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ABSTRACT The performance of powertrain components in electric vehicles is tightly intertwined with
their thermal behavior. In practical applications, their temperature must be monitored and kept below certain
thresholds to avoid performance drops and failure. Sensors, however, cannot always be placed at critical
locations. Instead, it is possible to use numerical models to estimate relevant magnitudes during system
operation. Thermal effects in electric and electronic components can be represented in a compact way using
lumped-parameter equivalent circuits. These can be combined with sensor readings from the device under
study to develop digital twins and use them to monitor temperatures during test and operation. In this paper,
we put forward a method to generate thermal digital twins of e-powertrain elements such as power inverters.
The thermal equivalent circuit equations are obtained from a general-purpose simulation software tool and
optimized to enable real-time execution. Kalman filters are then used to fuse the simulation results from
this model and sensor measurements of component temperatures. The proposed method provides a way to
estimate the inputs and parameters of the thermal circuit and can be used to avoid the drift of the simulation
away from actual component behavior. The performance of this approach is demonstrated with a simple
benchmark example and the thermal equivalent circuit of a three-phase inverter.

INDEX TERMS Digital twin, e-powertrain components, Kalman filter, lumped-parameter thermal network,
model-based monitoring, thermal equivalent circuit.

I. INTRODUCTION
Electric vehicles (EVs) are complex engineering applica-
tions whose operation and performance are the result of
the interplay of a large number of components. Most of
these components themselves are multiphysics systems, with
their behavior defined by the interaction of mechanical, elec-
tronic, thermal, and other phenomena [1]. This is the case of
e-powertrain elements, such as batteries, inverters and electric
motors, responsible for the storage and transmission of the
vehicle energy to its wheels. The design and operation of
e-powertrain components requires the consideration of their
multiphysics effects and the coupling between them, as well
as the interactions of the components with the rest of the EV
and its environment.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gongbo Zhou.

Thermal effects, in particular, have a critical impact on the
behavior and durability of power electronics hardware and
electric machinery [2]. The operation of each e-powertrain
component must be kept within a range of admissible temper-
atures to avoid degraded performance and potential failure.
Exceeding a certain threshold temperature can, for instance,
demagnetize the permanent magnets of an electric motor or
cause damage to the semi-conductors of an inverter. Direct
measurements of the temperature of these components, how-
ever, are often not feasible, as sensors cannot be placed on the
most critical locations in many cases [3]. A way to keep track
of these critical temperatures during operation is the use of
virtual sensors that retrieve results delivered by the simulation
of a thermal model of the component. To enable the real-time
(RT) model-based health assessment of these devices, simpli-
fied compact representations of the complex thermal behavior
of the elements under study must be used, e.g., by means
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of model order reduction techniques [4]. Lumped-parameter
thermal networks (LPTNs) are an alternative approach to
obtain such RT-capable descriptions of the thermal behavior
of the components [5], [6], in the form of a thermal equivalent
circuit composed of elementary components such as thermal
resistors, capacitors, and sources. These components stand
for thermal path resistances, inertias and losses, and they are
connected to each other in the form of a resistive-capacitive
(RC) network. LPTNs are modular and can be easily gen-
erated using a software library of components; they have
also been shown to deliver RT performance when running
on platforms with limited computational resources, such as
ARM-based single-board computers [7]. On the other hand,
the fidelity with which they capture the real system behavior
is critically dependent on the correctness of their topology
and the accuracy with which their parameters are deter-
mined [8]. LPTNs allow a lower degree of detail compared to
finite element models (FEM); moreover, the characterization
of thermal resistances, capacities, and losses is subjected to
uncertainties, e.g., those stemming from parameter variation
as a consequence of component degradation [3], [9].

LPTNs can be used to introduce the consideration of ther-
mal effects experienced by e-powertrain components into
their digital twins (DTs), high-fidelity virtual models that
are employed to simulate the behavior of their real-world
counterparts and perform RT optimization [10] during prod-
uct development, testing, and operation. Ideally, DTs can
be executed in parallel with the physical systems that they
represent and used to provide information about their state
and performance that cannot be directly obtained in reality,
e.g., the junction temperature in power electronics devices or
themagnet temperature in electric motors. The two-way com-
munication between DTs and their physical environment also
allows correcting the operating point and model parameters
of the numerical simulation, preventing it from drifting away
from the physical system behavior due tomodeling uncertain-
ties and the accumulation of numerical integration errors. In
this case, the data obtained from sensors on the physical sys-
tem must be fused with the results delivered by the numerical
simulation of the DT. The different varieties of the Kalman
filter [11] are frequently used to this end. Methods based
on Kalman filters have been used to develop state and force
observers for multibody systems [12], navigation techniques
for terrestrial and extraterrestrial applications [13], [14],
parameter estimation solutions for nonlinear dynamics [15],
and road vehicle monitoring [16], among many other applica-
tions. Using a Kalman filter to fuse results of thermal models
and online measurements in power converters to monitor
junction temperature has been discussed in a number of pub-
lications. In [3], the approach focused on using an estimation
that relied on onlinemeasurements of the on-state voltage and
related it to the junction temperature via look-up tables. Other
possibilities include using indirect temperature readings to
determine the junction temperature [17]; recent work along
these lines [18] makes it possible to account also for input
disturbances. Similar strategies can be followed to conduct

the modeling and condition monitoring of other e-powertrain
components, such as permanent-magnet synchronousmotors,
e.g., [19], [20].

In this work, we put forward a framework to enable the
consideration of thermal effects in DTs of e-powertrain com-
ponents, using the Kalman filter to fuse numerical simu-
lation results and temperature readings from the physical
component under study. The starting point is a LPTN of the
device, generated with a circuit simulation software tool [7].
The original LPTN dynamics, formulated using dependent
variables as a system of differential algebraic equations
(DAEs), is transformed into a system of ordinary differen-
tial equations (ODEs) more suitable for effective state and
parameter estimation using a novel method introduced in this
work. This formulation enables the use of Kalman filters
to estimate parameters with uncertainties using temperature
measurements from the device during a preliminary tuning
stage. Once the LPTN has been initially adjusted, the Kalman
filter formulation can be used during operation runtime,
e.g., [21], [22], to correct errors in the simulation results
that stem from alterations in the original system inputs and
parameters, e.g., due to component degradation, and numeri-
cal errors in the integration process. Themethod is not limited
to the study of a particular component and was tested in
the simulation of a simple LPTN benchmark example and
the thermal model of an inverter for automotive applica-
tions. Results confirmed that the proposed method is able to
effectively estimate the thermal parameters of e-powertrain
components. It can also be used during operation, to represent
component behavior and monitor critical temperatures that
cannot be directly measured with sensors. The method was
able to correct simulation results when the system input, e.g.,
thermal losses in active electronic components, was subjected
to unknown variations.

