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Introduction: Multiple different mathematical models have been developed to
represent muscle force, to represent multiple muscles in the musculoskeletal
system, and to represent muscle fatigue. However, incorporating these different
models together to describe the behavior of a high-intensity exercise has not been
well described.

Methods: In this work, we adapted the three-compartment controller (3CCr)
muscle fatigue model to be implemented with an inverse-dynamics based
optimization algorithm for the muscle recruitment problem for 7 elbow
muscles to model a benchmark case: elbow flexion/extension moments. We
highlight the difficulties in achieving an accurate subject-specific approach for this
multi-level modeling problem, considering different muscular models, compared
with experimental measurements. Both an isometric effort and a dynamic bicep
curl were considered, wheremuscle activity and resting periods were simulated to
obtain the fatigue behavior. Muscle parameter correction, scaling and calibration
are addressed in this study. Moreover, fiber-type recruitment hierarchy in force
generation was added to the optimization problem, thus offering an additional
novel muscle modeling criterion.

Results: It was observed that: i) the results were most accurate for the static case;
ii) insufficient torque was predicted by the model at some time points for the
dynamic case, which benefitted from a more precise calibration of muscle
parameters; iii) modeling the effects of muscular potentiation may be
important; and iv) for this multilevel model approach, the 3CCr model had to
be modified to avoid reaching situations of unrealistic constant fatigue in high
intensity exercise-resting cycles.

Discussion: All the methods yield reasonable estimations, but the complexity of
obtaining accurate subject-specific humanmodels is highlighted in this study. The
proposed novel muscle modeling and force recruitment criterion, which consider
the muscular fiber-type distinction, show interesting preliminary results.
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1 Introduction

Computer modeling and simulation of muscle forces is a well-
studied topic since Hill’s early models over 50 years ago (Hoy et al.,
1990). These simulations provide useful substitutive approaches to
estimate muscular forces (Michaud et al., 2021), (Lamas et al., 2022)
during human activities because of the invasive character of in vivo
experimental measurements, challenges obtaining surface muscle
electromyography (EMG) for many deep muscles, and the
sometimes inconsistent relation between muscle force and
electromyography (EMG) (Dideriksen et al., 2010). Because the
muscular system contains redundancies, and is thus an
overdetermined system, there have been many attempts to
estimate individual muscle contributions through optimized load-
sharing paradigms (Michaud et al., 2021). Thus, it is not a novel
paradigm to incorporate muscle force models with models of load-
sharing. However, as muscles are activated, their force capability is
dynamic: declining with continued use due to localized muscle
fatigue.

To date, there has been little work done to consider muscle
fatigue when applying these mathematical muscle models. For low-
force or infrequent muscle activations, this omission is not critical.
However, for tasks involving high intensities where loss of muscle
force may be expected, the ability to combine muscle fatigue models
with muscle force and load-sharing paradigms is increasingly
important. These type of simulations may be useful for
functional electrical stimulation (FES) (Romero-Sánchez et al.,
2019), motor control and prediction (Thelen et al., 2003), or
ergonomic applications in which estimates of muscle force over
time is relevant, such as may be needed for rehabilitation, prevention
of injuries in sports or workplaces, or even surgical planning to
reconstruct diseased joints.

Muscle fatigue cannot be modeled as a single universal
mechanism, since it follows non-linear behavior, is task-related,
and can vary across muscles and joints (Enoka and Duchateau,
2008). In the past few decades, several empirical and theoretical
approaches have been proposed to predict the fatigue state of a
muscle, or set of agonist muscles, from a given developed force
history (Ma et al., 2009), (Xia and Frey Law, 2008), (Liu et al., 2002),
but these models have been validated thus far predominantly with
known, constant or very simple target loads (TLs). Validation
relative to complex movements and muscle contractions is often
challenging as the underlying muscle forces can be difficult to
ascertain.

Several fatigue modeling approaches have been proposed in the
literature. Ding, Wexler, and colleagues utilized a mathematical
model of muscle force and added a decay coefficient, but this model
was primarily of use for electrically-activated muscle (Ding et al.,
2000), (Ding et al., 2003). Ma et al. (2009) developed amuscle fatigue
model that incorporates multiple parameters and has shown
promise, but is not as clearly able to be combined with a Hill
muscle model. Xia and Frey-Law developed a three-compartment
controller (3CC) model to enable it to handle any time-varying force
profile using a feedback controller to match target loads (TLs) either

at a single muscle or joint-level (Looft et al., 2018). This 3CC model
was an improvement over a similar earlier model that could only
represent maximum activation (Liu et al., 2002). The 3CC approach
has been evaluated, validated and modified (giving place to the 3CCr
model that uses an additional rest recovery parameter) by the same
and other investigators including Looft et al. (2018), Sonne and
Potvin. (2016), Barman et al. (2022) who applied it at the joint-level
for fatigue prediction of various isometric tasks and posture
optimization. Thus, this fatigue model provides a relatively
simple means that can be applied in multiple formats depending
on the application.

Relatively little work has combined multilevel models
considering the redundant muscle forces within a multibody
environment with muscle fatigue. One recent example was by
Pereira et al. (2011) who presented a methodology to include a
muscle fatigue model that allows the calculation of muscle force
redundancies. However, they did not apply the resulting model to a
real case, and, consequently, did not address numerous potential
issues that can come up when dealing with actual real-world tasks.

Mode accuracy depends on both the underlying equation
formulation (i.e., non-linear or exponential behavior) as well as
the defining model parameter values. Thus, the determination of
these model parameters is a critical aspect of model development.
Some modeling approaches use average behavior to define model
parameters (Frey-Law et al., 2021), which may be applicable for
making general conclusions for population-level concerns, such as
workplace ergonomic issues. However, when representing
individual responses to tasks, it becomes necessary to calibrate
subject-specific parameters. Traditional muscle force parameters
explicitly depend on the musculoskeletal geometry (e.g.,
musculotendon length, musculotendon shortening velocity, and
moment arms), while others can be indirectly scaled (e.g., based
on optimal muscle fiber length and slack tendon length). Depending
on the modeling approach, maximum isometric force as well as
fatigue and recovery coefficients require additional calibration
measurements. All these parameters play essential roles in an
accurate dynamic force-time simulation as they each are known
contributors to muscle force generation.

