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A B S T R A C T

Computational efficiency is a critical aspect of multibody dynamics. Recent developments in
linear algebra libraries and hardware architectures allow the multibody community to improve
the performance of their kinematic and dynamic formulations. Kinematic substructuring of
multibody systems may take great advantage of these resources by dividing the multibody
system into modules that can be solved more efficiently than the whole set of equations of the
multibody system at once. This work discusses some advantages of the kinematic substructuring
based on mobility criteria over methods based on linear graph theory. It also introduces detailed
information on the algorithms we have developed for the computational structural analysis
of planar and spatial multibody systems. Structural transformations easily generate different
kinematic substructures, ordered and classified under various criteria depending on the analyst’s
needs, such as robustness and efficiency. A graphical user interface may guide the analyst while
defining the topology of the multibody system and show detailed information about the obtained
results. The algorithms are explained through an example, and the advantages of this method
are reinforced as applied to several spatial multibody systems.

. Introduction

Multibody systems are composed of rigid or flexible bodies connected by different types of mechanical joints, allowing certain
elative motions, rotations or translations, between the joined bodies. They are present in a broad range of applications in robotics,
iomechanics, industrial machinery, or the automotive and aerospace industry. Structural, kinematic and dynamic analysis of
ultibody systems are essential tools needed for many tasks, as their design, simulation and control.

These tasks demand improved resources such as theoretical formulations, hardware configuration and software implementation,
hich have to be efficiently combined. To achieve this efficient combination of resources, up-to-date developments in hardware,
s parallel computing capabilities of new processors should be included in software development (i.e. linear algebra solvers with
mplicit parallelism) and these new capabilities, should be exploited in the theoretical formulations and practical implementation
f the analysis of multibody systems (MBS).

Concerning the theoretical formulations, both global and topological approaches are traditionally employed to model and solve
he kinematics and dynamics of MBS. Global approaches use a set of coordinates (reference point or natural) to model the multibody
ystem without considering its topology (open or closed loops). These coordinates are related through a set of constraint equations
hich are simpler and more prone to be automatically obtained than in the topological formulations with joint coordinates. These
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advantages make global formulations good candidates for the automatic modelling of multibody systems [1–4]. The approaches in
natural coordinates usually lead to smaller size problems than reference point approaches, especially in spatial MBS [5].

The main drawback of the global approaches is that, as the complexity of the problem increases, the number of coordinates,
onstraint equations and the size of any other matrix involved in their analysis increases accordingly; solving these systems of
quations efficiently is a permanent field of research.

On the contrary, in the topological approaches, kinematic substructuring techniques exploit the topology of a multibody system
o obtain its kinematic structure; that is, an ordered set of kinematic chains (known as subsystems or modules), improving their
fficiency in three ways: first, the obtained subsystems can be modelled with a reduced number of coordinates; second, if the
educed-size subsystems are kinematically determined, as in our approach, the multibody system may be analysed, at each time
tep, by solving the subsystems in its kinematic structure, rather than solving the set of dependent coordinates of the complete
ultibody system [6]; and third, this efficiency might be further improved using explicit parallelism techniques as OpenMP or MPI

o solve these modules in distributed environments (parallel) [7].
There are several interesting questions related to the kinematic substructuring phase in topological approaches, as: how many

inematic structures can be obtained for a given multibody system and how to obtain them; which one is more appropriate for
utomatic modelling (simplicity of the constraint equations) or might be more efficiently solved (hierarchical dependency of the
ubsystems), how the kinematic structure is affected if the topology of the multibody system changes along the simulation time,
r how to avoid subsystems singular configurations during analysis. The theory of structural analysis, a field of mechanisms and
achines theory, offers different methods for kinematic substructuring of multibody system and answers to some of these questions
hich will be addressed here, but others have to be further investigated.

Different algorithms which exploits the topology of multibody systems are used for kinematic substructuring; the most frequently
sed are linear graph algorithms (LGA) 𝑦 and mobility-based algorithms (MBA).

In the linear graph theory algorithms, the kinematic structure of the MBS is formed by a set of independent open and closed
oops (subsystems) which, in some cases, can be hierarchically organised, and then, more efficiently solved [8–13]. On the contrary,
n the mobility-based algorithms, the kinematic structure of the MBS is formed by an ordered set of kinematically determined chains
f the shortest length, known as modules or structural groups, which can be solved hierarchically [14–21]. Algorithms based on
inear graph theory or mobility criteria can be applied by visual inspection in basic multibody systems to obtain their kinematic
tructure. Still, computational implementation is needed when dealing with more complex ones.

An interesting review about how these two techniques have been applied in the last decades to structural analysis and structural
ynthesis problems can be found in [22]. Structural analysis studies the kinematic structure of a given MBS, whereas structural
ynthesis aims to design multibody systems under specific topological criteria; a typical example of the latter would be to generate
mech different mechanisms of specific mobility 𝑓 , composed by 𝑁 of bodies and which must be connected by a particular type

f joints (i.e. revolute joints). Structural synthesis is frequently based on computational algorithms since the number of generated
ombinations is relatively high (some authors agree that for 𝑁 = 10, 𝑓 = 1 connected only by revolute joints, up to 𝑁mech = 1834
ifferent mechanisms can be generated). To identify the various linkages that solve the synthesis problem, first, all the possible
ombinations with the given topology must be generated. Then, kinematic substructuring techniques are applied to discard both
igid sub-chains and isomorphisms amongst them.

However, the substructuring techniques reviewed in [22] are not aimed at the kinematic or dynamic analysis of multibody
ystems. The following section covers this gap introducing how kinematic substructuring has been used in the last decades to analyse
ultibody systems under topological approaches and how these techniques would perform the kinematic substructuring of a given
ultibody system.

.1. Linear graph algorithms for kinematic substructuring

Kinematic substructuring exploits the topology of a multibody system to divide it into a set of independent open and closed-
oops. In simple multibody systems, as the one shown in Fig. 1(a), a topological graph as in Fig. 1(b) (up) helps in identifying the
losed-loops by visual inspection. The graph is constructed by vertices representing bodies and, if two bodies form a kinematic pair,
hey are joined by as many lines as the degree of the kinematic pair (DOF allowed by their mechanical joint). Moreover, these DOFs
re represented by bold lines if they are driven and by thin lines if they are not (unknown DOFs). The lines (joints) in the graph
ay be named with the same letter assigned to the joints in the mechanism. As shown in Fig. 1(b), we are considering that the four
riven DOFs in this linkage are: 𝜃2, 𝜃3, 𝜃4, 𝜃9, and then, their values are known at any instant of time.