II. MODELING AND ESTIMATION METHODS
The modeling and estimation methods required for the con-
sideration of thermal effects in DTs need to deliver accurate
results in an efficient way, guaranteeing the RT perfor-
mance of code execution. A possible application of the con-
cept is illustrated in Fig. 1, which shows the diagram of a
System-in-the-Loop (SiTL) test bench for automotive invert-
ers, an example of cyber-physical system (CPS) in which
a physical e-powertrain inverter (a) is tested in an environ-
ment that includes virtual elements, in this case the computer
simulation of the vehicle dynamics (b). Some components in
this setup, such as the inverter controllers (c) or the vehicle
driver (d), may be physical or virtual, depending on the
testing needs. The subsystems in this assembly exchange
information via a RT co-simulation interface (e), responsible
for orchestrating the simulation of the virtual components and
coordinating the input and output exchanges between them
and the physical systems.

Relevant magnitudes, such as the junction temperature of
the inverter electronic components, cannot be directly mea-
sured on the physical component [3], but can be estimated
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FIGURE 1. Example application: components of a SiTL test bench for e-powertrain inverters.

employing a DT of the inverter (f). The DT receives infor-
mation from the temperature sensors mounted on the inverter
and from the results delivered by the numerical simulation
of the vehicle. It also features a simplified thermal model
of the inverter, generated from a LPTN obtained from a
general-purpose circuit simulation software (g). Data from
these two sources of information are fused by a Kalman
filter (h) to improve the representation of the physical inverter
behavior delivered by the DT.

A. KALMAN FILTER
The discrete Kalman filter requires that the dynamics of
the system to be observed is provided in the following
discrete-time form

xk+1 = Fkxk +Gkuk + ωk . (1)

Equation (1) expresses the state x at time-step k + 1 as a
function of the state and the input u at the previous instant, k .
Terms F and G stand for the discrete-time system and input
matrices and can be considered invariant between instants k
and k + 1; ω represents the system noise, which is usually
assumed to be white Gaussian noise. The s sensors mounted
on the plant deliver an s × 1 array of measurements o,
which, in the absence of errors, could be expressed as a linear
combination hs×1 of the system state and input

hk = Hkxk + Nkuk + νk , (2)

where H and N are linear combination matrices and ν repre-
sents the sensor noise. The noise covariance matrices of the
system and the measurements are Q and R, respectively.

The discrete-time Kalman filter follows a predictor-
corrector scheme to estimate the state at the next time instant,
k+1, from the estimated state x̂+k and the inputs uk at current
step k [11]. The predictor yields a first approximation of the
state

x̂−k+1 = Fk x̂+k +Gkuk . (3)

The estimated error covariance matrix P is propagated as

P−k+1 = FkP+k F
T
k +Q, (4)

where superscript ()− stands for the a priori estimated values.
Once these first values have been calculated, the correction
step improves the predictions at time k + 1

x̂+k+1 = x̂−k+1 +Kk+1 (ok+1 − hk+1) , (5)

P+k+1 = (I−Kk+1Hk+1)P−k+1, (6)

where subscript ()+ now denotes a posteriori estimated val-
ues, I is the identity matrix and termK stands for the Kalman
gain, evaluated as

Kk+1 = P−k+1H
T
k+1

(
Hk+1P−k+1H

T
k+1 + R

)−1
. (7)

The Kalman filter is at the core of the DT ability to accu-
rately represent thermal effects in its physical counterpart,
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and it plays a twofold role. In the first place, it makes it possi-
ble to adjust uncertain LPTN parameters to match hardware
behavior. Second, it enables the estimation of temperature
values that cannot be directly measured during operation.
Figure 2 illustrates the operation of the Kalman filter inside
the DT for the latter role: data from the temperature sensors
(Tsensors) are fused with the results of the numerical simu-
lation of the LPTN (Tmodel) to deliver the estimated system
temperatures (Testimated).

FIGURE 2. Conceptual scheme of the Kalman filter usage.

The dynamics equations of the LPTN used as system
model by the Kalman filter, however, are generally not in
the form of Eq. (1) and must be transformed for their use
in the estimation algorithm. Additionally, RT performance
is a requirement in DT applications, so the resulting thermal
dynamics formulation has to be both compact and efficient.
The following Sections discuss how to arrive at such a for-
mulation starting from general purpose circuit simulation
equations.

B. LPTN GENERAL-PURPOSE EQUATIONS
In this work, the thermal model required by the Kalman
filter in Section II-A is generated from a LPTN of the
component under study. Lumped-parameter equivalent cir-
cuits are a compact way to describe the thermal behavior of
e-powertrain components. They represent the heat transfer,
thermal losses, and thermal inertia properties of a physical
system by means of lumped components comparable to those
of electric circuits. Each node in a LPTN corresponds to a
representative point in the physical system and has a tem-
perature T associated with it, which is analogous to voltage
in an electric circuit; heat flows Q between nodes play a
role similar to currents. Thermal conductivity and convec-
tion are represented with thermal resistors, thermal inertia
is modeled with capacitors, and heat generation, e.g., Joule
effect losses, is introduced in the model by means of current
sources [23], [24].

The starting point for the computational methods in this
paper is the modeling framework for electronic and thermal
circuits introduced in [7], which represents a systematic way
to assemble the dynamics circuit equations starting from
its topology and component properties, although alternative
descriptions could be used as well. Following this approach
in the case of a thermal equivalent circuit, the variables used
to describe the system are the temperature T of each node
and the heat flow Q through every thermal resistor, source,
and capacitor. They can be grouped in an n × 1 array of

system variables

q =
[
qTT qTQ

]T
, (8)

where terms qT and qQ contain nT node temperatures and
nQ heat flows, respectively. The n variables in q are not
independent, but are subjected to m algebraic constraints

8 (q, v, t) = 0, (9)

imposed by the satisfaction of Kirchhoff’s laws at the nodes,
temperature specifications at certain nodes, and the consti-
tutive equations of thermal resistors, namely 1T = QR
where 1T is the temperature difference between the nodes
connected by the resistor, Q is the heat flow through it, and R
is the thermal resistance. Note that, in general, Eq. (9) is also
a function of the system input, v. Thermal capacitors, in turn,
introduce a set of p linear ODEs in the form

Aq̇+ b = 0, (10)

where A and b are p× n and p× 1 terms. In general, circuit
solvability requires that n = m+ p.
Together, Eqs. (9) and (10) form a system of DAEs that is

suitable to describe the dynamics of a wide array of electric,
electronic, and thermal circuits in a straightforward way.
They can be easily generated from system description and
were used in [7] as the foundation of a general-purpose
forward-dynamics circuit simulator. Section III below intro-
duces a benchmark problem to illustrate the application of
this modeling approach to a simple thermal network.

