I − Io

(
e∆V/(nVt) − 1

)
= 0 (20)

where ∆V = Va − Vc is the voltage difference between the anode and the cathode of the diode, Io = 1
fA is the reverse bias saturation current, n = 1.5 is the ideality factor, and Vt is the thermal voltage
defined by

Vt =
k̄ T
q

(21)

where q is the electron charge, T is the temperature, and k̄ is the Boltzmann constant. The series resistor
in Figure 4 has a value of Rs = 1 mΩ. The benchmark test for this problem consists of a 1-s simulation
of the circuit dynamics in which the initial value of the current that flows through the inductor is
IRL0 = 0.

This problem is an example of nonlinear electronic circuit with fast changes in the system state
during the transitions between the forward and reverse regions of the diodes.

Va

I Rs

Vc

Figure 4. Diode model used in the full wave rectifier.

3.4. Synchronous Motor Thermal Equivalent Circuit

The fourth benchmark example is a thermal equivalent circuit to evaluate temperatures and heat
flows in a permanent-magnet synchronous motor (PMSM), shown in Figure 5.
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Qcopper

Qbearing2

Qbearing1

Figure 5. Thermal model of a permanent-magnet synchronous motor.

Thermal equivalent circuits describe the heat transfer, thermal losses, and thermal inertia
properties of a physical system by means of lumped components comparable to those of an electric
circuit. Similar models can be found in the literature, e.g., [31,32]. The one presented here aims at
balancing the complexity of accurately describing the thermal phenomena that occur in a PMSM
and the compactness desirable in a benchmark problem. Each node in the circuit corresponds to a
representative point in the physical system and has a certain temperature T associated with it. Heat
flows Q between nodes play a role similar to currents in an electric circuit. Thermal conductivity
and convection are represented with thermal resistors. Thermal inertia is modelled with capacitors,
and heat generation such as Joule effect losses is represented with current sources. The values of
thermal resistances, capacitances, and heat sources may be variable if these properties vary as a result
of changes in the system temperatures or operation conditions. This is often the case with convective
resistors and Joule effect sources.

In the thermal model of the PMSM in Figure 5, all resistances, capacitances, and heat sources
are constant, with the exception of the resistance of the air gap between the rotor and the stator
(Rairgap). These parameters are shown in Table 2. The air gap resistance is calculated as a function of
the Nusselt number, as detailed in the Appendix A. The benchmark simulation consists of a 5000-s
long integration of the system dynamics. The motor is assumed to operate at a constant angular
speed ω = 1570 rad/s. The temperatures of the cooling fluid and the environment are constant,
Twater = 320 K and Tenv = 300 K. Initially, the temperature difference between the two nodes connected
by a capacitor is zero, which means that the system is at ambient temperature.

This system showcases the characteristics of most thermal equivalent circuits, namely very slow
dynamics and physical properties of some components that may vary as the simulation progresses.
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Table 2. Parameters of the thermal model of the synchronous motor.

Resistor Value Capacitor Value Loss Value
[K/W] [J/K] [W]

Raxis1 1 Caxis 2000 Qrotor 150
Raxis2 1 Crotor 5000 Qcopper 2000

Rinnerrotor 0.025 Ccopper 2000 Qtooth 200
Routerrotor 0.015 Cstator 1500 Qbearing1 50

Rtooth1 0.025 Chousing 3000 Qbearing2 50
Rtang 0.01 Cplate1 300

Rtooth2 0.01 Cplate2 300
Rcopper 0.001 Cbearing1 500
Rwire 0.05 Cbearing2 500
Ryoke 0.0025

Rhousing1 0.25
Rhousing2 0.25

Rwater 0.001
Rplate1 0.5
Rplate2 0.5

Rbearing1 3
Rhousing2 3

3.5. Reference Solutions

Reference solutions are a key component in benchmark problems [24], as they are required to
verify the results provided by a certain solver tool, and to compare two or more solutions in terms
of accuracy or performance. Analytical closed-form expressions can be obtained for some problems
and used as reference solutions. Often, however, these are not available; in such cases, solutions
at convergence can be used for the same purpose. These can be found by decreasing the integration
tolerances and step-size with which the benchmark problem is solved, until the difference between the
obtained results remains below a defined threshold. Solutions at convergence should be obtained with
a minimum of two different methods.