By visual inspection, a linear graph algorithm would detect three closed loops for this multibody system; for clarity, only two of
hem have been represented in Fig. 1(b)(up). In the first closed-loop (CL-I), bodies: {1, 2, 3, 4, 5, 6} and coordinates: [𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6]
re involved; the second closed-loop (CL-II) is formed by bodies: {1, 6, 5, 7, 8, 9} and coordinates: [𝜃6, 𝜃5, 𝜃7, 𝜃8, 𝜃9], and the third
ne (CL-III), by bodies: {1, 2, 3, 4, 5, 7, 8, 9} and coordinates: [𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃7, 𝜃8, 𝜃9]. From these three closed loops, the linear graph
lgorithm must calculate how many are independent (Eq. (1)) and select which ones offer the most efficient kinematic structure.

𝐶 = 𝑃 −𝑁𝑚 (1)

here, 𝐶 is the number of independent closed-loops, 𝑃 is the number of kinematic pairs and 𝑁𝑚 is the number of movable bodies.
In the example, there are only three possible kinematic structures obtained by combining two independent closed-loops: {CL-I,

L-II}; {CL-I, CL-III} or {CL-II, CL-III}. In order to solve the whole linkage efficiently, the kinematic structure with a lower number of
oordinates must be selected: {CL-I, CL-II}. Considering that each closed-loop in this linkage imposes two constraint equations, the
2
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Fig. 1. Nine-bar mechanism with the corresponding topological graph and kinematic graph.

ones from CL-I solves the unknown coordinates: [𝜃5, 𝜃6] by relating them to the driven DOFs: [𝜃2, 𝜃3, 𝜃4]. Then, two new constraint
equations from CL-II relate the unknown coordinates: [𝜃7, 𝜃8] to the: [𝜃5, 𝜃6, 𝜃9] known ones. This kinematic structure is represented
by a kinematic graph in Fig. 1(b)(down), and it is similar to the concept of kinematic network in [11]. The first node with a zero
in it represents the frame and the other nodes represents the number of the module (closed-loop). Arrows indicate the dependency
between modules, giving the sequence in which they must be solved.

The second kinematic structure {CL-I, CL-III} would also offer a hierarchical solution but with a large number of coordinates
in CL-III, and the third kinematic structure is less efficient, as it would require to solve the four constraint equations together to
determine the values of the four remaining unknown coordinates.

Instead of visual inspection, the adjacency matrix is widely used in the literature for general-purpose linear graph algorithms.
In [8], the closed-loops are automatically obtained for complex multibody systems keeping their number of joints to a minimum and
the kinematics and dynamics of a hybrid open and closed-loops robotic arm are solved using relative coordinates and homogeneous
transformation matrices for the kinematic loops.

The same criteria of keeping the set of loops with the minimum number of joint coordinates is used in the linear graph algorithm
by Kecskemethy [9] for the automatic generation of symbolic equations for multiple loop mechanisms whose kinematics is solved
in closed-form. They also discuss how to select a suitable set of multibody loops to create the corresponding set of kinematical
transformers and how to couple equations between loops employing a solution flow (hierarchy) which allows the solution of the
complete multibody system. Later, in 1997, Kecskemethy [11] extends the closed-form solution of the kinematical transformers
introduced in [9] for the dynamic analysis of multi-loop mechanisms. He applies this method for the solution of a planar and a
spatial mechanism and obtains speed-ups closed to 2.5 in kinematics and 8 in dynamics compared to iterative methods.

Applying a linear graph algorithm with the criteria of a minimum number of joints in each loop would offer the same kinematic
graph as in Fig. 1(b)(down).

More recently, in 2015, Wehage [13] uses kinematic substructuring based on graph theory to reorganise the elements of the
Jacobian matrix of the MBS into uncoupled sub-matrices according to the obtained subsystems. Then, he uses the coordinate
partitioning method based on the Gaussian Elimination with Complete Pivoting (SGCP) to find the optimal set of independent
coordinates, which avoid the multibody system to enter singular positions during dynamic analysis. His algorithm applies to
multibody systems with closed-loops; however, their definition of a subsystem allows, under certain conditions, to integrate new
closed-loops into an existing subsystem, increasing its complexity, which is opposite to the idea of the modular approach based on
structural groups or the idea of a minimum number of joint coordinates [11].

In Wehage [13], a topological graph may also be constructed, as shown in Fig. 2(up) for the nine-bar linkage. In this graph,
virtual bodies 10 and 11 are included indicating with dashed lines (defined as chords) the cut joints in order to leave the multibody
system in a tree-like structure. Defining an array of parents, a list of loop_terminators and a list of parent_joints as in Table 1, the
LGA offers a kinematic substructuring formed by two substructures in Table 2.

Note that, for clarity, the body numbers shown in the tables coincides with the ones used in the graph (Fig. 2(up)), but the
algorithm proposed by [13] the numbering starts with 0 assigned to the frame. The obtained kinematic substructure coincides with
the kinematic structure {CL-I, CL-III}, meaning that we have not obtained the shortest-length loops. The kinematic graph shown in
Fig. 2(down) reveals that the order and dependency of the closed loops is not the most efficient, as discussed above.
3
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Fig. 2. A topological graph helps identify the information the algorithm needs (up). The kinematic graph (down) represents the kinematic structure obtained
for the nine-bar linkage using the LGA from [13].

Table 1
Parameters the user must provide for computational kinematic substructuring
using the LGA in [13].
List Items

P = [0, 1, 2, 3, 4, 5, 8, 9, 1, 7, 6]
loop_terminators = [[5, 10], [1, 11]]
parent_joints = [None, ’A’, ’B’, ’C’, ’D’, ’I’, ’F’, ’G’, ’H’, ’E’, ’J’]

Table 2
Substructures for the nine-bar mechanism using computational LGA in [13].
Substructure id Loops Loop members Loop correspondence

1 ii 1, 2, 7, 3, 8, 4, 5, 9, 10 CL-III
2 i 1, 2, 3, 4, 5, 6, 11 CL-I

Different kinematic substructures might be obtained by visual inspection in simple multibody systems, but computational
lgorithms are needed when dealing with complex ones. However, as shown in the nine-bar example, the analyst must anticipate
ome work to provide the algorithm with the needed information.

.2. Mobility based algorithms for kinematic substructuring

The ordered set of subsystems obtained by kinematic substructuring using mobility-based algorithms are known as modules
r structural groups (SGs); moreover, kinematic and dynamic formulations based on modules or structural groups are known as
odular approaches in the literature.

Leonid Assur introduced the first method for kinematic substructuring based on mobility criteria in the first half of the XIX
entury [23,24]. Two types of structural groups were defined for planar articulated linkages: primary elements, like one driving
rank or slider that moves with respect to the frame (as bodies 2 and 9 in Fig. 4(a)), and Assur groups of class k defined as kinematic

chains with 𝑁m = 2𝑘 mobile bodies and null mobility. An Assur group of class one (𝑘 = I) is named a dyad of type RRR, RPR, RRP,
PR, PRP, PPP depending on how their two bodies are connected internal, and externally to other bodies of the multibody system
ith revolute (R) or prismatic (P) joints. In Fig. 4(a), bodies {5, 6} form a typical RRR dyad.