Expressing the system dynamics as a DAE system, how-
ever, is not convenient for its use in DTs. Redundant vari-
ables have a negative impact on computational efficiency and
would add complexity to the estimation algorithm used to
fuse system dynamics and sensor information, described in
section II-A. A more advantageous formulation is obtained
expressing the dynamics in terms of a reduced set of vari-
ables z, via the elimination of the algebraic constraints in
Eq. (9), as detailed in Section II-C.
Thermal equivalent circuits have a particular structure that

can be exploited to perform this coordinate reduction and
develop efficient estimation algorithms. In the first place,
unlike in most electronic circuits, the algebraic constraints
8 = 0 in Eq. (9) can be expressed as a linear combination
of the system variables q and a set of r input values v that
evolve as the simulation progresses

8 = 8qq+8vv, (11)

where 8q and 8v are m × n and m × r matrices, respec-
tively. It will also be assumed that term b in Eq. (10) can be
expressed as

b = A1q, (12)

where A1 is a p × n matrix. The differential equations of
a regular thermal capacitor are compatible with the use of
Eq. (12). Terms 8q, 8v, A, and A1 can be considered to
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remain constant during the numerical integration of the sys-
tem dynamics from time instant k to the next one, k + 1,
although, in fact, some elements in these matrices, such as
thermal resistance values, may vary as node temperatures
evolve.

C. REDUCTION TO MINIMAL VARIABLES
The coordinate reduction put forward in this Section is based
on the elimination of the algebraic constraints in Eq. (9). It is
conceptually similar to the velocity transformation methods
commonly used in multibody system dynamics, e.g., [25],
although in this case the transformation can be directly per-
formed on the system variables given the linearity of Eq. (11).
The circuit dynamics thus becomes defined by the p differen-
tial equations in (10), a reduced set of p variables, z, and the
r inputs in v. The reduced variable set z could be selected
in several ways; in thermal circuits, the temperature of the
nodes to which the capacitors are connected, is a convenient
choice. Here, we will express z as a linear combination of the
dependent variables q

z = B0q, (13)

whereB0 is a p×nmatrix that will remain constant as long as
the selection of independent variables and the circuit topology
are not modified. Equations (13) and (11) can be grouped to
form the system of equations[

8q
B0

]
q+

[
8v 0
0 −Ip

] [
v
z

]
= 0, (14)

where Ip is the p × p identity matrix. Equation (14) can be
solved for q if its leading matrix is regular. This reveals the
requirement that B0 must complete the row rank of term 8q.
The inverse of the leading matrix is partitioned as[

8q
B0

]−1
=
[
S T

]
, (15)

where S spans the first m columns of the n× n inverse matrix
in Eq. (15), andT the last p ones. This provides the expression
of the coordinate reduction

q = Tz− S8vv = Tz+ Bv. (16)

Matrices T and B can be interpreted as

T =
∂q
∂z
; B =

∂q
∂v
. (17)

Differentiation of Eq. (16) with respect to time provides
the derivatives-level expression of the transformation

q̇ = Tż+ Ṫz+ Bv̇+ Ḃv, (18)

which can be substituted in Eq. (10) to obtain

0 = A
(
Tż+ Ṫz+ Bv̇+ Ḃv

)
+ b = 0. (19)

The system of ODEs in Eq. (19) expresses the dynamics of
the LPTN in terms of the minimal set of variables z and the
system input v and its derivatives.

D. DISCRETE STATE-SPACE REPRESENTATION
The discrete-time state-space matrices F and G required by
Eq. (1) can be obtained from Eq. (19). Substituting term b
from Eq. (12) and the expression of q from Eq. (16) yields

0 = ATż+AṪz+ ABv̇+ AḂv+ A1 (Tz+ Bv) = 0. (20)

Equation (20) can be rearranged as

ż = − (AT)−1
(
A1T+ AṪ

)
z

− (AT)−1 (A1B) v− (AT)−1 (AB) v̇. (21)

Grouping input v and its derivatives in a single term

u =
[
vT v̇T

]T
, (22)

the p × p state and p × 2r input matrices Fc and Gc that
correspond to the continuous state-space system equations
are identified from Eq. (21)

Fc = − (AT)−1
(
A1T+ AṪ

)
, (23)

Gc =
[
Gc1 Gc2

]
, (24)

where

Gc1 = − (AT)−1 (A1B) , (25)

Gc2 = − (AT)−1 (AB) . (26)

The discrete-time counterparts F and G of the matrices in
Eqs. (23) and (24) are evaluated as[

F G
02r×p I2r

]
= exp (4 τs) , (27)

where

4 =

[
Fc Gc

02r×p 02r×2r

]
, (28)

and τs is the time interval between instants k and k + 1.

E. APPLICATION OF THE FILTER TO STATE AND
PARAMETER ESTIMATION
The state space matrices in Eq. (27) can be directly used
in the Kalman filter expression in Eq. (1) if the filter is
employed to carry out the estimation of the system state. In
this case, x = z.
In some cases, however, it is also necessary to deal with

uncertainties that affect the thermal parameters of the system,
as the exact value of some thermal parameters could be ini-
tially unknown or vary during the operation of the component
under study. In such a case, system parameters could be ini-
tially adjusted by means of global optimization approaches,
especially when discussing moderate-size LPTNs [26]. The
Kalman filter can also be applied to the estimation of uncer-
tain parameters, besides the system state. However, the filter
formulation in Section II-D cannot directly handle such situa-
tions, as they require dealing with a new system of equations,
which is nonlinear. Instead, it is possible to use the Extended
Kalman Filter (EKF) to this end. These uncertain parameters
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can be grouped in term ρ, of size o × 1, and added to the
following extended state vector

x̄ =

 z
ż
ρ

 . (29)

Although adding state derivatives ż in (29) is not manda-
tory, it eases the evaluation of the Jacobian matrices in the
upcoming calculations.