For this reason, the aim of this preliminary investigation was to
assess the methodology required to produce time-varying muscle
force predictions for a high-intensity dynamic task, through the
combination of three previously described, distinct modeling
approaches into one comprehensive subject-specific multi-level
muscle model. We consider model permutations using several
options: single versus multiple muscle representation of the
elbow joint (Michaud et al., 2021), (Xia and Frey Law, 2008) and
also the addition of muscle fiber-type recruitment order (Henneman
et al., 1965). We present a benchmark case: the force quantification
of the elbow flexor and extensor muscles involved in static isometric
flexion and a dynamic weightlifting task (i.e., the hammer curl)
involving cycles of forearm flexion and extension, using data
collected from a single example subject for comparison. We
present several practical concerns that arise when modeling
muscle force in this way, offering strategies for others.
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2 Material and methods

2.1 Experimental data collection

One subject (male, age 31, height 180 cm, body mass 80 kg) was
recruited for this study involving two study visits. He provided
written informed consent as approved by the Committee of Ethics of
the University of A Coruña prior to all participation. He was asked
to perform dynamic (at visit 1) and static (visit 2) elbow flexion tasks
while motion capture (18 optical infrared cameras OptiTrack FLEX
3 sampling at 100 Hz; Natural Point, Corvallis, OR, United States)
and muscle electromyography (EMG, FREEEMG sampling at
1,000 Hz, BTS, Quincy, MA, United States) were assessed. In
order to isolate the activity to the elbow joint, the subject was
seated in a chair, with his elbow secured to an armrest to minimize
force generation from other joints (Figure 1). Before commencing
the elbow flexion tasks, the subject completed a 10-min warm-up
using a resistance band and carried out a series of the exercises at a
submaximal level to minimize risk of injury, optimize muscle
potentiation, and ensure that the sensors attached to his body
did not hinder his performance.

2.1.1 MVC0: Calibration
At the first visit, three isometric maximum voluntary

contractions (MVCs) were assessed at baseline (MVC0) to be
used for EMG normalization as well as model parameter
identification. These elbow flexion MVCs were assessed with
his elbow positioned at 50° of flexion by pulling on a fixed rope in

series with a strain gauge (Phidgets Micro Load Cell 0–20 kg,
sampling at 100 Hz) (Figure 1A). Three repetitions were
collected: first sustained for 8 s (MVC0-1), followed by a 15 s
rest; the second sustained until failure (MVC0-2), again with a
15 s rest; and the third sustained for 6 s (MVC0-3). EMG
measurements recorded during MVC0-1 were used to
normalize the EMG signal. Then, only MVC0-2 and MVC0-3
were used to calibrate the fatigue and force parameters and to
select the weight of the dumbbell, in order to avoid possible errors
introduced by muscle potentiation (Lorenz, 2011; Blazevich and
Babault, 2019) after MVC0-1. The MVC0 calibration session was
followed by a resting period of at least 7 min to facilitate complete
recovery (BRODY, 1999) before beginning the dynamic test.

2.1.2 Dynamic effort: Training session
The dynamic task was performed on day 1, consisting of

3 cycles of 3 sets of 10 repetitions of hammer curls, with the hand
in a neutral pronation/supination position when holding the
dumbbell (see Figure 1). The dumbbell weight was chosen to
correspond to 65% of the subject’s measured maximal force
(MVC0-1). Each set was followed by a resting period of 90 s,
and MVCs were repeated after each cycle (MVC1, MVC2 and
MVC3). For these MVC captures, the subject was asked to pull
the fixed rope 3 times for 8 s each, with 6 s resting periods
between each repetition. Instructions (number of repetitions,
rate, rest periods, etc.) for each task were provided verbally
and visually, displayed on a big screen situated in front of the
subject (Figure 1).

FIGURE 1
Experimental measurements: (A) maximum voluntary contraction; (B) dumbbell weightlifting; (C) schematic of the test protocol for visit 1.
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The entire session was simulated using the full muscle model,
including the weightlifting series, the resting periods and the MVC
evaluations.

2.1.3 Static effort
At the second visit, a few days later to avoid injury and fatigue

accumulation, the subject returned and was asked to perform the
static task. For this visit, he was asked to hold the same dumbbell
weight used for the dynamic task while maintaining the arm flexed
at 50° until failure. Thus the static task was a submaximal effort. The
MVCs were not repeated, thus the model parameters calibrated
using the MVC0 repetitions (performed at visit 1) were also used for
the static effort simulation.

2.1.4 Motion capture and EMG
The motion was captured using 18 optical infrared cameras

(OptiTrack FLEX 3, also sampling at 100 Hz; Natural Point,
Corvallis, OR, United States) that computed the position of 9 optical
markers for the trunk and right arm, and 2 additional markers fixed on
the strain gauge tomonitor the force orientation. Additionally, 3 surface
EMG sensors from the right arm (biceps long head, biceps short head
and brachioradialis) were recorded at 1 kHz (BTS, FREEEMG, Quincy,
MA, United States). The electrodes were placed according to the
guideline presented in (Criswell and Cram, 2011). Each EMG signal
was rectified and filtered by singular spectrum analysis (SSA) with a
window length of 250 msec (Romero et al., 2016) (equivalent to a
forward and reverse low-pass fifth order Butterworth filter with a cut-off
frequency of 6 Hz). Then, because muscle fatigue affects the amplitude
of the surface EMG (Dideriksen et al., 2010), the filtered EMG signals
were normalized using the maximal value observed during the subject’s
first MVC.

2.2 Musculoskeletal models

Three right upper extremity musculoskeletal model
representations were considered. The primary model (Figure 2)
included 7muscles (triceps long, medial and lateral head, biceps long
and short head, brachioradialis and brachialis) was adapted from
(Saul et al., 2015), with link lengths scaled to the subject. Using this

7-muscle arm model (7M), inverse dynamic analyses were used to
determine elbow torques (Q), assuming the rope or dumbbell acted
as external forces applied to the right hand center of mass (see green
arrow in Figure 2). A simpler (2-muscle) and more complex
(addition of fiber type) version of this base 7M musculoskeletal
model were also considered, and are described later in Sections
2.6.1 and 2.6.2 respectively.

2.3 Muscle coordination strategies and
musculotendon model

Determination of muscle forces by computer modeling and
simulation is challenging due to the redundancy in the
biomechanical system. Numerous approaches can be found in the
literature to solve the problem of identifying muscle recruitment
levels, as well as to represent the musculotendon actuator dynamics
(Michaud et al., 2021), (Lamas et al., 2022). The fundamental
problem is that there are more muscles serving each degree of
freedom of the system than those strictly necessary from the
mechanical point of view. In this case, there are 7 muscles acting
about the elbow joint to actuate a single degree of freedom, either
flexion or extension. Other degrees of freedom of the elbow are
controlled by joint structures as bones and ligaments, yielding a
reaction moment instead of a drive torque. Consequently, there is an
infinite number of solutions for this problem, and, in order to
reproduce the specific strategy of muscle coordination adopted by
the central nervous system (CNS), optimization is often used.