Exploiting the modularity of mobility based algorithms have been a permanent topic of interest in the multibody community but
limited to a reduced set of primary elements and dyads for planar articulated multibody systems. For example, in 1984, Kinzel [14]
performs the kinematic analysis of 2D articulated linkages using closed-form solutions for a set of six dyads and one primary
element. In the same year, Smith [15] introduces the program SIMPLA for the kinematic analysis of planar linkages composed
by a combination of nine different dyads. Hammar [16], in 1987, discusses the advantages of modular programs as the Linkage
Analysis Program (LAP) to specific-purpose programs and general-purpose software under licence. The author introduces the concept
of subroutine package to enclose the kinematic solution of particular dyads, which may be reused as many times as this module
appears in the kinematic structure. In these works, the kinematic substructuring has to be obtained mentally by the analyst.
4
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Fig. 3. A 22 bodies, one DOF planar articulated multibody system studied in [19] to convert non-dyad into dyad linkages.

In 1993, [17] Fanghella describes a mobility-based algorithm that detects modules as single-loop determined chains of the
shortest length (dyads) which can be solved in closed-form and hierarchically. In 1996, Hansen [18] introduces a modular approach
for 2D MBS kinematics and dynamics, combining neutral modules (five different dyads and two Assur groups of second class 𝑘 = II)
and two expansion modules (primary elements). Hansen outlines the advantages of a modular approach in structural synthesis since
different mechanisms with a given DOF can be easily generated by combining these modules. His algorithm performs kinematic
substructuring by iteratively searching for expansion and neutral modules of a prescribed kind. In the authors’ opinion, an extension
of the method to spatial modules is not recommended because of practical implementation problems and lower efficiency than a
global approach. However, we have not encountered any of these problems in our studies.

Not any planar articulated multibody system may be divided into primary elements and a combination of structural groups of
class 𝑘 = I or 𝑘 = II, and the kinematic substructuring with the cited mobility methods would fail in these cases, as in the mechanism
shown in Fig. 3 from Ming [19], in 1997. In his work, the author automatically decompose a planar MBS into the corresponding
set of SGs from a database similar to [14]. If a complete decomposition is possible, the linkage is named a dyad linkage, and the
solution of the MBS is obtained by solving their dyads hierarchically. Moreover, an optimisation method is introduced to transform
non-dyad linkages into dyad linkages. The main limitations of this method are the small number of dyads in the database, the planar
case, and no higher kinematic pairs are allowed.

Another computational MBA for structural analysis was proposed by Buskiewicz [25] in 2006, valid for one-DOF planar
mechanisms with lower kinematic pairs. Once the primary elements have been removed from the MBS, the user must introduce a
large amount of information: the number of loops, number of joints, number of moving links, links in the loops and joints in the loops,
to help the algorithm to divide it into Assur groups of any class, instead of searching for kinematic chains from a predefined library.
The MBA algorithm, called SAM (Structural Analysis of planar Mechanism), uses the obtained kinematic structure to reorganise the
global kinematic equations of the system through the Jacobian matrix and, theoretically, solve them more efficiently.

At the same time, Varbanov [26] introduces the software (S&A expert system) for the solution of the kinematic analysis and
synthesis of one-DOF planar linkages formed by a combination of one primary element and up to five different types of dyads with
lower kinematic pairs. Although kinematic substructuring relies on the analyst, the work illustrates that the same modular approach
can be used for analysis and synthesis.

Graph-analytical kinematic substructuring of spatial mechanisms was proposed for the first time by Zeng and Yuefa, in 2012,
for the division of serial–parallel hybrid mechanisms used in the robotic field [27]. They introduce a multiple spatial loops division
based on the card of displacement of subsets of chains (𝐶𝐶𝐷𝑆). They show some analytic examples and find it interesting to develop
a computational method to automate this substructuring algorithm.

In 2014, we introduce a computational MBA for the kinematic substructuring of planar MBS [21]. The main difference regarding
previous works is that, instead of dividing the multibody system into a set of primary elements and a set of well-recognised Assur
groups of zero mobility, the concept of SG was extended to any kinematically determined chain of the smallest size possible, including
both lower and higher kinematic pairs and any combination of revolute, prismatic, or direct contact kinematic pairs (as cams and
gears). The user must provide the adjacency matrix and the distribution of the independent DOFs. However, the spatial case was
not considered. The methods developed were based on the particular classification among lower or higher kinematic pairs, which
affected most of the code, considerably reduced the algorithm’s scope and the information generated during the solution.

Most of the reviewed MBA leave kinematic substructuring to the analyst. Others only deal with one-DOF multibody systems, so
they cannot obtain the kinematic structure of the nine-bar mechanism in our example. Applying the MBA in [21], the kinematic
structure in Fig. 4(a) is obtained.

Contrary to the two independent closed-loops offered by linear graph algorithms, the applied MBA would divide the nine-bar
linkage with the selected DOFs: [𝜃2, 𝜃3, 𝜃4, 𝜃9] into the six modules shown in Fig. 4(a). The kinematic graph in Fig. 4(b)(down) defines
5
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Fig. 4. Kinematic substructuring of a nine-bar linkage using a MBA capable to deal with several DOFs [21].

Compared to Fig. 1(a), the obtained kinematic structure is composed of a higher number of basic subsystems of the same type:
{SG-I, SG-II, SG-III, SG-VI} are modules formed by one body with one driving input motion and two dependent coordinates (the
Cartesian coordinates of the unknown joints: B, C, D and G respectively), and {SG-IV, SG-V} are dyads with none input motions
and two dependent coordinates (the Cartesian coordinates of the inner joint: I and F respectively, or the unknown orientations of
the bodies in the corresponding dyad: [𝜃5, 𝜃6] and [𝜃7, 𝜃8]).

These subsystems are reduced in size and more straightforward to analyse than the ones obtained in Fig. 1(b). The kinematics
of the whole multibody system can be solved hierarchically following the sequence shown in Fig. 4(b)(down). First, SG-I and SG-VI
can be solved simultaneously, as they are not dependent; then, SG-II, SG-III, SG-IV structural groups must be solved sequentially.
Finally, once the solution to SG-IV and SG-VI has been obtained, solving the last SG-V will end the analysis of the whole MBS.
Moreover, each subsystem type might have its kinematics solved in a specific subroutine that can be optimised and reused to solve
the multibody system more efficiently.

The hierarchical sequence described above for a multibody system’s kinematic/dynamic solution may not be the most efficient.
The optimal sequence for a given combination of software and hardware equipment may be determined only when the structural
groups that define the kinematic structure of a multibody system have been obtained, which is the main purpose of this work.