The variables in the new state vector in Eq. (29) are
no longer independent, as they must satisfy the condition
0 = 0 imposed by Eq. (19). Therefore, the fulfillment
of Eq. (19) must be imposed during the application of the
extended Kalman filter. In this work, the perfect measure-
ments approach [27] is used to this end. The vector of mea-
surements o and term h in Eq. (2) have to be modified
accordingly. Equations 0 = 0, now referred to as perfect
measurements, are added to Eq. (2) to obtain

h̄ =
[
hT 0T

]T
, (30)

while the vector of measurements is enlarged with p zeros

ō =
[
oT 01×p

]T
. (31)

Term H̄ is then defined as

H̄ =
∂h̄
∂ x̄
=

[
∂h̄
∂z

∂h̄
∂ ż

∂h̄
∂ρ

]
. (32)

The evaluation of term H̄ in Eq. (32) is made simpler if
h̄ is expressed in terms of the independent variables z and
their derivatives. Term h is often a subset of the dependent
variables q, because sensors mounted on thermal systems
usually monitor the node temperatures or heat fluxes through
components. For this reason, h can be expressed as

h (q) = Cq, (33)

where C is a constant s × n matrix. The expression of the
differential equations 0 in terms of the dependent variables
is given in turn by Eqs. (10) and (12)

0 (q, q̇) = Aq̇+ A1q. (34)

From Eqs. (30), (33) and (34)

h̄ (q, q̇) =
[

Cq
Aq̇+ A1q

]
. (35)

Equation (35) is then rewritten in terms of the independent
variables z, the input v, and their derivatives ż and v̇ using the
transformations in Eqs. (16) and (18)

h̄ =
[

CTz+ CBv
A
(
Tż+ Ṫz+ Bv̇+ Ḃv

)
+ A1 (Tz+ Bv)

]
. (36)

The partial derivatives of terms in Eq. (36) are straightfor-
ward in most cases; for matrices T and B the inverse matrix
derivative is used together with Eqs. (15) and (16), e.g.,

∂
[
S T

]
∂ρ

= −
[
S T

] ∂
[
8q
B0

]
∂ρ

[
S T

]
. (37)

The continuous state-space form of the dynamics with the
expanded state x̄ is

˙̄x = F̄cx̄+ Ḡcu, (38)

where F̄c and Ḡc stand for the new state and input matrices,
respectively. Assuming that the system properties can be
considered constant during an integration step, these terms
can be approximated as

F̄c ≈

 0p×p Ip 0p×o
0p×p Fc 0p×o
0o×p 0o×p 0o×o

 , (39)

Ḡc ≈

 0p×r 0p×r
0p×r Gc1
0o×r 0o×r

 , (40)

where In is the n × n identity matrix. The use of matri-
ces F̄c and Ḡc does not result in an exact fulfillment of
Eq. (38); accordingly, the correction step of the extended
Kalman filter is responsible for the satisfaction of Eq. (19).
The discrete-form expression of matrices F̄c and Ḡc can be
obtained as [

F̄ Ḡ
02r×2p+o I2r

]
= exp

(
4̄ τs

)
, (41)

where

4̄ =

[
F̄c Ḡc

02r×2p+o 02r×2r

]
, (42)

and the Kalman filter equations (1) and (2) are rewritten as

x̄k+1 = F̄k x̄k + Ḡkuk , (43)

h̄k = H̄k x̄k + N̄kuk , (44)

where N̄ is the feedthrough matrix N enlarged with p rows of
zeros. The resulting Kalman filter equations then parallel the
expressions in Section II-A.

1) PARAMETER ESTIMATION DURING INITIAL TUNING OF
LPTNs
The approach described in Section II-E makes it possible to
estimate LPTN parameters, besides the system state. This
can be done at two stages in the simulation cycle. First,
themethod can be used for a preliminary tuning process of the
model parameters, in which modeling deviations between the
LPTN and the actual system properties are corrected. After
this initial tuning, the filter can be used during operation
runtime to keep track of variations of the system properties,
performing an online adjustment of the corresponding param-
eters. Both approaches can be used independently from each
other; in fact, the EKF online estimation can be used even if
the preliminary parameter adjustment was conducted using a
different optimization method, e.g., [26].

The preliminary tuning process can be performed in an
iterative way. The initial set of parameters of the LPTN
is ρ0. Then, a test run of the system under study is per-
formed and sensor readings are fed to the Kalman filter
defined by Eqs. (43) and (44). A new set of parameters, ρ1,
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is obtained as a result and used to update the LPTN properties.
This procedure may have to be repeated in cases in which
the convergence of the parameter values is slow. In this
case, the operation continues until the difference χ between
two consecutive iterations i and i + 1 converges below an
user-defined threshold error ε, i.e.,

χ = ‖ρi − ρi+1‖ < ε. (45)

In offline parameter estimation procedures, it would be
advisable to repeat the procedure starting from different ini-
tial parameter sets, ρ0, to ensure that the algorithm converges
to the same solution. It should be pointed out that the esti-
mation methodology in this Section requires that the number,
type, and position of the sensors are compatible with the esti-
mation goals; the observability test [28]must be satisfied. The
system excitation used during parameter identification must
be sufficient to identify relevant values, especially thermal
capacitances, which require a transient phase as described in
Sections III-B2 and IV-A2.

III. BENCHMARK PROBLEM
The methods described in Section II were tested in the sim-
ulation of the thermal dynamics of two examples. The first
one is a simple thermal RC circuit that can be used as bench-
mark problem, shown in Fig. 3. It should be noted that this
benchmark does not represent any physical system, and is
intended to serve as a test case to illustrate the application
of the method in Section II. The results obtained from the
simulation of the benchmark are used to determine the ability
of the proposed method to correct modeling errors in the sys-
tem parameters and disturbances in its input. The benchmark
problem also illustrates the use of the method and provides
a means to replicate its results in a straightforward fashion.
The circuit consists of one heat source Q0 connected to three
resistors and two thermal capacitors. The system contains
four nodes, of which number 4 is assumed to represent air
at a constant temperature TAIR = 300 K.

FIGURE 3. Benchmark RC thermal circuit.