The muscular forces for each of the 7 muscles are identified
using a combination of optimization load-sharing (Eq. 1) and the
net joint torque formulated in general form as Eq. 2 at each time-
point of the tasks (Michaud, 2020).

min Cf

subject to JTFMT � Q
Fi

Min ≤FMT
i ≤Fi

Max i � 1, 2, ..., m
(1)

where Cf is the cost function, Q is the vector of joint torques
obtained by inverse dynamics, FMT is the vector of the individual
muscle forces, J is the Jacobian whose transpose projects the muscle

FIGURE 2
Upper right extremity model including the elbow joint with seven
muscle actuators represented. Note the external force is represented
by the green arrow applied at the hand center of mass (COM).

FIGURE 3
Hill-type musculotendon model. The muscle fibers are modeled
as an active contractile element (CE) in parallel with a passive elastic
component (PE). These elements are in series with a non-linear elastic
tendon (SE). The pennation angle α denotes the angle between
the muscle fibers and the tendon. Superscripts MT, M, and T indicate
musculotendon, muscle fiber, and tendon, respectively.
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forces into the joint drive torques space (i.e., represents the moment
arms), Fi

Min; Fi
Max are the instantaneous minimum and maximum

allowed forces for muscle i, respectively, and m is the number of
muscles (m = 7). Note that in this particular case, the elbow joint
involves 1 plane of muscle flexion/extension torques, thus, Q
simplifies to a scalar. The expression of the objective function Cf

depends on the muscle recruitment criterion used. Several muscle
recruitment criteria have been suggested, typically consisting of
sums of muscle forces divided by a positive weighting factor
(usually the corresponding maximum isometric force or the
physiologic cross sectional area) to a power of 2 or more, to best
represent empirical CNS behavior (Michaud et al., 2021). We chose
the minimization of the sum of the squares of muscle forces (Eq. 1)
based on the comparisons provided by Michaud and colleagues
(Michaud et al., 2021).

Cf � ∑m
i�1

FMT
i( )2 (2)

In this work, the so-called physiological approach was
implemented to prescribe the minimal and maximal constraints
(which affect the fatigue behavior) for the forces through feasible
muscle dynamics (Michaud et al., 2021). The force generated by a
muscle depends on its force-length-velocity properties, as well as
its physiologic cross sectional area (PCSA), and is related to the
Hill-type musculotendon model (Figure 3) used (Zajac, 1989),
where the force equilibrium equation for a muscle is provided as
Eq. 3:

FMT � FM
CE + FM

PE( ) cos α (3)
In this equation, FM

CE and FM
PE are the forces exerted by the

contractile element (CE) and the passive element (PE), respectively,
and α is the pennation angle. The active force produce by CE
depends on the muscle fiber length and velocity, and on the
activation level. It is expressed as shown in Eq. 4:

FM
CE � FM

0 × a × fl lM( ) × fv vM( ) (4)
where a represents the muscle activation, lM the muscle fiber
length and vM its velocity, fl and fv are dimensionless force-
length and force-velocity relationships, respectively and FM

0

represents the force magnitude proportional to cross-sectional
area (Michaud, 2020). In this work, the tendon length is
considered constant (rigid tendon assumption) and,
consequently, the muscle fiber length and velocity only depend
on the musculoskeletal geometry and the motion of the segments,
and not on the musculotendon force (Michaud et al., 2021).
Moreover, the muscular time response to the excitation is
ignored, thus assuming that a � u, where u is the excitation. In
Figure 3, lMT is the musculotendon length and vMT is the
musculotendon velocity.

The force of the parallel passive element, which opposes muscle
stretch, FM

PE, can be formulated as Eq. 5

FM
PE � FM

0 × fPE lM( ) (5)
where fPE is a dimensionless force-length relationship, which has
non-zero value when muscle length is greater than the optimal
muscle fiber length (lM0 ).

The instantaneous minimum and maximum allowed forces in
muscle i, Fi

Min and Fi
Max, were calculated using ai = 0 (no active

contraction) and ai = 1 (maximal active contraction), respectively.
In this way, by combining Eqs 3–5 the resulting minimum and
maximum single muscle forces are represented by Eqs. 6, 7,
respectively.

FMin � fPE lM( ) × FM
0 × cos α (6)

FMax � fl lM( ) × fv vM( ) + fPE lM( )( )FM
0 × cos α (7)

After finding FMT from optimization (fmincon, Matlab), the
corresponding muscle activation, a, was determined from the
following equation:

a � FMT

cos α
− FM

PE( )/FM
CE,Max (8)

where FM
CE,Max corresponds to the maximum contractile

force (a = 1).

2.4 Subject-specific scaling or calibration of
musculotendon parameters

A table that summarizes the different subject-specific scaling or
calibration of musculotendon parameters reported in the following
sections can be found in Supplementary Appendix SA1 for better
understanding and comparison.

2.4.1 Scaling of length parameters
Due to the sensitivity of physiological approaches (Scovil and

Ronsky, 2006), a suitable scaling of musculotendon parameters is
needed. Hill-muscle equations become numerically stiff when
numerical singularities are approached (Millard et al., 2013),
which often occurs during a simulation, resulting in the solver
finding solutions that are numerically feasible yet not
physiologically sound (Van Campen et al., 2014). To prevent this
problem, the scaling correction applied in (Michaud et al., 2021) was
reproduced in this work to scale the tendon slack length (lTS ) and the
optimal muscle fiber length (lM0 ), which affect the dimensionless
force-length function. Muscle properties and local coordinates for
the attachments of muscle and tendon to bone were obtained from
OpenSim (DAS model) and scaled to each subject. lTS and lM0 were
scaled, for each muscle, with a scale factor calculated as the relation
between the subject’s musculotendon length with outstretched arm
and that of the OpenSim model in the same position.

2.4.2 Calibration of moment arms
The moment arms of the muscles in the model obtained by the

open source model (Saul et al., 2015) showed inconsistencies when
estimating elbow flexion muscle forces. That is flexion torque during
the hammer curl was much higher than those estimated during the
MVC and, hence, needed to be modified because the wrong moment
arms conditioned the exerted force and, consequently, the
corresponding fatigue. First, the brachioradialis insertion points
(which showed the most unrealistic geometry) were corrected
from a more recent OpenSim dynamic arm simulator (DAS)
model (Chadwick et al., 2014). Second, a scale factor was
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calculated to reduce the variations produced in isometric strength as
reported below.