To clarify these ideas, suppose we need to solve a multibody system (Stewart platform) whose kinematic structure is formed by
one structural group (SG_T) and six kinematically independent structural groups (SG_MB_1, . . . , SG_MB_6). The kinematic diagram
of such a system is shown in Fig. 5 and will be analysed as a case study (Fig. 17.b). Each module has its solution in a specific
routine: SG_KINEM_6C for SG_T and the same routine SG_KINEM_REC for all SG_MB_X because they share the same topology.

In a global approach, or an LGA that solves all the model constraint equations at once, the kinematic structure consists on one
module (MBS_STEWART) and only one possible route, as shown in Fig. 6.

On the contrary, if the kinematic structure in Fig. 5 is considered, we may use our PARCSIM (PARallel Computing SIMulator)
software [7] to build the tree of kinematic routes (Fig. 7). Note that the upper route (57) and the lower route (23) correspond to
the full sequential and parallel solutions of the structural groups, while the other routes combine parallel and sequential solutions
of structural groups. The PARCSIM simulator studies all the routes to determine the most efficient for a given set of algorithmic
parameters [7].

Other authors have also applied the concept of modular approach using primary elements and dyads in the dynamics of rigid
bodies. Open-loops [28], one single closed loop [29,30], basic MBS with multiple-loops [29,31], one-loop flexible MBS [32,33].
The dynamics of a (3-RRR) planar parallel manipulator with three identical modules (the corresponding legs) and the terminal
body being the fourth module [29]. Also, in [34,35] the authors use kinematic substructuring in the dynamic analysis of vehicles.
Although no references are made in these works about how to obtain the kinematic substructures of an MBS (except in [33]), it
is interesting to note that not only in kinematic analysis but also in dynamics of MBS, kinematic substructuring can be used to
construct the equations of motion of the MBS.
6
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Fig. 5. Structural diagram of a multibody system (Stewart platform) with one structural group followed by six kinematically independent structural groups.

Fig. 6. Kinematic structure of a multibody model (Stewart platform) defined by a global approach or an LGA approach without considering its kinematic
structure.

Fig. 7. Tree of kinematic routes showing parallelism capabilities in the analysis of multibody systems, when its kinematic structure based on structural groups
have been defined.
7
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1.3. Advantages and drawbacks between linear graph and mobility-based algorithms

In summary, from the literature review, the studied example and our own experience, we introduce some advantages and
rawbacks of both approaches to highlight the need to extend the mobility-based algorithm to a computational solution for 3D
ultibody systems, which is the main contribution of this work:

(a) Both linear graph theory and mobility-based algorithms have evolved in parallel as valuable techniques that exploit the
kinematic structure of multibody systems to improve the efficiency of the kinematic and dynamic formulations used in the
design, simulation and control of multibody systems.

(b) LGA look for independent open and closed loops regardless of the multibody system is planar or spatial, the type of mechanical
joint between bodies and which DOF are driven. Therefore, LGA are easier to develop and have been applied to complex 2D
and 3D multibody systems. We find it easy, in LGA, to identify modules but challenging to generate reusable closed-form
solutions to those modules.

(c) On the contrary, MBA need the parameters cited in (b) making kinematic substructuring more complex, and applied in the
literature only to simple 2D linkages formed by a limited type of Assur groups and primary elements, mainly for one-DOF
multibody systems. Therefore, in MBA, we find it easy to obtain and reuse efficient closed-form solutions for these modules but
challenging to obtain kinematic substructuring in complex planar multibody systems and nonexistent algorithms for spatial
ones.

(d) LGA offer a reduced number of kinematic structures for the modelling and kinematic or dynamic analysis of a given multibody
system. Each kinematic structure is formed by all the open loops and a selection of independent closed-loops (Eq. (1)).
However, the more kinematic structures available, the best, allowing the possibility of selecting the one that best fits the
analyst needs, as cited in (e).

(e) Each kinematic structure offered by LGA comprises a reduced number of modules, increasing their complexity which might
further increase depending on the cut-joints selected by the user, and making closed-form solutions impossible or less efficient.
On the contrary, MBA searches for minimum size modules, as dyads, with very efficient and well-known closed-form solutions.
Moreover, the obtained modules in MBA can be solved using a combination of different coordinates (joint, natural or reference
point), solvers (dense or sparse) and distributed strategies that make their solution even more efficient.

(f) The proximity to a singular position of a given multibody system might be more efficiently analysed by checking the rank of
the Jacobian matrix of the structural groups that composes the kinematic structure of the MBS rather than the rank of the
Jacobian matrix of the whole MBS.

(g) In the design (synthesis) of multibody systems, LGA are used to discard rigid kinematic chains and isomorphisms from many
possible designs. However, MBA may be more efficient by simply adding modules of different types according to the analyst’s
needs, like the number of bodies or the type of joints to consider.

(h) In MBA, there exist techniques that convert planar non-dyad multibody systems into dyad ones, making their solution more
efficient [19].

(i) In MBA, there are techniques for the kinematics and dynamics of MBS whose kinematic structure has been obtained using a
set of coordinates different from those driven during the simulation time [14]. These techniques allow the analyst to select the
most efficient kinematic structure independently of the actual DOFs of the multibody system. This versatility is not available
in LGA, as mentioned in (d).

(j) A valid set of independent coordinates must be chosen among all the coordinates to correctly define a kinematic or a dynamic
analysis with both topological methods. In this sense, a simple identification of independent open and closed-loops with LGA
does not assure a proper selection of independent coordinates. On the contrary, MBA guarantees that the problem is well
defined. Otherwise, kinematic substructuring would fail.

(k) Comparing the information that the analyst must provide in linear graph algorithms with respect to mobility-based algorithms
is complicated, as it depends on the author’s method and programming abilities. In two references where the authors detailed
this information, their algorithms needed more information than our MBA. For example, in [25] their MBA needs the number
of loops, number of joints, number of moving links, links in the loops and joints in the loops. Also, in [13], their LGA needs:
to identify all the bodies, joints and loops, cut the loops and specify loop terminators (as many as independent loops) and,
finally, identify the parent of each body and the parent joint of each body. On the other hand, in [21] needs only the adjacency
and the independent DOFs distribution matrices.

The considerations above show that, compared to linear graph algorithms, the modular approach based on mobility criteria has
any advantages regarding modelling and closed-form solution of computational kinematics, dynamics and design of multibody

ystems. Furthermore, regarding computational cost, MBA have shown clear advantages with respect to global formulations [6,7].
owever, the reviewed mobility-based algorithms completely lack generality in kinematic substructuring of complex 2D multibody

ystems and have not been developed for the spatial case.

.4. Scope and contributions

The present work introduces a mobility-based algorithm for the computational structural analysis of spatial multibody systems.
8

n in-depth literature survey has been performed. The code and functions of the algorithms in [21] have been reviewed, modified
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and updated to contemplate both planar and spatial cases in the same algorithm. It has been redefined with a modular architecture,
dividing the code into five modules. Each one encloses a complete algorithm step resolution similar to the graph analytic method
steps, opening the algorithm to future developments. The new code handles complex MBS systems on a user-oriented view. It is not
limited to lower and higher pairs identification; a new concept of the extended adjacency matrix is introduced considering the type
of joint at the kinematic pairs, including floating bodies. Structural transformations may consider any DOF in the multibody system
as a potential input movement, increasing the number of available kinematic structures considerably.