The heat generated at the source has a constant valueQ0 =

10 W, resistors R1, R2, and R3 have values of 1, 2, and 3 K/W
respectively. The parameters of the capacitors are C1 =

0.1 J/K and C2 = 0.2 J/K and their initial temperatures are
set to T 0

2 = 299 K and T 0
3 = 301 K. Temperature sensors

can be placed at nodes 1, 2, and 3. Four estimation scenarios
are considered:
• Resistor estimation: Parameters R1, R2, and R3 are
estimated using sensors in nodes 1, 2, and 3. Initial

FIGURE 4. Time-history of the increment of node temperatures in the
benchmark problem for Q0 = 10 W (reference solution).

values R1 = R2 = R3 = 10 K/W are assumed for the
resistances.

• Capacitor estimation: Parameters C1 and C2 are esti-
mated using sensors in nodes 2 and 3. Initial values for
the capacitance of these elements are C1 = 1 J/K and
C2 = 10 J/K.

• Source parameter estimation: Q0 is selected as uncer-
tain parameter to be determined. An initial value Q0 =

1 W is assumed and corrected using a single temperature
sensor placed on node 3.

• State estimation with input disturbance: The full sys-
tem state is estimated using temperature measurements
from nodes 2 and 3. A modeling error is introduced in
the heat source: the thermal model used in the estimation
features a constant heat source with Q0 = 10 W, while
the actual heat generation follows a sinusoidal function,
Q0 = 10(1+ sin (10π t)) W.

For the purposes of this benchmark problem, it is assumed
in each scenario that only the target parameters or input
are uncertain, while every other parameter in the model is
accurately known. Often, however, uncertainties can be found
in several parameters simultaneously. For instance, thermal
resistance and capacitance parameters may need to be char-
acterized for the same circuit. In such a case, resistors can
be adjusted from the steady-state results of the component
at hand, even if the capacitance values of the system are not
known yet. Once the resistors have been corrected, the system
capacitances can be estimated from the transient response of
the physical system. This procedure is illustrated with the
problem in Section IV.

In all cases, a simulation of the thermal dynamics of the
circuit with exact parameters was used as reference solution
and as source of sensor measurements. Reference tempera-
tures at nodes 1, 2, and 3 are shown in Figs. 4 and 5 for the
two types of heat sources, namely constant and sinusoidal.
The estimation scenarios are summarized in Table 1.
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FIGURE 5. Time-history of node temperatures in the benchmark problem
for Q0 = 10(1 + sin(10πt)) W (reference solution).

A. SYSTEM MODELING
The benchmark RC thermal circuit can be modeled with a set
of n = 10 dependent generalized variables q. Of these, four
correspond to the temperatures of the nodes and the other six
to the heat flows through the components, shown in Fig. 3.
The corresponding variables in Eq. (8) for this example are

qT =
[
T1 T2 T3 T4

]T
, (46)

qQ =
[
QS QR1 QR2 QR3 QC1 QC2

]T
. (47)

The input for this system consists of the heat introduced by
the source and the air temperature at node 4

v =
[
Q0 TAIR

]T
, (48)

so r = 2. The variables in q and the input v must fulfill
m = 8 algebraic equations 8 = 0 imposed by Kirchhoff’s
equations at each node, the fixed temperature of node 4,
and the constitutive equations of heat sources and thermal
resistors, which relate the heat flow through each component
to its physical properties. The expression of Eq. (9) for this
RC circuit is

8 =



QS − QR1
QR1 − QR2 − QC1
QR2 − QR3 − QC2

T4 − TAIR
Q0 − QS

T1 − T2 − QR1R1
T2 − T3 − QR2R2
T3 − T4 − QR3R3


= 0. (49)

Finally, each thermal capacitor introduces a differential
equation in the form

CṪa = QC , (50)

where C is the capacitance, Ta is the temperature of the
node to which the capacitor is connected, and QC is the

TABLE 1. Scenarios for testing the proposed Kalman filter.

heat flowing into the component. The two capacitors in this
example introduce p = 2ODEs in the form of Eq. (10), where
terms A and b take the form

A =
[
0 −C1 0
0 0 −C2

02×7

]
, (51)

b =
[
QC1
QC2

]
. (52)

The resulting system of DAEs given by Eqs. (49), (51),
and (52) can be transformed into a system of ODEs through
the selection of an appropriate set of minimal variables via
Eq. (13). The number of independent variables matches the
name of ODEs in the problem, so the temperature at the
thermal capacitors is a reasonable choice

z =
[
T2
T3

]
. (53)

Minimal variables z can be related to the generalized set q
through the constant transformation matrix

B0 =

[
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

]
. (54)

1) ESTIMATION
Parameter and state estimation for this example are conducted
using the methods in Section II. The timestep τs is set to 1 ms
and sensor measurements are introduced into the correction
step of the filter every time a step is taken.

Sensor measurements are assumed to present Gaussian
noise with mean 0 K and standard deviation 0.5 K. TermR is
the covariance matrix of the measurement noise, a diagonal
matrix whose elements are set to 0.25 K2 for the physical
sensors and to 0 K2 for perfect measurements. Term P is a
diagonal matrix as well, with elements initially set to 10 in
SI units for the parameters and 0.01 in SI units for the states.
Matrix Q was adjusted to achieve a constant power spectral
density (PSD) of the innovation.

B. RESULTS
The results obtained in the solution of the four problems in
Section III, namely resistance, capacitance, heat source, and
temperature estimation in the benchmark circuit are shown
next.

1) RESISTOR ESTIMATION
System parameters, including resistance and capacitance
values, must be adjusted before using the model during
operation. The first estimation scenario considered involves
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FIGURE 6. RC circuit: Evolution of resistance values during estimation.

correcting resistancesR1,R2, andR3 in the benchmark circuit.
Initial values R1 = R2 = R3 = 10 K/W were used as first
approximation to the actual system parameters

ρ =
[
R1 R2 R3

]T
. (55)

The sensor readings used in this case were the temperatures
of nodes 1, 2, and 3.

o =
[
T sensor
1 T sensor

2 T sensor
3

]T
. (56)

These can be expressed in terms of the system independent
variables and inputs, and the corresponding virtual sensors
take the expression

h =

 T2 + Q0R1
T2
T3

 . (57)

Figure 6 shows the time-history of the resistance parame-
ters as the estimation progresses. A single simulation run was
sufficient to achieve convergence to all the reference values.