In this work, reference solutions were obtained by convergence of two of the DAE solvers
described in Section 2.2, namely the ones that used as integrators the trapezoidal rule and the BDF3
formula, decreasing the integration step-size down to 1 µs. Both methods delivered almost identical
solutions in all the problems, with a maximum difference in the obtained values of the system variables
x below 2 · 10−8 A or V in the electric and electronic circuits. For the thermal circuit in Section 3.4,
the differences were kept below 10−8 K for the temperatures T, and below 4 · 10−3 W for the heat
flows Q.

For each benchmark problem, a few representative variables (monitored variables) among the n
contained in term x were selected to enable the fast and simple comparison of the simulation results.
This set of chosen variables should describe an important behavior aspect of the circuit under study,
or critical operational values that need to be kept under control. The total number of variables,
algebraic, and differential constraint equations of each benchmark problem is summarized in Table 3.

Table 3. Number of variables and constraints of proposed benchmark problems.

Problem Variables Algebraic ctr. Differential ctr.
n m p

RLC 8 5 3
Sc. RLC 3 + 5N 3 + 3N 2N
Rectifier 20 19 1
Thermal 49 40 9
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3.5.1. RLC Circuit

The monitored variables in the RLC circuit in Section 3.1 are the voltage at node 3, V3, and the
current through the inductor, IL1. The reference solutions for these values are shown in Figure 6.
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(a) Voltage in node 3, V3.
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(b) Current through coil, IL1.
Figure 6. Reference solutions for RLC circuit.

3.5.2. Scalable RLC Circuit

For the scalable RLC circuit in Section 3.2, the monitored variables are the voltage at node 2N + 2
and the current through the last branch in the system, ILCN . The time-history of these two variables is
shown in Figure 7 for N = 2 loops.
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(b) Current through the coil in the last loop, ILCN .
Figure 7. Reference solutions for the scalable RLC circuit, with N = 2.

3.5.3. Full Wave Rectifier

For the full wave rectifier in Section 3.3, the monitored variables are the voltage difference between
the anode and the cathode of diode 1, V2 − V3, and the current through the resistor and the inductance,
IRL, shown in Figure 8.
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(b) Current through the resistor, IRL.
Figure 8. Reference solutions for the full wave rectifier.

3.5.4. Synchronous Motor

For the thermal circuit of the PMSM, the monitored variables are the temperature of the permanent
magnets, T2, and the heat flow from the housing to the refrigerant, Qwater, which are shown in Figure 9.
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(b) Heat flow to the cooling water, Qwater.
Figure 9. Reference solutions for the synchronous motor.

3.6. Error Measurement and Performance Evaluation

A main goal of benchmark testing is to determine the performance of a given computational
method in the solution of representative problems. For this performance evaluation to be meaningful,
comparisons between different methods have to be carried out for the same level of accuracy in
the obtained results. This accuracy is measured with respect to the reference solutions discussed in
Section 3.5; doing this requires a standard way to evaluate the error of a solution, which is here adapted
from [23].

If, for a given point in time tp, yξ

(
tp
)

is the solution delivered by a method under study for a
variable ξ, and yref

ξ

(
tp
)

is the reference solution for the same variable, then the error in ξ at time tp can
be defined as

εξ

(
tp
)
= yξ

(
tp
)
− yref

ξ

(
tp
)

. (22)
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A number ns of sampling points equally spaced in time is defined for each benchmark problem.
The total error in the simulation for variable ξ is the aggregate

ε̂ξ =

√
1
ns

ns

∑
i=1

(
εξ (ti)

)2. (23)

The number of sampling points ns for each problem is shown in Table 4.

Table 4. Simulation length and required number of equally spaced sample points for each
benchmark problem.