We have compiled these modules into a library named 𝐌𝐁𝐒𝐒𝐀𝟑𝐃, which stands for MultiBody System Structural Analysis in
D. An intuitive graphical user interface guides any user without topological analysis or programming skills to obtain the kinematic
tructure of 3D multibody systems. We classify certain exceptions to the Kutzbach–Gruebler mobility criterion and explain how
BSSA3D must deal with them in the singularities module; however, implementing this module is ongoing.

The original algorithm provided the kinematic structure in a matrix form and no additional information. Now, in the final
odule, a complete list of information is provided with two objectives: first, to classify the kinematic structures according to different

riteria, allowing the analyst to select the best kinematic structure for the kinematic and dynamic analysis of the multibody system
n a practical view. The second objective is ongoing and not implemented, should automatically generate a kinematic or dynamic
odel in a compatible format to be read from already developed libraries for kinematics and dynamics of multibody systems as
BSLIM [36] or MBDSBEG [6].

This work applies the MBSSA3D for the kinematic substructuring of several spatial multibody systems of different complexity,
hich satisfies the Kutzbach–Gruebler mobility criterion. We compare graph-analytical and computational LGA and MBA results.

.5. Organisation of the paper

In Section 1 we have introduced a literature survey of kinematic substructuring methods. Using a case study, we have shown
he main advantages of mobility-based algorithms to linear graph algorithms and the importance of developing general-purpose
lgorithms for spatial multibody systems. We have also introduced the main contributions and scope of the present work. Section 2
hows the basics of structural analysis theory based on mobility criteria, and Section 3 introduces how the algorithm works applied
o a spatial crank–slider mechanism as a case study. Section 4 applies the MBSSA3D to different complex spatial multibody systems
nd Section 5 performs a comparative study on robustness and efficiency of MBSSA3D algorithm with respect the 2D version
ntroduced in [21]. Finally, Section 6 gathers the main conclusions obtained from this work and introduces new developments
o be accomplished in the future.

. Structural analysis theory

.1. Mobility and kinematically determined chains

The mobility 𝐿c of an holonomous kinematic chain defines its number of degrees of freedom (DOF), which can be calculated as:

𝐿c = 𝐵𝑁m −
𝐵−1
∑

𝑘=1
𝑒𝑘𝑃𝑘 (2)

here 𝐵 is a constant: 𝐵 = 3 or 𝐵 = 6 in planar and spatial multibody systems, respectively. 𝑁m defines the number of bodies in the
kinematic chain, 𝑘 stands for the grade of a kinematic pair (DOF allowed by the joint that connects two bodies), 𝑃𝑘 is the number
f kinematic pairs of grade 𝑘 that the 𝑁m bodies form between them (internal) or with other bodies out from the kinematic chain
external), and 𝑒𝑘 is the DOF removed by a kinematic pair of grade 𝑘 (𝑒𝑘 = 𝐵 − 𝑘). There are topological and kinematic conditions

that make equation Eq. (2) fail; in this work, only holonomic kinematic chains in which Eq. (2) holds will be considered.
Eq. (2) also calculates the mobility 𝑓 of a MBS; in that case, 𝑁m accounts for the number of movable bodies in the multibody

system. The kinematics of such a multibody system, modelled with a set of 𝑛 dependent coordinates 𝐪 ∈ R𝑛 can only be solved
if: on the one hand, 𝑓 independent coordinates 𝐪i ∈ R𝑓 are driven; that is, their values are input motions, known at any instant of
the simulation time, and, on the other hand, if the 𝐪 ∈ R𝑛 coordinates are related thought 𝑛 − 𝑓 independent equations. Such a

ultibody system is known as kinematically determined.
In the example of Fig. 1(a): 𝐵 = 3, 𝑁m = 8, 𝑃1 = 10, 𝑃2 = 0 the mobility of the MBS is 𝑓 = 4. Since its mobility coincides with the

umber of driven joint coordinates 𝐪𝑖 = [𝜃2, 𝜃3, 𝜃4, 𝜃9], this multibody system is kinematically determined and then, its kinematics
an be solved at each time step.

The concept ’kinematically determined’ applies to any kinematic chain with a number of driven DOFs 𝑛𝑐 equal to its mobility
𝐿c in Eq. (2)): 𝑛c = 𝐿c. For the given kinematic chain, special attention requires the number of active kinematic pairs, 𝑃𝑘, which

stands for the sum of their internal ones and, among the external ones, only those in which the external body is the frame or a body
from any already obtained structural group.

From now on, the following notation will be used: KP(i-j) as a reference to a kinematic pair formed by bodies 𝑖 and 𝑗, KC{i, j,
. . . , z}, to a kinematic chain formed by bodies 𝑖, 𝑗, . . . , 𝑧 and SG-N{i, j, . . . , z}, to a numbered structural group where (N) is a roman
umber and 𝑖, 𝑗, . . . , 𝑧, the bodies that form this structural group. Sometimes, like in Fig. 4(a), the simplified notation SG-N will
lso be used.

Dividing a MBS into an ordered set of kinematically determined chains is the main objective of the structural analysis theory
9

nd, as the result of such process, the kinematic structure of a MBS is obtained.
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2.2. Kinematic structure of a multibody system

The theory of structural analysis defines a structural group as a kinematically determined chain (𝑛c = 𝐿c). If a structural group
(SG) has neither excessive constrains, nor additional DOF due to special geometric considerations, it is defined as a normal SG [20].
Furthermore, normal SG which cannot be split into other normal SG of smaller number of bodies are denominated simple SG. Then,
the kinematic structure of an MBS is defined as an ordered set of simple SG in which a MBS can be divided; this division is not
unique and depends on the topology of the MBS and the selected driven coordinates of the MBS.

Multibody systems can be both divided into or built from an ordered set of simple SG. By considering 𝑒𝑘 = 𝐵 − 𝑘 in Eq. (2) and
he condition of simple SG (𝑛c = 𝐿c), we obtain the generation principle of mechanisms Eq. (3), which is the necessary condition
or any kinematic chain to be a simple SG.

𝑆c − 𝑛c = 𝐵(𝑃 −𝑁m) (3)

here 𝑃 is the sum of all active kinematic pairs formed by the 𝑁m movable bodies of the kinematic chain, and 𝑛c is the number
of the input motions (out of the complete set of 𝐪i driven coordinates in the multibody system) that are present in the kinematic
chain and 𝑆c is defined as the number of DOF allowed by the P kinematic pairs as shown in Eq. (4):

𝑆c =
𝐵−1
∑

𝑘=1
𝑘𝑃𝑘 (4)

The kinematic structure of a MBS can be obtained utilising graph-analytical or computational methods [21]. In the graph-
nalytical method, Eq. (3) defines the generation principle of mechanisms and must be applied combined with a graph representing
he topology of a multibody system. Topological graphs can be represented in a variety of forms (see [11,37,38]). In this work, the
tructural graph introduced in [21] is used. The structural graph is helpful for efficient structural analysis and a better understanding
f the computational algorithm introduced here.