During the maximum voluntary contraction of flexors, the
maximum inverse-dynamics elbow joint flexion moment
QMax ,Flex at the right arm can be defined as:

QMax ,Flex t( ) � JTFlex t( ) JTExt t( )[ ] FMax
Phys,Flex t( )
FMin
Phys,Ext t( )[ ] (9)

where flexors were considered to be producing their maximum (a =
1) allowed force (FMax

Phys,Flex) during the motion, and extensors their
minimum (a = 0, co-contraction not considered, only passive force)
allowed force (FPhys,Ext Min). Rearranging (Eq. 9), it can be written,

JTFlex t( )FMax
Phys,Flex t( ) � QMax ,Flex t( ) − JTExt t( )FMin

Phys,Ext t( ) (10)

with JTFlex and J
T
Ext the Jacobians whose transposes project the muscle

forces into the joint drive torques space of flexor and extensor
muscles, respectively. To simplify, (Eq. 10) can be expressed as

JTFlex t( )FMax
Phys,Flex t( ) � QMax ,Flex

* t( ) (11)

where QMax ,Flex
* is the maximum inverse-dynamics elbow joint

flexion moment taking into account the passive moment
generated by the extensor muscles.

To continue, the problem was reduced to a single scale
parameter for calibration by considering the flexor muscles as a
single actuator (Lamas et al., 2022). In this way, by combining (Eqs 5,
6, 8, 11), it is obtained,

JFlex t( ) FM
0 × a t( ) × fl t( ) × fv t( ) + FM

0 × fPE t( )( ) cos α t( )
� QMax ,Flex

* t( ) (12)

The moment arm, JFlex, the dimensionless force-length
function, fl, and the dimensionless force-velocity function, fv, of
the actuator, were calculated as the average of the corresponding
values of the flexor muscles during the motion. The pennation angle,
α, was set to 0° to simplify, and, as mentioned previously, the
activation, a, was set to 1 during MVC. Therefore, if the moment
arms were accurate, the extracted maximum isometric force of the
corresponding actuator, FM

0 , should be the same at any position of
the arm, and could be expressed as:

FM
0 � QID*

Max ,Flex t( )/ JFlex t( ) fl t( ) × fv t( ) + fPE t( )( )( ) (13)

However, by estimating the maximum force of the actuator
during MVC at four different positions (three maximum efforts per
position, but considering only the last two to avoid muscle
potentiation effects) of elbow flexion (from 15° to 60°), large
differences were observed between the values (Table 1). For

example, the estimated force at position 1 (15° flexion) was 160%
higher than the estimated force at position 4 (60° flexion).

Note that, tominimize fatigue effects, theMVC assessment used for
moment arm calibration was conducted on a different day than the
other experimental measurements, with 7 min resting periods between
MVCs to enhance recovery between trials (BRODY, 1999). In addition,
in order to rule out the possible effect of the dimensionless force-length
and force-velocity functions, the maximum force of the actuator was
also estimated without considering the physiological approach
(FM

0 � QMax ,Flex(t)/JFlex(t)), showing almost the same results
(Table 1, Static).

To overcome the moment arms inconsistencies problem, two
scale factors (k1) was calculated to reduce the variations produced in
the isometric force by the average moment arm, JFlex(φ), with φ the
elbow flexion angle. The calibrated relation JFlex* (φ) is given by:

JFlex
* φ( ) � k1 JFlex φ( ) − JFlex 0°( )( ) + JFlex 0°( )

k1
(14)

where k1 is the optimized value that minimizes the standard
deviation (SD) between the eight forces estimated at the four
positions (fmincon, Matlab). As shown in Table 1, the difference
between the maximum actuator forces at positions 1 and 4 was
reduced to 1%, and the standard deviation was almost divided by a
factor of 5.

The optimized coefficient k1 which reduced the moment arm
differences during the motion was applied to the moment arm of
each muscle. The same procedure could be replicated for the
extensors or for other joints by isolating the desired effort.
However, it must be said that this calibration would not be
necessary if the musculoskeletal model was correct. Finally, an
alternative way to correct muscle geometry would be to move the
origin and insertion points of the muscles, but this method would
have involved a larger optimization problem.

2.4.3 Calibration of maximum isometric force
Another subject-specific parameter which is critical for accurate

fatigue simulation (because the relative target load of the task depends
on it) is the maximum isometric force, FM

0 . In some studies, this
parameter is adapted to allow muscles to produce the calculated joint
torques, adding even a reserve (by overincreasing FM

0 ), or adding
residual actuators to the model. These residual actuators are called
“the hand of God,” and are forces that account for discrepancies
between the model, the measured motions, and the muscular forces
that are not able to generate sufficient accelerations (Documentation,
2022). In this study, in addition to affectingmuscle recruitment strategy,
if the maximum isometric force is overestimated, fatigue will be
underestimated and vice versa. Therefore, calibration is needed to

TABLE 1 Maximum actuator force (condensed maximum isometric force) estimated at different arm flexion angles for moment arm calibration.

Maximum actuator force (N)

Pos 1 Pos 2 Pos 3 Pos 4 Mean SD

Original Static 1909.0 1852.9 1421.3 1412.7 1338.5 1313.9 1127.9 1179.7 1444.5 288.5

Phys 1912.4 1857.9 1426.1 1415.8 1339.0 1309.5 1165.6 1203.9 1453.8 281.7

Optimized Phys 1957.3 1882.8 1865.9 1774.1 1853.7 1809.7 1892.4 1916.1 1869.0 58.0
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approximate, as close as possible, force and fatigue limits of the subject
(i.e., muscles forces have to be able to produce the calculated joint
torques without being underactivated). Only MVC0-2 and MVC0-3
were considered when calibrating the force in order to avoid possible
errors introduced by muscle potentiation (Lorenz, 2011; Blazevich and
Babault, 2019) after MVC0-1. Starting from Eq. 9) and using the initial
FM
0 given by the model (Saul et al., 2015), the scale parameter of the

maximum isometric forces k2 can be defined as:

k2 t( ) � Q t( )/QMax ,Flex t( ) (15)
And, then, the new scaled maximum isometric forces for all the

muscles are modeled as:

FM*
0 � max k2( )FM

0 (16)
In this work, the scale parameter for the arm extensors was taken

the same as for the flexors. However, the same procedure could be
replicated for the extensors during MVC, focusing on extension.