Circuit Simulation Time [s] Sample Points ns

RLC 10 1000
Sc. RLC 1 100
Rectifier 1 1000
Thermal 5000 5000

Two accuracy levels, “low” and “high”, were defined for the simulation of the benchmark
examples in this section. These are at least two orders of magnitude larger than the error margins
of the reference solutions, pointed out in Section 3.5. Using two accuracy levels helps to determine
whether the efficiency properties of a given solution method hold when the precision requirements are
made more stringent. A simulation is considered acceptable if the error obtained after the numerical
integration process, evaluated with Equation (23), is below the thresholds shown in Table 5 for every
monitored variable.

Table 5. Acceptable errors in the monitored variables.

Circuit Precision Error V or T Error I or Q

RLC / Sc. RLC Low 1 mV 1 mA
High 10 µV 10 µA

Rectifier Low 1 mV 1 mA
High 10 µV 10 µA

Thermal Low 0.1 K 1 W
High 0.01 K 0.1 W

The comparison of the computational efficiency of two or more simulation methods must be
carried out for the same level of accuracy. This criterion was observed in the numerical experiments
reported in Section 4.

4. Numerical Experiments

The benchmark problems presented in Section 3 were used to compare the performance and
features of the formulations in Section 2. This comparison was carried out taking into consideration
the particular requirements of RT simulation. The time invested by the numerical methods in the
integration of a time-step must be not only as short as possible, but also predictable. This means that
the number of iterations required for the convergence of the Newton iteration to solve Equation (6)
must be limited. In principle, the number of iterations could be decreased for those steps that are
computationally less challenging, e.g., the intervals between switching points in the rectifier circuit in
Section 3.3. This would result in overall shorter computation times. However, most RT applications
require that every integration step is solved while meeting RT deadlines. Accordingly, in this work,
the number of solver iterations was set to a fixed value, equal for all the integration steps in every
method and problem.
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The methods in Section 2 were compared in terms of the computation time that was needed
to complete the simulation of the benchmark examples within the precision requirements specified
in Table 5. Three parameters were adjusted for each method in order to determine its optimal
performance in each case: the integration step-size h, the number of solver iterations per time step, γ,
and the integrator tolerance, i.e., its maximum admissible error during iteration, ε. Two cases were
distinguished when the trapezoidal rule was used as integrator: one in which one projection step was
performed upon convergence of the Newton iteration, reported as TR in the following, and another
one in which this projection was omitted, labelled TRnP. This makes it possible to determine the impact
of the projection step on computation times.

4.1. Simulation Environments

In this research, the use of the benchmark problems and solver implementations was tested under
three different computing platforms, namely

• a conventional desktop PC,
• a Beaglebone Black, and
• a Raspberry Pi 4.

The last two environments are ARM-based single-board computers. Testing the benchmark
framework and the solver implementations under different software and hardware platforms shows
that their application is not restricted to a particular development environment. Moreover, it also
serves as a test of the ability of ARM platforms to take on the simulation of particular components
in RT computation environments. The features of each simulation environment are summarized in
Table 6.

Table 6. Simulation platform features.

Platform CPU Clock Freq. Cores/ RAM L1 Cache L2 Cache L3 Cache OS
[GHz] Threads [GB] [kB] [MB] [MB]

PC Intel i7-8700K 3.7 6/12 8 192/192 1.5 12 Win10
RPi4 ARM A-72 1.5 4/4 4 48/32 1 0 Raspbian 4.19.57
BBB ARM A-8 1.0 1/1 0.5 32/32 0.25 0 Debian 9.9 IoT

Visual Studio 2017 Community was used as compiler under Windows, while gcc-6.3.1 was
selected to build the Linux executables for the ARM architectures.

4.2. Numerical Results

The set of solver parameters, ε, h, and γ, was adjusted for each solver and test problem to find
out the configuration that delivered the best performance. It was found that decreasing the maximum
admissible norm of the residual ε below 10−3 did not result in significant accuracy improvements in
any of the examples, and so it was fixed to this value in all the tests. It must be noted that k̂-order
BDF methods need a special initialization during their first k̂ steps. These methods use the previous
k̂ values of the variables x to take an integration step; during initialization, these are not available,
and so a modified version of the algorithm must be used. In this work, the trapezoidal rule was used
as a replacement method for these initial steps. On the other hand, the accuracy requirements for low-
and high-precision solutions displayed in Table 5 were enforced in all cases.