2) CAPACITOR ESTIMATION
The second scenario consists in the adjustment of the capac-
itance parameters C1 and C2,

ρ =
[
C1 C2

]T
. (58)

Initially, C1 = 1 J/K and C2 = 10 J/K. The vectors of
sensor measurements o and virtual sensors h in this case are

o =
[
T sensor
2 T sensor

3

]T
, (59)

h =
[
T2
T3

]
. (60)

Noticeable differences exist between resistance and capac-
itance estimation. The convergence of the capacitor parame-
ters is slower; moreover, relevant information for this process
can only be obtained during transients, as the system becomes

FIGURE 7. RC circuit: Convergence of capacitance values during iterative
adjustment process.

non-observable once steady state is reached, when the heat
flow through the capacitors falls to zero. Accordingly, large
variations of the capacitor temperatures are required to make
the parameter estimation possible, and an iterative process
is likely to be necessary. In this case, an admissible error
ε = 10−10 J/K was set and convergence was achieved after
11 iterations. Figure 7 shows the evolution C1 and C2 during
the procedure.

3) SOURCE HEAT ESTIMATION
The purpose of this test scenario is the correction of input
disturbances. The constant heat source in the LPTN is initially
assumed to deliver Q0 = 1 W, when its actual value is
Q0 = 10 W. The problem is addressed performing a param-
eter estimation, in which

ρ =
[
Q0
]
. (61)

Sensor readings include only the temperature at node 3.

o =
[
T sensor
3

]
, (62)

h =
[
T3
]
. (63)

Figure 8 shows the estimation results for input Q0 and its
residual from t = 4 s to t = 10 s.

4) STATE ESTIMATION WITH INPUT DISTURBANCE
The final numerical experiment with the RC thermal circuit
consists in the estimation of the system state when the input
is subjected to unknown disturbances. The model used in
the estimation assumes a constant heat input at the source
Q0 = 10 W, whereas the actual heat generation follows the
expression Q0 = 10(1 + sin(10π t)) W. The unknown input
is treated as a parameter,

ρ =
[
Q0
]
. (64)

Two temperature sensors were placed at nodes 2 and 3.
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TABLE 2. Simulation platform features.

FIGURE 8. RC circuit: Evolution of the input Q0 and its residual during
source estimation.

Figure 9a compares the temperature of the capacitor 1, T2,
obtained with the state estimation method to the reference
solution delivered by the simulation of the system dynamics
with exact parameters and input. The plot also shows the
value of T2 obtained in the simulation of the circuit dynamics
if the input disturbance is not corrected. Figure 9b contains
the residual of the temperature of node 2.

The computations required for the solution of this problem
were performed on two different platforms, namely
• a conventional Dell XPS 15 7590 laptop running Linux
(Laptop),

• a Raspberry Pi 4 (RPi4).
The features of each simulation environment are summarized
in Table 2. These selected platforms can be integrated in an
application like the one depicted in Fig. 1.
The GNU Compiler Collection (GCC) version 10.2.0 was

selected to build the Linux executables on Kubuntu, whereas

FIGURE 9. RC circuit: Temperature at node 2, T2, with heat generation
Q0 = 10(1 + sin(10πt)) W and its residual.

TABLE 3. Elapsed times in a 5-s state estimation of scenario 4 of the
benchmark circuit.

version 8.3.0 was used on Raspbian OS. Table 3 shows the
elapsed times in the solution of a 5-s state estimation of case 4
(State estimation with input disturbance) of the benchmark
problem. The RPi4 was able to perform almost 15 times faster
than RT, whereas the Laptop completed the estimation around
86 times faster than RT.

IV. INDUSTRIAL EXAMPLE: THREE-PHASE INVERTER
The estimation methods in Section II were also applied to
a three-phase inverter for automotive applications, shown
in Fig. 10.
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FIGURE 10. A dual, three-phase inverter for automotive applications.

FIGURE 11. Inverter material stack-up (thicknesses are not to scale).

An inverter is an electronic control unit (ECU) that
converts direct current (DC) into alternating current (AC).
Energy conversion is performed by commuting output poten-
tials between DC voltage terminals and producing a moving
average value that is applied to the load. Crucial compo-
nents in this ECU are the power devices used to perform
high voltage commuting under variable current loads at high
frequency; this activity causes considerable heat losses that
need to be dissipated.

The power modules in this research evacuate heat through
a cooled aluminum heatsink on which three direct-bonded
copper (DBC) substrate layers are mounted [29]. Each DBC
layer supports an inverter phase that contains two MOSFET
blocks. An overview of the power module structure and mate-
rial stack-up are shown in Figs. 12 and 11, respectively.
Figures 13 and 14 show the thermal equivalent circuits

of a single branch and the heatsink and coolant part of the
inverter, respectively. Each MOSFET block is modeled with
a heat source Qi, where i = 1, . . . , 6, which represents its
thermal losses, and a resistor Rdie that stands for its thermal
resistance. Due to its relatively small mass, the capacitance of
the MOSFET block was neglected. The DBC is represented
using a resistor Rdbc and a thermal inertia Cdbc. The welding

FIGURE 12. Power module structure.

FIGURE 13. A branch in the thermal model of inverter, including a DBC
and two MOSFET blocks.

FIGURE 14. Heatsink and coolant blocks in the thermal model of the
inverter.

between each DBC and the heatsink is a thin layer of silver
paste represented by Rsp.
The last part of the inverter, the heatsink, is made up of

two aluminum blocks. The first one is solid and represented
by Rhs and Chs, whereas the one in contact with the coolant
is a pin-fin block defined by Rw and Cw.

The LPTN of this inverter includes 14 nodes and 23 com-
ponents: 6 heat sources, 12 resistors and 5 capacitors. When
modeled with dependent variables, the thermal dynamics is
described by a system of DAEs with 5 differential and 32
algebraic equations, in which n = 37, p = 5, m = 32. The
number of input values is r = 7, including the heat generation
at eachMOSFET block and the temperature of the refrigerant.
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The estimation of junction temperatures is an important
application of LPTNs [3], [17], [18]. If this temperature rises
above admissible levels the inverter performance degrades
and may eventually lead to permanent damages in the com-
ponent. Temperature sensors, however, cannot be placed at
the MOSFET junction. In the majority of commercial power
modules, temperature sensors are placed on the copper layer,
at the points labeled S1, S2, and S3 in Fig. 12. The junction
temperature can be estimated from these readings using the
methods in Section II and used later as input for temperature
control methods, e.g., [30], [31].