2.5 Muscle fatigue model

Muscle fatigue is a multidimensional concept that combines
physiological and psychological aspects, and which is defined as a
decrease in maximal force or power production in response to
contractile activity (Gandevia, 2001). It can originate at different
levels of the motor pathway and is usually divided into central and
peripheral components. Central fatigue originates at the CNS, and
decreases the neural drive to the muscle (Gandevia, 2001).
Peripheral fatigue takes place in the periphery, at the
neuromuscular junction and within the muscle involving
processes associated with mechanical and cellular changes
(WALLMANN, 2007). Although central fatigue can play a major

role in muscular performance, it particularly affects low frequency
fatigue and endurance sports, and is challenging to model as it can
induce changes over several days. For these reasons, this study will
be limited to the modeling of peripheral, localized muscle fatigue
and to its implementation within the muscle recruitment problem.

To quantitatively evaluate task-related muscle fatigue for complex
and/or dynamic movements, we used the three-compartment model
(Figure 4), described by Xia and Frey Law (3CC) (Xia and Frey Law,
2008), and later improved (3CCr) in (Looft et al., 2018), (Frey-Law
et al., 2021), to describe muscle activation (Ma), fatigue (Mf), and
recovery (Mr) under a variety of loading conditions. The sum of the
percentage of motor units (MU) in each compartment equals 100%.
While the model is explained in greater detail in (Xia and Frey Law,
2008), a brief summary is provided here. During activity, MUs from
the resting compartment are moved into the activated compartment
at a rate controlled by a feedback controller, C(t), to match the target
load, TL, represented as a percentage of maximum (% of MVC). This
controller also allows for the reverse movement of motor units (from
Ma toMr) if more units are activated than needed to match a certain
TL. The flows between the three compartments are mathematically
described as differential equations as follows:

dMr

dt
� −C t( ) + R × r( ) × Mf (17)

dMa

dt
� C t( ) − R × Ma (18)

dMf

dt
� F × Ma − R × Mf (19)

where,

C t( ) � TL −Ma( ) whenMa <TL andMr > TL −Ma( ) (20a)
C t( ) � Mr whenMa <TL andMr < TL −Ma( ) (20b)
C t( ) � TL −Ma( ) whenMa >TL (20c)
r � 1 whenTL > 0 (20d)

F and R denote the fatigue and recovery coefficients, respectively,
and r is a rest multiplier to augment recovery during rest (Looft et al.,
2018). While there are normative, joint-specific values identified for
these coefficients for average behavior (Xia and Frey Law, 2008),
(Looft et al., 2018), they are not subject-specific. For this study, the
calibration of F, R and r is defined in Section 2.6.

Due to the complexity of the muscle redundancy problem, the
original model was only used to predict fatigue at joint level in terms of
joint torque decay (Xia and Frey Law, 2008), and not to predict the
fatigue of the individual muscles in the musculoskeletal model. This was
achieved by combining the muscle fatigue model with the optimization
approach that addressed the muscle redundancy problem, as illustrated
in Figure 5. That is, the muscle activations from the previous time step
were used to determine net joint target loads (TLs) for the determination
of the 3CCr compartment states during the current time step.

Peripheral fatigue affects the contractile portion of muscle torque
production, so that only FM

CE (Eq. 4) will be affected by the fatigue level
of the muscle, thus decreasing the maximummuscle forces allowed in
the muscle redundancy problem. Then, because all the non-fatigued
muscle units are recruited, the FMax of Eq. 6) becomes:

FMax � fl lM( )×fv vM( )× 100−Mf( )/100+fPE lM( )( )FM
0 × cosα

(21)

FIGURE 4
Schematic representation of the revised three-compartment
controller (3CCr) mathematical fatiguemodel reproduced from (Frey-
Law et al., 2021) licensed under CC BY-NC-ND 4.0, where C (t) is the
feedback controller used to match Ma to target load, TL; F
defines fatigue rate and R defines recovery rate, with additional
recovery during rest periods signified by r.
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2.6 Muscular modeling and subject-specific
calibration of fatigue parameters

2.6.1 Joint actuators and simple muscles
Because physiological measurement of muscle force and fatigue

are conducted at the joint level rather than at the individual muscle
level (unless invasive procedures are used), yet, modeling of
individual muscles allows for modeling of internal stress and
strain that is not possible with joint-level models, both strategies
were implemented here for comparison. For joint level analysis, the
one flexor and one extensor (2M), using the mean parameters of the
corresponding muscles (distinguishing between flexors and
extensors), except in the case of FM

0 , for which the sum was
used. And, for individual muscle analysis, the seven muscles of
the model (7M) were considered individually to take into account
their fatigue behavior within the muscle force-sharing problem.

In both cases, fatigue parameters F, R and r were considered the
same for all the muscles and calibrated from recorded activities at joint
level by means of optimization (fmincon, Matlab), seeking to best fit
model and experimental results, similar to that proposed by Frey-Law
et al. in (Frey-Law et al., 2021). F, R and r are the variables of the
optimization problem aimed to minimize the residuals between model
estimates of decaying MVC (Ma during MVC trials) and observed
MVCs (force measurements during MVC0-2 and MVC0-3). MVC0-2
measurements showed the best visibility of the force decay (to adjust F)
because forcemeasurements were very noisy andMVC0-2 lasted a long

time period (discrepancies were observed by using shorter time
periods). MVC0-3 measurements were needed to calibrate the
recovery parameter after an effort (to adjust R and r).

2.6.2 Splitting of muscular fiber types
In humans, there are generally three primary types of skeletal

muscle fibers associated with MUs (Figure 6): type I (slow
oxidative), type IIa (fast oxidative), and type IIx (fast glycolytic)
(Tiedemann et al., 2012). Their characteristics define their
properties: i) Type I: large amount of mitochondria, fatigue
resistant (hours), low amount of force; ii) Type IIa: moderate
amount of mitochondria, moderate amount of glycosomes and
creatine kinase, moderate fatigue resistant (<30 min), moderate
amount of force; iii) Type IIx: small amount of mitochondria,
significant amount of glycosomes, very low fatigue resistant
(<1 min), largest amount of force (Betts et al., 2017), (Wilson
et al., 2012). In addition, according to Henneman’s size principle
(Henneman et al., 1965), there typically exists a recruitment
hierarchy in force generation. Slow-twitch fibers (type I) have a
low activation threshold, meaning that when a contraction is
initiated, they are recruited first, followed by type IIa fibers,
and, then, finally, type IIx if needed.