4.2.1. RLC Circuit

The direct ODE integration approach in Section 2.1 is unable to perform the simulation of the
RLC circuit in Figure 1. Capacitors C1 and C2 connect nodes 1 and 3 in parallel, making the leading
matrix Â in Equation (3) rank deficient. Conversely, all the DAE solvers in Section 2.2 were able to
complete the integration while attaining the required precision.
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Tables 7 and 8 show the selected DAE integrator configurations (step-size h and number of
iterations γ) that resulted in the most efficient solution of the RLC circuit simulation while meeting
the low and high precision requirements, respectively. As expected, the errors in the monitored
variables scale linearly with the integration step-size h for each method. As shown in Table 8, when
BDF integrators are used, decreasing the step-size to achieve high precision makes it possible to reach
the desired error levels with a single iteration of the solver. The trapezoidal rule, on the other hand,
still required two iterations with the same step-size h = 0.25 ms.

Tables 7 and 8 must be interpreted in the light of the results contained in Table 9, which shows the
times elapsed in the simulation of the RLC system with each DAE integrator, with the configurations
defined in Tables 7 and 8. Table 9 shows the efficiency delivered by each method for the two accuracy
levels, namely high and low, in the solution of the test problem. With the exception of BDF1, all
methods would be able to deliver RT performance in the three computing platforms described in
Table 6, both for low and high precision. Computations on the BeagleBone Black and the Raspberry
Pi 4 were about 30 and 5 times slower than on the PC, respectively. Moreover, results show that
the projection stage after convergence of the trapezoidal rule required as much computation time
as the convergence of the Newton–Raphson iteration of the main solver. BDF2 and BDF3 delivered
the best efficiency in this test problem. It must be mentioned that the tangent in Equation (7) is a
constant matrix for this example. This makes it possible to evaluate and factorize it during preprocess;
accordingly, only the back-substitution required for the solution of Equation (7) needs to be performed
during runtime.

Table 7. RLC circuit: Low-precision configuration of the DAE integration methods.

Method h γ Error V Error I
[ms] [mV] [mA]

TR 2.5 2 0.25 0.38
BDF1 2.5 · 10−2 1 0.30 0.63
BDF2 2.5 2 0.84 0.76
BDF3 2.5 2 0.14 0.33

Table 8. RLC circuit: High-precision configuration of the DAE integration methods.

Method h γ Error V Error I
[ms] [µV] [µA]

TR 0.25 2 2.5 3.8
BDF1 2.5 · 10−4 1 3.0 6.3
BDF2 0.25 1 8.4 7.6
BDF3 0.25 1 1.3 3.3

Table 9. Elapsed times in the simulation of the RLC circuit.

Method Prec. Elapsed Time Elapsed Time Elapsed Time
PC [ms] BBB [ms] RPi [ms]

TR

Low

6.5 176.8 50.6
TRnP 3.0 92.6 34.85
BDF1 190.6 4988.0 815.0
BDF2 3.2 108.0 38.5
BDF3 3.4 112.8 39.6

TR

High

69.4 1708.1 307.0
TRnP 32.3 856.7 162.3
BDF1 16,764.9 496,852.0 77,287.4
BDF2 23.3 587.8 128.6
BDF3 24.8 636.3 133.6
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4.2.2. Scalable RLC Circuit

The scalable RLC circuit in Figure 2 was solved using the DAE integration methods in Section 2.2.
The integration step-sizes h and number of iterations required by each solver are shown in Tables 10
and 11 for low and high precision, respectively.

Table 10. Scalable RLC circuit (N = 2 loops): Low-precision configuration of the DAE
integration methods.

Method h γ Error V Error I
[ms] [mV] [mA]

TR 2.5 2 0.41 0.94
BDF1 2.5 · 10−2 1 0.15 0.65
BDF2 1 2 0.14 0.60
BDF3 2.5 2 0.38 0.54

Table 11. Scalable RLC circuit (N = 2 loops): High-precision configuration of the DAE
integration methods.