In [21], the graph-analytical method for structural analysis was applied to a planar four-bar linkage. In this work, the same four
teps of this method are explained in detail while applied to obtain the kinematic structure of the spatial four-bar linkage shown
n Fig. 8(a). This linkage is composed by three movable bodies (2, 3, and 4) and a fixed one, the frame (1); four kinematic pairs:
P(1-2) of type revolute (R, 𝑘 = 1) at joint 𝐴, KP (2-3) of type spherical (S, 𝑘 = 3) at joint 𝐵, KP(3-4) of type cylindrical (C, 𝑘 = 2)
t joint 𝐶 and KP(1 − 4) of type prismatic (P, 𝑘 = 1) at joint 𝐷. Moreover, this linkage has one degree of freedom 𝑓 = 1 which is
epresented by the rotation angle (𝜃) between body 2 and the frame 1.

Once the basic topology of the multibody system has been recognised, the following information can be extracted: 𝑁 = 4, 𝑁m = 3,
= 4, 𝑓 = 1 and its structural graph can be represented as shown in Fig. 8(b), where: vertices (1 to 4) correspond to the bodies

f the multibody system, and two bodies that form a kinematic pair are connected by a number of edges (thin lines) equal to the
egree 𝑘 of the kinematic pair. Moreover, at each kinematic pair, a number of thin lines equal to the number of driven coordinates
ust be transformed into bold lines known as root edges. In Fig. 8(b) the bold line between vertices 1 and 2 represents that the
egree of freedom in KP(1-2) is driven.

By considering Eq. (4) and the fact that each line in the structural graph, thin or bold, identifies one DOF, we rewrite Eq. (3)
s:

𝐿th = 𝐵(𝑃 −𝑁m) (5)

here 𝐿th is the number of thin lines in the structural graph that corresponds to the 𝑃 active kinematic pairs in the kinematic chain:
nternal kinematic pairs and, from the external ones, only those with a directed edge.

Then, with the support of the structural graph, to identify which kinematic pairs are active, Eq. (5) must be used so that if
he left-hand side equals the right-hand side, the kinematic chain under study is a simple structural group. This procedure can be
pplied to obtain the kinematic structure of the MBS straightforwardly, as depicted in Figs. 8(c) to 8(f), following four basic steps:

Step 1: Frame (body 1) isolation and DOF assignment (Fig. 8(c)). Since the frame is a fixed body, it cannot belong to any structural
group, and it has to be excluded from the analysis (isolated from other bodies). The dashed curve in this figure reflects
this frame isolation. Then, all the DOF of the kinematic pairs between any movable body and the frame are assigned to the
movable ones; in this example, one driven DOF is assigned to 2 and one DOF to 4. The DOFs assignment is represented by
a directed edge in the structural graph, making the corresponding kinematic pairs active to the bodies that receive them.
In Fig. 8(c), after the frame isolation, the KP(1-2) is active for body 2 while KP(2-3) is not, and for body 4 the KP(1-4) is
active while KP(3-4) is not. Finally, any body in this step or in a later stage of the structural analysis which receives one
or more DOF both from the frame or from other bodies becomes candidate to be an SG.

Step 1: Search for SGs from shorter to larger length. First, each candidate obtained in the previous step is studied (no matter in
which order), and any of them which satisfies Eq. (5) is an SG. In Fig. 8(c), the candidate in the KC{4} has (𝑁m = 1, 𝑃 = 1)
since it is a single body, KP(1-4) is active and KP(3-4) is not. In Eq. (5) we have, on the left hand side: 𝐿th = 1 and on the
right hand side: 𝐵(𝑃 −𝑁m) = 6(1 − 1) = 0; this equation is not fulfilled and KC{4} does not form a SG. Next, the candidate
in the KC{2} is studied. It participates in only one active external KP(1-2), which is a root edge, then: 𝑁m = 1, 𝑃 = 1
and 𝐿th = 0. Thus, this candidate satisfies Eq. (5) and forms a simple structural group SG-I{2}. This is represented in the
structural graph by a dashed line around the corresponding body (or bodies). If none of the kinematic chains of size one
(one candidate) forms a structural group, kinematic chains of size two must be analysed with at least one candidate in
10
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S

Fig. 8. Spatial four-bar linkage. (a) Kinematic graph. (b) Structural graph. (c) to (f) Steps to perform structural analysis through its structural graph. (g)
tructural diagram.

it. This process continues, increasing the length of the kinematic chain in one body at a time until, in the worst case, the
whole MBS satisfies Eq. (5) meaning that it cannot be divided into smaller structural groups.

Step 1: Reassign DOF. If a kinematic chain forms an SG in the previous step, the DOF of its non-active external pairs are assigned to
the corresponding bodies and, for these bodies, the cited external pairs become active. In the example, as body 2 becomes
an SG, it assigns and makes active to body 3 the three DOF of the KP(2-3). As stated in step 1, since body 3 receives DOF
from another body, it becomes a new candidate (Fig. 8(e)).

Step 1: Turn to Step 2 until the complete kinematic structure of the MBS is obtained. Bodies 3 and 4 are candidates. Kinematic
chains of only one candidate KC{3} or KC{4} do not satisfy Eq. (5) since 𝐿th = 1 and 𝐿th = 3, respectively. Then, larger
chains must be considered. Starting from one candidate, e.g. 3, the chain is expanded by selecting another body joined
to the candidate. In the example, there is only one possibility, KC{3,4}, formed by two bodies and three active kinematic
pairs, being: KP(2-3) and KP(1-4) external, and KP(3-4) internal. The parameters for this kinematic chain are: 𝐿th = 6;
𝑁m = 2; 𝑃 = 3, which satisfies Eq. (5) (𝐵(𝑃 −𝑁m) = 6(3 − 2)) and therefore it is a simple SG as show in Fig. 8(f).

Structural diagram. The kinematic structure of a mechanism is graphically represented by its structural diagram (Fig. 8(g)), also
introduced in [21]. It is composed of one circle representing the frame (0) and as many circles, as obtained SG, with two parameters
inside each one: (𝑁m, 𝑛c). Recall that an arrow joins two circles in the same direction as the DOF assigned during the structural
analysis, showing the order in which the SG has been obtained and the hierarchical sequence in which their kinematics must be
solved. In the example, the frame assigns DOF to bodies 2 and 4, and body 2 assigns DOF to body 3, meaning that the kinematics
of SG-I{2} must be solved first and then, the kinematics of SG-II{3,4}.