To consider fiber type differences, yet minimize model complexity,
we represented muscle as only two groups based on fatigue behavior.
Thus we combined type I and type IIa as groupA, while type IIx formed
group B (Figure 6). Therefore, each muscle in the model was split into
two parts, leading to a total of 14 muscle representations (14M) for the
muscle recruitment problem. Muscle geometry parameters (moment
arm, lMT; vMT) remained constant for both groups of each muscle, but
all other muscle parameters were adjusted to represent the
corresponding fiber type properties in the model.

2.6.2.1 Maximum isometric force distribution
While previous studies identified differences in power between

types of isolated fibers (Widrick et al., 2002), the proportion of
maximum force due to each type depends on fiber-type distribution
of a muscle. This distribution varies by individual, muscle, and
physical activity (Wilson et al., 2012), (Picquet et al., 2002), but was
simplified as being the same for all 7 muscles for this study,
estimated from a calibration measurement conducted at elbow
level. Because of the differences in fatigue between the two
groups (Betts et al., 2017), we hypothesized that the percentage
of force decay (%decay) during high intensity exercise (MVC0) may
be related to the fiber type force distribution of the subject (not the

FIGURE 5
Procedure proposed that combines the physiological inverse-dynamics approach (used to address the muscle redundancy problem) with the
muscle fatigue model, to determine individual muscle forces at time instant tk.

FIGURE 6
Muscle recruitment hierarchy as function of the fiber (Radák,
2018). (A) composed of type I and type IIa fibers. (B) formed of type IIx
fibers. The muscle fascicles and cells is licensed under Sheldahl, CC
BY-SA 4.0, (via Wikimedia Commons).
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fiber type distribution itself). Therefore, we considered that almost
all the force loss (90% of %decay) during this short but very
demanding effort, corresponds to group B of fibers (the
remaining 10% attributed to group A force decay and group B
force reserved). In this way, the maximum isometric forces FM

0,A and
FM
0,B corresponding, respectively, to group A and group B, were

defined as:

FM
0,A � FM

0
p 100 −%decay p 0.9( ) (22)

FM
0,B � FM

0
p %decay p 0.9( ) (23)

2.6.2.2 Fatigue parameters
To represent the fiber properties of group A, their fatigue

parameters were set as follows: FA � 0.004, RA � 0.01 and rA � 1.
These values were set to obtain a reduced fatigue (25% of force decay
after 120 s with a TL of 100%) and a full force regeneration after
4 min of resting (BRODY, 1999).

To represent the fiber properties of group B, it was decided to fix
the recovery coefficient, RB, to 0.001, to represent the anaerobic
functioning of cells and their reduced recovery during activation due
to the small amount of mitochondria (Betts et al., 2017). FB and rB
were obtained by optimization (fmincon, Matlab), seeking to best fit
model and experimental results from MVC0-2 and MVC0-3. As a
preliminary study, these parameter values provided a reasonable
initial approach to enable the inclusion of some subject-specific
values.

2.6.2.3 Recruitment hierarchy in force generation.
Finally, to reproduce the recruitment hierarchy in force

generation, the muscle recruitment criterion (Eq. 2) was modified
by adding the fatigue parameter F of each muscle as a weight in the
objective function, which becomes,

Cf � min∑m
i�1

FMT
i × Fi( )2 (24)

In this way, the group A formed by the fatigue resistant muscle
fibers is recruited first, and the group B formed by the less fatigue
resistant fibers is recruited later, if needed, which yields a novel
muscle recruitment criterion to gather the Henneman’s size
principle (Henneman et al., 1965).

2.7 Model vs. experimental comparisons

Geometric, force and fatigue muscle parameters were calibrated
for each approach implemented in this work as described in the
previous sections. Then, the corresponding results were compared
with experimental measurements obtained from the strain gauge
and the EMG system. Estimated muscle forces were compared with
strain gauge readings during MVCs only, because it is assumed that
all muscles are fully activated during a maximum effort, thus
avoiding the muscle force sharing problem and the uncertainty
on the level of effort made by the subject. Whereas, during the
dynamic and submaximal efforts EMG measurements were used to
compare the estimated relative muscle activations obtained by
solving the muscle redundancy problem through optimization to
observed EMG activations. Differences between observed and

modeled results were qualitatively compared for the 2M, 7M and
14M musculoskeletal models for solving the force sharing problem.
Supplementary Appendix SA2 offers an overview of the different
configurations implemented in this work which produced the
numerous results presented below.

3 Results

3.1 Static effort

During the submaximal static effort, the subject was able to hold
the dumbbell with the arm flexed for 57.0 s (Figure 7,Q, in red). The
corresponding modeled time course of maximal elbow torque decay
for the three musculoskeletal modeling options (14M, 7M, and 2M)
based on the physiological optimization for muscle force is shown in
Figure 7. The modeled time to failure occurs when the available
maximum elbow flexion moment crosses the elbow flexion moment
(Q, in red) required by the subject to support the dumbbell. All three
models were able to predict failure <3 s short of the observed failure
(<0.01%–4.4% error). The joint-level actuation (2M, magenta)
predicts the earliest failure (54.5 s, 2.5 s early), followed by the
classical individual muscle modeling (7M, blue; 56.6 s, 0.4 s early)
and the model that considers fiber type dissociation (14M, black;
56.9 s, 0.1 s early). The modeled fiber type force distribution for the
elbow flexors for the 14M model confirmed the group A fiber types
were recruited prior to the group B, as designed. The net recruitment
strategies for the classical individual muscle model (7M, blue) and
the fiber type model (14M, black) are shown in Figure 7. Note that
differences between the two models are apparent particularly in the
activation of brachialis versus the other three flexors. Despite signal
filtering, the EMG measurements (Figure 8, red line) obtained
during the submaximal static effort were highly variable, with a

FIGURE 7
Available maximal elbow flexion moment evolution during static
effort using physiological optimization and three muscle models (14M
incorporates 2 fiber type groups for 7 muscles; 7M does not consider
fiber type; and 2M groups the flexors in one actuator and the
extensors in another).
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rapid activation at task initiation and continued increased amplitude
along the effort as muscle fatigue occurred. A behavior which
appears more similar to the results obtained with the 14M model
(black) than the 7M model (blue).

3.2 Dynamic effort: Training session

The results for the dynamic efforts (the weightlifting series and
the MVC trials between repetitions) show that, as designed, the

FIGURE 8
Activations of flexor muscles during the submaximal static effort.