Method h γ Error V Error I
[ms] [µV] [µA]

TR 0.25 2 4.0 9.6
BDF1 2.5 · 10−4 1 1.5 6.5
BDF2 0.1 2 1.4 5.9
BDF3 0.25 2 3.7 2.0

Tables 10 and 11 were obtained for a circuit with N = 2 loops. However, it was verified that these
configurations were also able to keep simulation errors with respect to the reference solution below
the admissible threshold for circuits with up to N = 5000 loops. Accordingly, these configurations
were used for all the numerical experiments reported in this subsection.

Table 12 shows the times elapsed by each method in the solution of the RLC circuit with N = 2
loops. As expected, they feature similar trends to those obtained in Section 4.2.1 with the simple RLC
circuit. The tangent matrix in Equation (7) is constant in this problem as well, and so the times in
Table 12 do not include its evaluation and factorization.

Table 12. Elapsed times in the simulation of the scalable RLC circuit (N = 2 loops).

Method Prec. Elapsed Time Elapsed Time Elapsed Time
PC [ms] BBB [ms] RPi [ms]

TR

Low

0.9 32.9 10.4
TRnP 0.4 21.5 4.6
BDF1 24.0 713.3 153.7
BDF2 1.1 40.0 12.4
BDF3 0.5 21.7 5.3

TR

High

9.8 236.6 82.8
TRnP 3.9 116.1 37.6
BDF1 2191.3 65,542.3 9977.6
BDF2 10.2 337.3 74.2
BDF3 4.3 143.6 39.6

The simulation of this RLC circuit was repeated varying the number of loops (N = 2, 100, 250,
500, 1000, 2000, 5000) to gain insight into the effect of system size on computational efficiency. These
numerical experiments were conducted for both low and high precision. Moreover, an additional set
of tests was performed forcing the simulation software to ignore the fact that the tangent matrix is
constant and to perform its evaluation and factorization in every solver iteration. Figures 10 and 11
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display the elapsed times delivered by each solution approach in the PC simulation platform, for low
and high precision, respectively. Elapsed times for the trapezoidal rule (TR) include carrying out the
velocity projections. Results for BDF1 were omitted in Figure 11 because the computation times that it
required exceeded considerably the ones delivered by the other methods.
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Figure 10. Scalable RLC circuit: Simulation time as a function of the number of loops (N) for low
precision. Simulations with a constant tangent matrix are represented with solid lines; dashed lines
mean refactorization of the tangent matrix in each solver iteration.
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Figure 11. Scalable RLC circuit: Simulation time as a function of the number of loops (N) for high
precision. Simulations with a constant tangent matrix are represented with solid lines; dashed lines
mean refactorization of the tangent matrix in each solver iteration.

Figures 10 and 11 show the computational overhead due to the evaluation and factorization of
the tangent matrix. They also show that the increase of elapsed time with the number of loops N (and,
as a consequence, with the number of variables n) is approximately linear. This is the result of using
sparse matrix implementations and solvers, and agrees with previous results in different simulation
domains [29].
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The maximum theoretically achievable system sizes that could be simulated while fulfilling RT
execution requirements are shown in Table 13, for the PC simulation environment. BDF1 experienced
convergence issues for large systems in the high-precision simulation, and so results for this method
are omitted in this case.

Table 13. Scalable RLC circuit: Maximum system size compatible with RT execution on the PC
simulation environment.

Method Precision Loops System Size
[N] [n]

TR

Low

2053 10,268
BDF1 48 243
BDF2 1790 8953
BDF3 3661 18,308

TR

High

248 1243
BDF1 - -
BDF2 186 933
BDF3 447 2238

Results in Table 13 include the evaluation and factorization of the tangent matrix. They provide
an orientation regarding the maximum system size that the tested methods would be able to handle in
a RT simulation environment with the computing power of the PC in Table 6.

4.2.3. Full Wave Rectifier

The full wave rectifier was solved using the DAE integration methods. The integration step-sizes
h and number of iterations required by each integrator are shown in Tables 14 and 15 for low and high
precision, respectively.

Table 14. Full wave rectifier: Low-precision configuration of DAE integration methods.

Method h γ Error V Error I
[ms] [mV] [mA]

TR 0.5 16 0.17 0.29
BDF1 0.01 3 0.47 0.03
BDF2 0.25 7 0.18 0.19
BDF3 0.1 9 4.0 · 10−3 7.9 · 10−3

Table 15. Full wave rectifier: High-precision configuration of DAE integration methods.