5) REFERENCE SOLUTION
A reference solution was generated for this example using
a CFD simulation of the inverter. For the purposes of this
study, this solution is considered to be exact. The heat losses
at each MOSFET block had a constant value Q0 = 208 W;
the refrigerant temperature was Twater = 343.15 K.

6) LPTN ADJUSTMENT
The LPTN that represents the thermal behavior of the inverter
needs to be adjusted so that it matches the reference solution.
Once a topology is selected for the equivalent thermal circuit,
initial values of its R and C parameters are assigned based on
the physical properties of the components. Due to modeling
uncertainties, these initial values may not exactly represent
the actual ones necessary to describe the system dynamics.
A first use of the estimation methods in Section II is the
determination of the values of the resistors and capacitors
that need to be used in the LPTN. During this initial tuning
phase, additional temperature sensor readings, other than the
ones at points S1, S2, and S3, are used. It is possible to use
extra sensors during the characterization of the component
in a test bench; however, these will not be available during
regular operation of the component.

In all estimations of this example, the covariance matrix of
themeasurement noiseR is a diagonalmatrix whose elements
are set to 0.25 K2 for the physical sensors and to 0 K2 for
perfect measurements. Term P is a diagonal matrix as well,
with elements initially set to 10 in SI units for the parameters
and 1 in SI units for the states. MatrixQwas adjusted to make
the PSD of the innovation constant.

7) JUNCTION TEMPERATURE ESTIMATION
Once the LPTN parameters have been adjusted, the equiva-
lent circuit can be used to estimate the junction temperature of
the inverter during operation. Four scenarios are considered:
• Case 1: The heat losses at the MOSFETs are constant
and equal to those in the reference solution,Q01 = Q0 =

208 W.
• Case 2: MOSFET heat losses follow the piecewise
function

Q02 (t) =


0 W, 0 s ≤ t < 0.1 s
208 W, 0.1 s ≤ t < 1 s
312 W, 1 s ≤ t < 2 s
104 W, t ≥ 2 s

(65)

FIGURE 15. MOSFET heat losses in inverter, case 2.

FIGURE 16. MOSFET heat losses in inverter, case 3.

shown in Fig. 15.
• Case 3: MOSFET heat losses depend on the junction
temperature Tj

Q03
(
Tj
)
= 1.355Tj − 206.58 W, (66)

as shown in Fig. 16.
• Case 4: The heat losses at the MOSFETs are con-
stant and equal to Q04 = 600 W, and the temperature
of the refrigerant evolves according to the expression
306.15− 13e−0.75t K.

Temperature estimation during operation relies only on sen-
sor measurements at points S1, S2, and S3, which are the only
readings available from the point of view of the DT of the
inverter.

A. RESULTS
The resistors and capacitors of the inverter must be adjusted
prior to the use of the LPTN during operation inside a DT.
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In this section, the extended Kalman filter is first used to
adjust the thermal parameters of the inverter, starting from a
set of values determined using heat transfer formulas. Then,
the adjusted thermal circuit is used during operation to esti-
mate the junction temperature of the MOSFET blocks, using
temperature sensors placed on the accessible nodes of the
components.

1) RESISTOR ESTIMATION
As mentioned in Section IV, results from the CFD sim-
ulation of the inverter are used as reference values in
this example and considered an exact solution. During the
parameter-adjustment stage, additional sensors, other than
the ones placed at S1, S2, and S3, are required to estimate
the sought parameters. This is analogous to the instrumen-
tation of a physical inverter on a test bench during its char-
acterization phase. To keep the estimation process realistic,
we avoided placing these sensors at nodes where it would
have been difficult to install them on the physical compo-
nent, such as the MOSFET junction (nodes 1-6) or the silver
plate between the DBC and the heatsink (node 10). For the
characterization of LPTNs in Figs. 13 and 14 three sensors
were placed at nodes 7, 11, and 12, namely the copper layer
on the DBC and the upper and lower parts of the heatsink.
The measurements were assumed to have a Gaussian noise
with mean 0 K and standard deviation 0.5 K as in section III.
It must be mentioned that, with these sensors, the values of
Rdie and Rsp are not observable and cannot be corrected via
estimation with the Kalman filter.

Initial values for the resistors were determined using only
geometry and material properties [32] as

R =
e
kA
, (67)

where e is the thickness of the material, k is the thermal
conductivity and A is the cross section of the considered
component.

The resistance values yielded by Eq. (67) will not generally
match the actual properties of the inverter components. In
the first place, Eq. (67) assumes that all the heat flow is
perpendicular to the component section, which is often not the
case. Moreover, the thermal and geometrical properties of the
inverter elements are subjected to uncertainty and cannot be
determined with absolute accuracy. Accordingly, the starting
values delivered by Eq. (67) need to be corrected to describe
the system dynamics appropriately.

The initial set of resistance values was improved through
estimation with the Kalman filter. A 5-s simulation of the sys-
tem dynamics during estimation case 1 was carried out to this
end. In order to tune the resistors, only steady-state readings
of the system magnitudes were used. The circuit capacitors
are not yet adjusted in this stage, and they introduce devia-
tions from the actual system behavior during transients. For
this reason, only sensor measurements between t = 4 s and
t = 5 s were used.

FIGURE 17. Convergence of the inverter resistor values.

TABLE 4. Initial and adjusted values of the thermal resistors in the LPTN
of the inverter.

TABLE 5. Stability boundaries for the uncorrected starting values of the
thermal resistor estimation for the inverter.

An iterative procedure was necessary to ensure the con-
vergence of the resistance parameters below an admissi-
ble threshold ε < 10−10 K/W; the convergence is shown
in Fig. 17.

Only for comparison purposes, the CFD data are used here
as well to calculate the equivalent resistors that would fulfill
Fourier’s Law between each pair of nodes of the LPTN as

Rij =
Ti − Tj
Qij

, (68)

where Ti and Tj are the temperatures at the pair of nodes i and
j, Rij is the equivalent resistor between these nodes, andQij is
the heat flow through the resistor in steady-state. It should be
stressed that these values are not used during the estimation
process.

The resistance parameters before and after estimation are
shown in Table 4. Resistors Rdie and Rsp could not be adjusted
during estimation and their values were left unchanged.