FIGURE 9
Available maximal elbow flexion moment evolution during the complete training session (note, resting periods are omitted) using three muscular
models and physiological optimization.
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available maximal elbow moment decreased during the exercise
due to fatigue and that it increased again after the resting periods.
However, they underestimated MVC1, MVC2-2 and MVC2-3 and
were a close approximation of MVC2-1 and MVC3 relative to the
measured flexion torque (see Figure 9). The observed elbow
moment was higher for the second MVC than the first, which
was not the case for the modeled maximal capabilities. Models 2M
and 7M present similar results, while approach 14M presents lower
available maximal flexion moments. It must be commented that,
during the weightlifting series, after a few series, it was observed
that, for some instants, the estimated muscles forces were not able
to produce the elbow moment actually made by the subject.
Furthermore, to quantify the differences between modeled and
observed muscle torque, the root-mean-square error (RMSE) of
the three periods of each MVC were calculated, taking as reference
the actual exerted flexion moment (see Table 2). The three models
showed the highest errors during MVC1, and improved
successively for MVC2 and MVC3, reaching a mean RMSE
lower than 5 Nm for MVC3. Converse to the static effort, the
joint-level 2M model showed the best results, while the 14M
yielded the highest errors.

For some applications, it could be interesting to predict the
maximum force that a subject can make after an effort and a resting
period. This could be done by focusing on the first elbow moment
peak obtained for the three recorded MVC. Table 3 presents the
differences between estimated and measured first peak elbow
moment obtained with the three muscular models. For the three
models, the first peak of MVC1 was underestimated, the first peak of
MVC2 was the best predicted one, and the first peak of MVC3 was
overestimated. The mean of the absolute error of the three MVCwas

quite small (lower than 4.6 Nm) and 14M model presented the best
results.

Modeled muscle activity for the 7M and 14M models showed
similarities but generally exceeded observed EMG measurements
(Figure 10) during a weightlifting set.

An example of fiber type specific activation for bicep curls using
the 14M model is provided for one muscle in Figure 11. Again, the
fatigue-resistant group A units are activated prior to the more
fatigable group B units. Interestingly the activations of type B
fibers correspond to the increments of the EMG signals.

3.3 Fatigue behavior

Figure 12 represents the evolution of the resting (blue), active
(green) and fatigue (red) compartments of the biceps long head, during
the complete training session (including the resting periods). Fatigue
(which is equal to 100—active plus restingmuscle) increased during the
exercises and decreased during the resting periods as expected. While
recovery was not complete after the rest periods, the MVCs induced
more fatigue than the dynamic exercise, such that from the fourth
weightlifting set on, force regeneration was higher than its loss.

4 Discussion

In this work, multilevel musculoskeletal models for obtaining
muscular forces considering fatigue have been assessed relative to
experimental measurements for a benchmark case, and the
difficulties for achieving accurate subject-specific modeling have
been highlighted. Previous studies (Barman et al., 2022), (Pereira
et al., 2011), explored the possibility of coupling multibody models
and muscular fatigue models for muscle force estimation, but none of
them applied the resulting model to a real case. Consequently, they did
not address the numerous issues which come up in the calibration of
subject-specific parameters, as shown here. We proposed a novel
muscle model and a novel force recruitment criterion which reflect
the recruitment hierarchy in force generation (Henneman et al., 1965):
the muscle fiber-type distinction has been considered and included in
the optimization problem.

During static effort, the novel muscle model, 14M, yielded the
best results by offering an estimation of the failure instant with an

TABLE 2 RMSE during each MVC using physiological optimization.

RMSE maximum elbow
moment (Nm)

Modeling approach

2M 7M 14M

MVC1 MVC1-1 3.10 4.20 6.50

MVC1-2 5.09 6.07 8.80

MVC1-3 8.07 8.57 11.16

Mean MVC1 5.42 6.28 8.82

MVC2 MVC2-1 4.07 3.38 3.18

MVC2-2 4.06 4.82 7.52

MVC2-3 4.76 5.55 8.36

Mean MVC2 4.30 4.58 6.36

MVC3 MVC3-1 5.36 4.34 2.61

MVC3-2 1.63 1.76 3.86

MVC3-3 3.43 3.99 6.43

Mean MVC3 3.47 3.36 4.30

Mean total 4.40 4.74 6.49

The bold values are the mean values.

TABLE 3 First elbow moment peak error using physiological optimization.

First elbow moment peak
error (Nm)

Modeling approach

2M 7M 14M

MVC1-1 −3.43 −4.67 −6.57

MVC2-1 3.69 2.42 0.13

MVC3-1 6.69 5.41 3.31

Mean of the absolute error 4.60 4.17 3.34

The bold values are the mean values.
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error of less than 1 s. However, all three models (14M, 7M, 2M)
yielded good results, which means that the calibration of subject-
specific parameters was acceptable. The Law of Parsimony
suggests that the simplest model to achieve good results is
ideal, thus depending on the accuracy needed for a particular
application, any of the three models may be optimal. Using the
classical muscle model, 7M, muscles were recruited according to
their moment arm only, in order to optimize energy

consumption. However, the novel muscle model, 14M, also
takes in account a simplified representation of the Henneman’s
size principle (Henneman et al., 1965), recruiting fatigue-
resistant fibers first (representing type I and IIa fibers
collectively). Muscle models with individual muscles (7M and
14M) can yield more accurate joint reactions, bone stresses and
energy expenditure estimation (Michaud et al., 2019). Despite
noisy EMG signals, the 14M model offered the most similar
muscle recruitment strategy of the muscles assessed. Having
the EMG measurements of the brachialis would have been
very interesting, because its recruitment was the most affected
by the method. Unfortunately it is rather difficult to get clean
surface signals from this muscle: it is located between biceps and
triceps, presents a reduced superficial part, and its proximity to
other muscles makes crosstalk inevitable (Jungtäubl et al., 2018).

During the dynamic effort, good results were obtained too,
with reasonable errors in MVC estimates whatever the approach
used. However, during the dynamic curls, the modeled muscular
forces were not as accurate, which provoked constraint violations
and muscular overactuation (along with higher fatigue). One
explanation for this error may be the mismatch between required
elbow moment and flexor muscle moment arms when the
forearm got closer to the horizontal position (end of the
elbow extension); the flexor moment arms took the lowest
values, while the required elbow moment achieved the highest
value, leading to a critical situation when using an imperfect
model. Consequently, the model and its calibration are crucial
aspects. Obviously, if the subject was able to lift the weight
during the experiment, the simulation should be able to do so as
well. Non-etheless, as illustrated in this study, human modeling

FIGURE 10
Muscular activations obtained through two muscle models, and EMG signals, during a weightlifting set of 10 bicep curls, using physiological
optimization.

FIGURE 11
Muscular activations obtained through 14M model (distinction
between fibers of type A and B), and EMG signals, during aweightlifting
set of 10 repetitions, using physiological optimization.
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and subject-specific calibration are very challenging in
biomechanics (Fregly, 2021), since errors can come from
many sources (Hicks et al., 2015).