Method h γ Error V Error I
[ms] [µV] [µA]

TR 0.05 6 2.0 1.8
BDF1 10−4 1 4.7 0.3
BDF2 0.05 9 7.9 6.5
BDF3 0.1 9 4.0 7.9

Table 16 contains the elapsed times for each method and error criterion.
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Table 16. Elapsed times in the simulation of the full wave rectifier circuit.

Method Prec. Elapsed Time Elapsed Time Elapsed Time
PC [ms] BBB [ms] RPi [ms]

TR

Low

47.0 1103.8 223.5
TRnP 42.7 984.0 220.3
BDF1 391.4 9821.6 1719.3
BDF2 37.8 924.1 223.5
BDF3 125.1 3025.8 574.2

TR

High

206.3 4817.1 913.8
TRnP 161.2 3805.3 724.9
BDF1 14,009.5 141,564.0 61,429.0
BDF2 241.6 5897.7 1060.0
BDF3 125.1 3025.8 574.2

Unlike the RLC examples, the rectifier is a nonlinear problem with relatively fast changes in its
dynamics. Each diode in this system can be in a reverse or forward state; iterative solvers may run into
numerical issues during the transitions between them. Moreover, the tangent matrix of the system
is not constant and has to be evaluated and factorized at every solver iteration. This explains the
comparatively longer computation times and higher number of iterations required for convergence in
this example. The abruptly changing dynamics of the rectifier results in the need to use integration
steps smaller than h = 0.1 ms with the BDF3 solver, even for low precision requirements. Increasing the
step-size beyond this limit causes the errors with respect to the reference solution to rise quickly and,
eventually, leads to the failure of the simulation. This fact points towards the difficulty that high-order
multi-step integrators experience to keep the simulation of discontinuous systems stable. When low
precision results are acceptable, TR and BDF2 are preferable in terms of efficiency, as confirmed by the
results in Table 16.

The full wave rectifier example can also be used to highlight the importance of keeping the
derivative-level violation of algebraic constraints under control when using certain integrators.
Figure 12 shows the derivative with respect to time of the voltage at node 5, V̇5, obtained with
three different integration approaches, namely BDF3 and the trapezoidal rule (TR) with and without
the projection step in Equation (16). As expected, BDF3 and the projected TR deliver the same results.
The uncorrected TR, however, delivers a magnitude of V̇5 that consistently increases with time. It
must be stressed that the three simulations used to obtain Figure 12 satisfied the algebraic constraints
Φ = 0 and the differential equations Aẋ+ b = 0, explicitly imposed by Equation (8). Accordingly, they
obtain very similar values of the system variables x, within the acceptable values in Table 5. This is not
the case with the derivatives with respect to time Φ̇ = Φxẋ + Φt = 0. The TR integration formula is
compatible with the accumulation of derivative-level errors, as long as the obtained values of ẋ satisfy
the differential equations of the circuit. The BDF3 method suffers from the same limitation, but it does
not reuse the derivatives to evaluate future values of ẋ.

As shown in Figures 12 and 13, the projection step removes the accumulation of derivative-level
constraint violations and prevents ẋ from reaching excessive values that could eventually lead to
numerical errors in the computations or even to the simulation failure by overflow.

Figure 14 shows the distribution of computational workload between the different tasks during
a time-step for the full wave rectifier, solved with low precision requirements. The trapezoidal rule
was used as integrator. Results are compared to those delivered by the scalable RLC circuit with
N = 4 loops, which is similar to the rectifier in terms of system size. The solver was forced to
repeat the evaluation and factorization of the tangent matrix in each solver iteration in both examples.
The integration step can be divided into the following tasks:

• the update of the dynamic terms Φ, A, b, and their derivatives;
• the evaluation of the residual f and the tangent matrix df/dx in Equation (7);
• the factorization and backsubstitution of the linear solver in Equation (7);
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• the projections in Equation (16); and
• other operations, such as the update of variables and regulation of code execution.