3. Structural analysis algorithm for spatial multibody systems

This section describes the algorithm 𝐌𝐁𝐒𝐒𝐀𝟑𝐃 (MultiBody Systems Structural Analysis 3D), developed for the computational
structural analysis of planar and spatial multibody systems.

This algorithm is divided into five main blocks or modules which are executed sequentially: gathering topological information,
initialisation, singularities recognition, structural analysis, and finally, results and modelling (Fig. 9).

3.1. Module 1. Gathering topological information

In this first module, the algorithm gathers basic topological information of the MBS. The user has two options to provide the
necessary information: a developed guided user interface (GUI) or loading this information from a file. The first option is more
comfortable, practical to avoid human mistakes and easier to use for a non-experienced user; the second option is faster when
11
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Fig. 9. 𝐌𝐁𝐒𝐒𝐀𝟑𝐃 algorithm modules and workflow.

modelling complex MBS. Whatever option is selected, this first module organises the topological information into the five following
entities:
12
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Table 3
Code of characters used in the extended adjacency matrix to identify the Type of

kinematic pair formed by two bodies together with its description and allowed
degrees of freedom (DOFs), known as grade of the kinematic pair (𝑘).
Type Kinematic pair type DOF

– Not connected 0
R Revolution 1
P Prismatic 1
H Helicoidal 1
CPEP Penta Punctual Contact 1
C Cylindrical 2
ER Slotted Spherical 2
U Universal 2
L Cam/point–curve/curve–curve 2
EO Ordinary Gear 2
EPI Epicyclic Gear 2
CTEP Tetra punctual Contact 2
RP Pure Rolling 2
RD Sliding Rolling 2
S Spheric 3
PL Planar 3
CR Slotted Cylindrical 3
CTRP Tri Punctual Contact 3
FP Free body Plane 3
SC Sphere–Cylinder 4
PC Plane–Cylinder 4
CBIP Bi Punctual Contact 4
SP Sphere–Plane 5
SPSP Sphere–Sphere 5
F Free body Spatial 6

1. ProblemType: sets the 𝐵 parameter value (Eq. (3)) for the planar o spatial problem.
2. 𝑁 : the total number of bodies in the multibody system as previously introduced.
3. Extended adjacency matrix: in this work, the concept of extended adjacency matrix 𝑀(𝑖, 𝑗) = 𝑀(𝑗, 𝑖) is introduced, whose

elements are characters if two bodies form a kinematic pair or a dashed line otherwise. The available characters are shown
in Table 3 together with the description of the kinematic pair that they represent and their grade (𝑘). Most of these characters
are extensively used in the literature, while others are introduced here. An extended adjacency matrix exempts the user from
knowing, in advance, the degrees of freedom or additional features that will be automatically translated later by the algorithm
for the different types of kinematic pairs.

4. KnownInputs: bold lines between two bodies in the structural graph represent controlled or driven DOFs among them and,
if the multibody system is kinematically determined, the total number of these lines must coincide with its mobility 𝑓 . The
number 𝑤p of driven DOFs in KP(i,j) of grade 𝑘 must be provided by the user and included in the algorithm through the
symmetric and integer matrix 𝐾𝑛𝑜𝑤𝑛𝐼𝑛𝑝𝑢𝑡𝑠(𝑖, 𝑗) = 𝐾𝑛𝑜𝑤𝑛𝐼𝑛𝑝𝑢𝑡𝑠(𝑗, 𝑖) = 𝑤p. In the present version of the algorithm, if the total
number of driven DOFs differs from the mobility of the MBS or if the selected ones do not allow kinematic substructuring, a
pop-up message warns the user about the error.

5. Singularities: in some multibody systems, Eq. (3) might fail to calculate their mobility due to different types of topological
or kinematical singularities. The types of singularities and the fundamentals of how these singularities will be treated in
kinematic substructuring will be introduced in Section 3.3 although is still under development.

Fig. 10 shows the 𝐌𝐁𝐒𝐒𝐀𝟑𝐃 guided user interface developed to gather the topological information from the user in the first
ain module. Missing or mismatched inputs are checked by the algorithm and reported to the user by the appropriate warning
op-ups. All the matrices and variables needed for kinematic substructuring are automatically generated as the user introduces the
equested information.

For the spatial four-bar linkage shown in Fig. 8(a), the file generated by the algorithm, which might also be written directly by
he user, should be similar to the code shown in the script User_Data.m. It is straightforward the correspondence between the
nformation represented in Fig. 8(b) by the structural graph, the matrices shown in the cited script, and the information shown in
he output window named "Current Adjacency Matrix obtained’’ and ‘‘Inputs’’ at the right bottom of the GUI.

.2. Module 2. Read data and initialise

The algorithm reads the topological information to create the matrices needed for kinematic substructuring. In matrices of size
1×𝑁 each column 𝑖 stores the information related to the body it represents:

• 𝑣𝑒𝑐𝑡𝑜𝑟 ∈ R1×𝑁 : total number of active kinematic pairs in which this body participates,
13
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Fig. 10. 𝐌𝐁𝐒𝐒𝐀𝟑𝐃 guided user interface developed to gather topological information from the user.

Script User_Data.m

1 𝐠𝐥𝐨𝐛𝐚𝐥 ProblemType N M KnownInputs

2 %Topological information

3 𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑇 𝑦𝑝𝑒=6 ; %Select 3 for planar and 6 for spatial mechanism

4 𝑀={ ... ; %Extended adjacency matrix based on Type
5 ’-’ ’R’ ’-’ ’P’;
6 ’R’ ’-’ ’S’ ’-’;
7 ’-’ ’S’ ’-’ ’C’;
8 ’P’ ’-’ ’C’ ’-’};

9 𝑁=length(𝑀) ; %Number of bodies including chassis

10 𝐾𝑛𝑜𝑤𝑛𝐼𝑛𝑝𝑢𝑡𝑠=[ ... ; %Known inputs matrix
11 0 1 0 0;
12 1 0 0 0;
13 0 0 0 0;
14 0 0 0 0];

• 𝑣𝑒𝑐𝑡𝑜𝑟BL ∈ R1×𝑁 : number of active, driven DOFs (directed bold lines in the structural graph) received during the assigning
phase (step 2),

• 𝑣𝑒𝑐𝑡𝑜𝑟DOF ∈ R1×𝑁 : the number of degrees of freedom regardless they are driven (directed bold lines) or not (directed thin
lines), which corresponds to the 𝑃 active kinematic pairs for body 𝑖,

• 𝑣𝑒𝑐𝑡𝑜𝑟SG ∈ R1×𝑁 : bodies assigned to a structural group,
• 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG ∈ R1×𝑁 : bodies candidates to form structural group,
• 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐ℎ𝑎𝑖𝑛SG: matrix of variable size, stores the kinematic chains with more than one body which are candidates to form

a structural group.
• 𝑚𝑎𝑡𝑟𝑖𝑥GDL ∈ R𝑁×𝑁 : stores the DOF accumulated by KP(i,j).
• 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑃𝑎𝑖𝑟 ∈ R𝑁×𝑁 : takes into account the active kinematic pairs assigned from body 𝑖 to other bodies when it becomes a

structural group.
• 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA ∈ R𝑁×𝑁 : The first row indicates the roman number N in SG-N of the structural group to which the body of column
𝑖 participates, and the elements in 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 (𝑦, 𝑗) = 𝑛𝑢𝑚𝐴𝑠𝑠𝑔 stores 𝑛𝑢𝑚𝐴𝑠𝑠𝑔, a counter indicating that a new assignment has
14
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taken place (𝑛𝑢𝑚𝐴𝑠𝑠𝑔 = 1 after step 1), 𝑗 are the bodies that assigns its non-active external kinematic pairs (the frame, in step
1) and 𝑦 are the bodies that receive these DOFs.