An additional factor that makes calibration and validation
challenging is the phenomenon of muscular potentiation. It is
essentially the opposite of muscle fatigue where as muscle is first
activated, muscle performance is enhanced (Lorenz, 2011; Blazevich
and Babault, 2019). Experimental measurements reflected this fact,
where the second peak of each MVC was higher than the first,
despite fatigue. While the parameters seemed to be well adjusted
during the isometric effort, the dynamic effort showed worse results.
The effects of the physiological behavior of the muscle, the variations
of the moment arm, and differences in activation levels are more
relevant during dynamic efforts, thus contributing to the sensitivity
and potential inaccuracy of the related parameters. In other studies,
muscle parameters are generally adapted to allow muscles to
produce the calculated joint torques, adding even a reserve (by
overincreasing FM

0 ), or adding residual actuators to the model
(Documentation, 2022). Further, using multiple muscle activation
levels, superior model parameter identification was achieved
compared to using only one activation level (Frey Law and
Shields, 2005), suggesting in many muscle models, parameters do
not represent all activation levels equally well.

Another challenging parameter is the estimate of maximum force.
If the maximum force is overestimated, the relative intensity to perform
a task will be underestimated and accordingly fatigue will be
underestimated, and vice versa. Therefore, calibration is needed to
approximate, as close as possible, the thin force and fatigue limits of the
subject (muscles forces have to be able to produce the calculated joint
torques without being underactivated) which is more challenging. We
observed that the force measurements were also noisy during MVC,
which hindered calibration. This may have been due to common
variability in achieving voluntary peak force, as well as the attempt
to measure elbow peak torque through the involvement of several link
lengths (e.g., grip to hold the rope and the wrist). However, the
maximum elbow moment, estimated through several methods, did
not show significant variation between the three MVCs.

For this reason, the longerMVC (until failure,MVC0-2) was used as
reference for the calibration of fatigue parameters. Furthermore,

although the actually exerted elbow moment showed a slight
decrease from MVC1 to MVC3, likely due to fatigue, the available
maximum elbow moment, estimated through several methods, did not
reflect this expected force decay along the training session. The
compartment fatigue model is a simplified representation of the very
complex and dynamic behavior that occurs with muscle fatigue and
recovery. As observed with the dynamic bicep curls, in which, even with
theMVCs added to the exercise, a stable equilibriumwas reached where
the model would indicate this level of activity could be maintained
indefinitely. Others have also identified this asymptote as a function of
the F and R ratios, that is, for sustained static tasks this was identified as
[1/(F/R + 1)]p 100% (Frey-Law et al., 2012). For cyclical dynamic tasks
with rest intervals, this asymptote is not quite so simple, yet still occurs at
the point at which recovery and fatigue balance. However, this is not
realistic for most individuals. To address this, the fatiguemodel could be
modified for this application, either by changing the model parameter
values, adding in a central fatigue representation [referred to as “brain
effort” by (Xia and Frey Law, 2008)], or by adding a fourth compartment
off of the fatigued state which could be called “long-term fatigue state,”
so as to generate a reversible fatigue only after a long resting period.

5 Conclusion

In conclusion, this study evaluates different alternatives to
include a muscle fatigue model in the muscle recruitment
problem, for short-term high-intensity exercises, by comparing
their results with those from experimental measurements within
a benchmark case. All the methods yield reasonable estimations, but
the complexity of obtaining accurate subject-specific human models
(sometimes hidden in other works because parameters are generally
adapted to allow muscles to produce the calculated joint torques) is
highlighted in this study. The Law of Parsimony suggests that the
simplest model (2M) to achieve good results is ideal, thus depending
on the accuracy needed for a particular application, any of the three
models may be optimal. However, muscle models with individual
muscles (7M and 14M) can yield more accurate joint reactions and
bone stresses. The proposed novel muscle modeling and force
recruitment criterion (14M), which consider the muscular fiber-

FIGURE 12
Evolution of the resting (blue), active (green) and fatigue (red) compartments of the biceps long head, during the complete training session (including
MVCs every fourth set and resting periods).
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type distinction, show interesting preliminary results, but model
calibration needs to be improved to fully validate this approach.
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Nomenclature

List of symbols

α pennation angle

a muscle activation

Cf objective function of the load-sharing problem

φ elbow flexion angle

f l dimensionless force-length relationship

f v dimensionless force-velocity relationship

f PE dimensionless force-length relationship

F fatigue coefficient

FA group A fatigue coefficient

FB group B fatigue coefficient

FM
CE force exerted by the contractile element

FM
CE,Max maximum force allowed by the contractile element

FM
PE force exerted by the passive element

Fi
Min instantaneous minimum allowed force for muscle i

Fi
Max instantaneous maximum allowed force for muscle i

FPhys,Ext Min minimum allowed force by the extensor muscles

FPhys,Flex Max maximum allowed force by the flexor muscles

FM
0 maximum isometric force

FM*
0 scaled maximum isometric forces

FM
0,A group A maximum isometric force

FM
0,B group B maximum isometric force

FMT the vector of individual muscle forces

J Jacobian whose transpose projects the muscle forces into the joint
drive torques space

JFlex Jacobians whose transpose projects the muscle forces into the
joint drive torques space of flexor muscles

JExt Jacobians whose transpose projects the muscle forces into the
joint drive torques space of extensor muscles

k1 moment arms scale factor

k2 maximum isometric force scale factor

lM0 optimal muscle fiber length

lTS tendon slack length

Ma percentage of motor units activated

Mf percentage of motor units fatigued

Mr percentage of motor units resting

Q vector of joint torques obtained by inverse dynamics

QMax ,Flex maximum inverse-dynamics elbow joint flexion
moment

QMax ,Flex
* maximum inverse-dynamics elbow joint flexion

moment taking into account the passive moment generated by
the extensor muscles

r rest multiplier to augment recovery during rest

rA group A rest multiplier to augment recovery during rest

rB group B rest multiplier to augment recovery during rest

R recovery coefficient

RA group A recovery coefficient

RB group B recovery coefficient

vM contractile element velocity

vMT musculotendon velocity

Acronyms

2M joint level analysis, one flexor and one extensor actuator

3CC three-compartment controller model

3CCr three-compartment controller model with additional rest
recovery parameter

7M 7-muscle arm model

14M 14-muscle arm model

DAS dynamic arm simulator

EMG electromyography

MU motor units

MVC isometric maximum voluntary contraction

PCSA physiologic cross sectional area

TL target load
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