The profiling results confirmed that the computational effort of the projection step amounts to
two or three iterations of the main system solver for the studied systems. For circuits that require a
considerable number of solver iterations, such as the rectifier, the overhead of the projection step is
less relevant in relative terms than it would be in RLC systems, where convergence is achieved with
one or two iterations.
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Figure 12. Full wave rectifier: Derivative with respect to time of the voltage at node 5, V̇5.
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Figure 14. Percentage of total runtime elapsed by the TR method in each stage of the time-step.

4.2.4. Synchronous Motor

The thermal equivalent circuit that corresponds to the synchronous motor was also solved using
the DAE integration methods. The step-sizes h and number of iterations per step are shown in Tables 17
and 18 for low and high precision, respectively.

Table 17. Synchronous motor: Low-precision configuration of the DAE integration methods.

Method h γ Error T Error Q
[ms] [K] [W]

TR 500 2 9.36 · 10−7 0.612
BDF1 25 2 1.49 · 10−4 0.839
BDF2 250 2 9.01 · 10−7 0.523
BDF3 500 2 3.12 · 10−7 0.388

Table 18. Synchronous motor: High-precision configuration of the DAE integration methods.

Method h γ Error T Error Q
[ms] [K] [W]

TR 100 2 6.03 · 10−8 0.024
BDF1 2.5 2 1.49 · 10−5 0.085
BDF2 100 2 1.56 · 10−7 0.092
BDF3 250 2 6.54 · 10−8 0.060

Tables 17 and 18 show that the order of magnitude of the error in heat flows is much larger than
that of the error in temperatures; the accuracy in the calculation of the heat flows becomes thus more
critical to determine if a simulation is correct or not.

Table 19 contains the elapsed times for every configuration and integration method. All methods
are well below the real-time limit in all cases, regardless of the selected computation environment.

Besides having slower dynamics and time-varying properties, thermal equivalent circuits differ
from their conventional RC counterparts in that they are often subjected to excitations that are not
periodic. The system behavior during transients is a relevant part of the dynamics and needs to be
determined accurately in most applications. The initialization method plays an important role in
the evaluation of the first transient in the simulation; unsuitable initialization approaches result in
incorrect predictions during the first integration steps that affect negatively the simulation accuracy
long after the initialization phase is complete.
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Table 19. Elapsed times in the simulation of the thermal circuit of the synchronous motor.

Method Prec. Elapsed Time Elapsed Time Elapsed Time
PC [s] BBB [s] RPi [s]

TR

Low

0.12 2.81 0.59
TRnP 0.06 1.28 0.27
BDF1 1.12 26.29 5.79
BDF2 0.12 2.86 0.58
BDF3 0.06 1.60 0.32

TR

High

0.55 14.03 2.82
TRnP 0.27 6.34 1.40
BDF1 10.88 264.15 56.08
BDF2 0.29 7.17 1.49
BDF3 0.12 3.20 0.64

Figure 15 shows that the temperature T9 delivered by the BDF3 integrator using the TR as
initialization routine (BDF3) matches the reference solution, even with an integration step-size h = 1 s.
On the other hand, if the initialization is not properly performed, for instance assuming a constant
value of the temperature before t = 0 (BDF3∗), the effect of initialization errors can be appreciated
much later in the simulation, rendering it visibly inaccurate. This behavior was not observed in the
electric and electronic circuits in Sections 3.1–3.3, in which errors derived from poor initialization
approaches were quickly corrected upon completion of the initial transient.
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Figure 15. Synchronous motor: First, 20 s of the time history of the temperature at node 9, T9, obtained
with h = 1 s.

5. Conclusions

This paper puts forward a methodology to evaluate the performance of time–domain simulation
methods for electric, electronic, and thermal equivalent circuits, oriented towards the determination
of their suitability to be used in real-time environments. Four benchmark problems with their
corresponding reference solutions were defined, together with error metrics and accuracy criteria to
enable the comparison of different methods. These examples are easy to reproduce and representative
of significant problem types in circuit simulation.

The proposed methodology was used to assess the capability of ODE and DAE solver methods
to deliver RT performance in three different hardware and software environments, including ARM
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boards with limited computing capabilities. The tested methods included transforming the circuit
equations into a system of ODEs prior to their numerical integration, and Newton–Raphson iterative
solvers for nonlinear systems of DAEs. Backward difference methods and the trapezoidal rule were
used as integration formulas.