The EKF estimation procedure may not converge depend-
ing on the starting values determined using Eq. (68). Table 5

97396 VOLUME 9, 2021



B. Rodríguez et al.: Thermal Parameter and State Estimation for DTs of E-Powertrain Components

summarizes the convergence limit of the initial parameter set.
It is possible to achieve convergence starting from thermal
resistance values about 50 times greater than the real values
or one or two orders of magnitude smaller.

2) CAPACITOR ESTIMATION
After the correction of the circuit resistors, capacitors Cdbc,
Chs, andCw in Figs. 13 and 14 were adjusted with the Kalman
filter. This adjustment is not possible using steady-state sen-
sor readings, as they are not affected by capacitance values,
so measurements during transients must be used instead.
Each capacitor was tuned using the readings from the closest
sensor; the length of the transient necessary to perform the
estimation was determined by the evolution of the node tem-
perature. Again, an iterative process was required to achieve
convergence; the threshold error was ε = 10−10 J/K.
The sensors used to adjust resistors and capacitors were the

same. Initial capacitance values were calculated as

Ci = mi cpi, (69)

where mi is the mass associated to node i, and cpi is the
specific heat of the material.

Figures 18 and 19 show the convergence of the adjustment
process of capacitors Cdbc and Cw. The initial and corrected
capacitance values are displayed on Table 6. Table 7 shows
the effect of initial capacitance values on the convergence of
the capacitor estimation. Admissible values range between
20-50 times greater and 100 times smaller than the true ones.
It has been observed, however, that the number of iterations
required to achieve convergence increases for large differ-
ences between the actual value and the starting point.

FIGURE 18. Convergence of the capacitor parameter Cdbc of the inverter.

Figure 20 compares the temperature at node 7 of the
inverter during a 5-s simulation before and after correcting
the LPTN capacitor and resistor parameters adjusted with the
extendedKalman filter. The reference solution corresponds to
the values delivered by the CFD simulation of the component.

TABLE 6. Initial and adjusted values of the thermal capacitors in the
LPTN of the inverter.

TABLE 7. Stability boundaries for the uncorrected starting values of the
capacitor estimation.

FIGURE 19. Convergence of the capacitor parameter Cw of the inverter.

FIGURE 20. Temperature of node 7 of the inverter during simulation with
uncorrected and corrected LPTN resistor and capacitor parameters.

3) JUNCTION TEMPERATURE ESTIMATION DURING
OPERATION
Once the system parameters have been adjusted, the LPTN
can be used as thermal DT of the inverter during operation.
The four cases in Section IV-7 were used as test scenarios.
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FIGURE 21. Estimation of the junction temperature of the inverter and its
residual using a sensor on the copper layer for case 1.

Only sensors placed on the DBC, at nodes S1, S2 and S3,
which are actually mounted on the inverter during operation,
were used to estimate the junction temperature of the MOS-
FETs. The sensors are considered to have a Gaussian noise
with mean 0 K and standard deviation 0.5 K.

Figure 21a shows the junction temperature obtained during
a 5-s simulation of the circuit dynamics with the constant
value of Q0 = 208 W used in case 1. In this case there
are not input disturbances and heat losses at the MOS-
FET blocks are assumed to be known accurately. Both the
direct forward-dynamics of the LPTN after correction of
its parameters and the estimation with Kalman filter were
able to follow the reference value of T1 obtained with CFD
simulation.

Figures 22 and 23 represent the simulation results obtained
in test cases 2 and 3, in which the input heat losses are no
longer constant, but are functions of time and temperature
as defined in Eqs. (65) and (66). Figure 24 presents the
simulation in test case 4, with constant heat losses and a
variable refrigerant temperature.

The estimation method was able to appropriately han-
dle the uncertainty in Q0 from the readings of the sensors
mounted on the system. The direct simulation of the circuit
dynamics is unable to follow these changes, even after adjust-
ing the circuit parameters.

It is worth mentioning that resistances Rdie and Rsp could
not be adjusted prior to operation due to the lack of appro-
priate sensor readings. In spite of this, the estimation of the

FIGURE 22. Estimation of the junction temperature of the inverter and its
residual using a sensor on the copper layer for case 2.

FIGURE 23. Estimation of the junction temperature of the inverter and its
residual using a sensor on the copper layer for case 3.

junction temperature in all cases shows a reasonably low
error.
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FIGURE 24. Estimation of the junction temperature of the inverter and its
residual using a sensor on the copper layer for case 4.

The obtained results confirm that the estimation methods
in Section II can be used to overcome the effect of parameter
and input uncertainties in the simulation or thermal equivalent
circuits. In particular, when appropriate sensor readings are
available, input disturbances can be accounted for in real-time
during component operation.

TABLE 8. Elapsed times in a 5-s junction temperature estimation of each
inverter case.

Table 8 shows the times elapsed in the solution of the
four junction temperature estimation scenarios. These results
confirm that the estimation method used is compatible with
its use in real-time applications with the computing platforms
described in Table 2.

V. CONCLUSION
Monitoring the thermal behavior of electronics components
in powertrainsmakes it possible to improve their performance
while avoiding excessive temperatures that could lead to
their malfunction and damage. In most cases, however, sen-
sors cannot be directly placed on critical locations. LPTNs,
together with appropriate estimation techniques, can be used
to develop digital twins of e-powertrain components and keep
track of these relevant temperatures during system operation.

Efficient LPTNs of e-powertrain components can be
obtained with the methodology described in this paper, start-
ing from a general-purpose formulation of the circuit dynam-
ics based on dependent variables. This formulation enables
the simple definition and assembly of individual circuit com-
ponents, such as thermal resistors and capacitors, establishing
their thermal parameters from the nature of the physical
properties of the elements that they represent. The dynamics
equations thus formulated are later transformed into a mini-
mal set of differential equations that can be used to develop
computationally efficient estimation methods.

An input, parameter, and state estimator was put forward
in this paper using the above-mentioned formulations and
the Kalman filter. The proposed method can be used in two
stages. Prior to the operation of the component, the parame-
ters of the LPTN can be estimated and adjusted to match the
behavior of the system that they represent. Once this stage is
complete, the estimation method can be used to handle input
disturbances and accurately monitor relevant temperatures in
the component under surveillance, fusing information com-
ing from both the LPTN that represents the system and sen-
sors mounted on the actual device. The methods were tested
in the simulation of a benchmark RC thermal circuit and the
thermal model of an automotive inverter. Results confirmed
the ability of the proposed estimation approach to provide
meaningful information about component temperatures, even
in the presence of significant input disturbances.
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