The numerical experiments performed in this study demonstrated that the benchmarking
methodology and the examples can be used to obtain relevant information regarding the performance
and features of a given solution method. Results made it possible to discard the direct ODE integration
as a generally valid approach, at least in the form presented in the methods section in this paper. Among
the DAE solver methods, the first-order BDF integrator, BDF1, consistently showed low performance,
requiring very small integration step-sizes, down to three orders of magnitude smaller than those
required by the other formulas, to attain the accuracy requirements defined in the benchmark. This
rendered it unsuitable except for the simulation of the simplest test cases.

Implementations based on second and third order BDF formulas and the trapezoidal rule delivered
comparable performances. For systems with relatively slow dynamics, BDF3 always delivered the best
efficiency. TR and BDF2, on the other hand, could be used to obtain faster computations in circuits
with nonsmooth behavior when the level of accuracy can be relaxed. A proper initialization of BDF
methods is required to obtain accurate simulation results, especially in circuits in which the excitation
is not periodic.

Regarding the RT ability of the tested methods, the benchmark framework can be used to provide
orientations regarding the scope of applicability of a method in a certain computing platform. With
the PC used in this study, BDF2, BDF3, and TR were able to solve all the problems in the benchmark
below the RT mark. For RLC circuits, systems of up to a few thousand variables, depending on the
requested precision, could be integrated below this limit. Results also show that ARM single-board
computers can also be used to simulate most problems in the benchmark set. However, more factors
than computational efficiency determine the usability of a method in RT computing, such as system
latency and communication delays. The results from benchmarking can be used to rule out inefficient
or inadequate approaches, and to choose the most effective options when dealing with the solution of
a given problem.

Besides conclusions about efficiency, the simulation of the benchmark problems led to the
identification of issues with the evaluation of the derivatives with respect to time of the system variables.
Integration methods that determine the derivatives in future steps using previously computed values
of the same derivatives need to enforce the satisfaction of the derivatives with respect to time of the
algebraic equations of the circuit. Failure to do so may result in the accumulation of errors in the system
derivatives, which can eventually lead to numerical issues in problem solutions. The trapezoidal rule
is one of these methods; a projection step was introduced in this paper to address this need of the
integrator. It was observed that the computational requirements of the projection step are comparable
to those of two or three iterations of the DAE solver.
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Abbreviations

The following abbreviations are used in this manuscript:

BDF Backward Differentiation Formula
CCS Column-Compressed Storage
DAE Differential-Algebraic Equation
HiL Hardware-in-the-Loop
ODE Ordinary Differential Equation
PMSM Permanent-Magnet Synchronous Motor
RT Real Time
SITL System-in-the-Loop
TR Trapezoidal Rule

Appendix A. Airgap Resistor

The value of the air gap resistance in the PMSM in Section 3.4 is obtained from the relation

Rairgap =
1

ĥS
(A1)

where ĥ is the convection coefficient at the airgap and S is the area of the common surface between
stator and rotor. The convection coefficient is a function of the Nusselt number, Nu,

Nu =
ĥka

2e
(A2)

where ka is the air conductivity and e = 0.82 mm is the air gap thickness. The Nusselt number can be
evaluated using the correlation [31]

Nu = 2 if Tam < 1700

Nu = 0.128 T0.367
am if 1700 < Tam < 104

Nu = 0.409 T0.241
am if Tam > 104

. (A3)

Term Tam is defined by

Tam =
Ta

Fg
(A4)

Ta =
ω2 Rm e3

ν2 (A5)

Fg =
π4

P
1

1697
(

1 − e
2Rm

)2 (A6)

P = 0.0571 (1 − 0.625x) +
0.00056

1 − 0.625x
(A7)

x =
e/Rm

1 − e/2Rm
(A8)

where ω is the angular speed of the motor, Rm = 72.61 mm is the mean radius of the rotor and the
stator at the air gap and ν is the kinematic viscosity of the air. The physical parameters of the air, such
as viscosity or conductivity, can be found in [33].
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