• 𝑀𝐵𝑆𝑆𝐺: row matrix which contains the kinematic structure of the MBS.

After the initialisation of the aforesaid elements, the extended adjacency matrix is analysed to create 𝑚𝑎𝑡𝑟𝑖𝑥GDL as shown in
algorithm 1, which is also self-explanatory.
Algorithm 1: Degrees of freedom identification from 𝑀

for 𝑎 = 1 ∶ 𝑁 − 1 do
for 𝑏 = 𝑎 + 1 ∶ 𝑁 do

switch Kinematic Pair 𝑇 𝑦𝑝𝑒 in 𝑀(𝑎, 𝑏) do
case ’R’, ’P’, ’H’ or ’CPEP’ do

𝑚𝑎𝑡𝑟𝑖𝑥GDL(𝑎, 𝑏) = 𝑚𝑎𝑡𝑟𝑖𝑥GDL(𝑏, 𝑎) = 1;
case ... other Kinematic pairs ... do

see Table 3
end

end
end

Following the diagram shown in Fig. 9, when algorithm 1 is applied to the MBS of Fig. 8, 𝑚𝑎𝑡𝑟𝑖𝑥GDL (Eq. (6)) is obtained and
the MBSSA3D algorithm enters in the next main module.

𝑀 =

⎛

⎜

⎜

⎜

⎜

⎝

′−′ ′𝑅′ ′−′ ′𝑃 ′

′𝑅′ ′−′ ′𝑆′ ′−′

′−′ ′𝑆′ ′−′ ′𝐶 ′

′𝑃 ′ ′−′ ′𝐶 ′ ′−′

⎞

⎟

⎟

⎟

⎟

⎠

; 𝑚𝑎𝑡𝑟𝑖𝑥GDL =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 1
1 0 3 0
0 3 0 2
1 0 2 0

⎞

⎟

⎟

⎟

⎟

⎠

(6)

3.3. Module 3. Singularities recognition

In the literature, many exceptions make the Kutzbach–Grubler Eq. (2) fail when predicting the mobility of a multibody system
and their study is the objective of this third module. We cite here which singularities the algorithm should handle but how they
will be treated in kinematic substructuring and its implementation are still under development.

(a) Multijoints. In the case of rotational joints, when 𝑛𝑏 bodies (𝑛𝑏 > 2) are joined at the same joint, Eq. (2) holds, only if
𝑃1 = 𝑛𝑏 − 1 kinematic pairs of grade 𝑘 = 1 are considered at this joint. In order to find the best kinematic structure in these
cases, the user must introduce all the possible kinematic pairs (𝑛𝐶𝑜𝑚𝑏 = 𝑛𝑏(𝑛𝑏−1)

2 ) through the extended adjacency matrix and
perform: 𝑁𝑎𝑛 = 𝑛𝐶𝑜𝑚𝑏!

(𝑛𝑏−1)! (𝑛𝐶𝑜𝑚𝑏−𝑛𝑏+1)!
structural analysis. If a multibody system shows more than one multiple joint (i.e. 𝐴 and

𝐵), the algorithm will study all the possible combinations of kinematic pairs in 𝐵 for each possible combination of kinematic
pairs in 𝐴.

(b) Rolling without slipping. Means that the contact point of the rolling bodies must have the same velocity. When this kinematic
constraint at the velocity level is holonomous, it may be integrated, offering well-known constraint equations at the position
level, which reduces the grade 𝑘 of the kinematic pair. Fig. 10 shows three types of rolling without slipping we have in mind:
ordinary, epicycloidal and rack-pinion gear trains (or similar) and Table 3 shows their nomenclature and grade.

(c) Redundant DOFs. Double-spheric articulated bodies or structural groups introduce unnecessary degrees of freedom (redun-
dant) for the kinematic or dynamic analysis of the multibody system. Here, the body’s rotation along the axis formed by the
two spherical joints is fixed to a known value, irrelevant for structural analysis. The algorithm shall check for this condition
and introduce the appropriated changes where the DOF consideration is impacted.

(d) Additional DOFs. Certain geometric conditions in multibody systems add additional DOFs that cannot be considered by the
parameters in Eq. (2). Some examples are the tangent redundancy in the double parallelogram linkage, or when all the axis
of the rotational joints cut in a fixed point (spherical linkages) or at infinite (planar multibody systems studied as 3D ones).
Geometric singularities shall be introduced in the topological analysis for the consequent handling by the algorithm in the
DOF calculation.

(e) In some kinematic pairs, known as direct-contact pairs, as the cam-follower case, the contact between the two bodies may
be assured by geometry or by force elements, as springs. In the latter case, contact might be lost and the kinematic structure
might change. This option may be introduced in MBSSA3D to generate the corresponding kinematic structures which will be
considered in the generation of the kinematic or dynamic models of the multibody system.

.4. Module 4. Structural analysis

This module performs the kinematic substructuring of the multibody system following the sequence introduced for the graph-
nalytic method (Fig. 8). At step 1, the first assignment of DOF goes to the bodies (𝑖) connected to the frame, which is identified
rom the first row of the extended adjacency matrix out of 𝑚𝑎𝑡𝑟𝑖𝑥 ; then, the following matrices are updated: 𝑣𝑒𝑐𝑡𝑜𝑟 (1, 𝑖) = 1,
15
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𝑣𝑒𝑐𝑡𝑜𝑟DOF(1, 𝑖) = 𝑘, where 𝑘 is the grade of the KP(1,i) obtained from 𝑚𝑎𝑡𝑟𝑖𝑥GDL, and 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA as cited above. The driven coordinates
are considered from matrix 𝐾𝑛𝑜𝑤𝑛𝐼𝑛𝑝𝑢𝑡𝑠 to update 𝑣𝑒𝑐𝑡𝑜𝑟BL(1, 𝑖) = 𝑛c and assigned as shown in Algorithm 2.

After this first assignment, the MBSSA3D app starts a while-end loop until all the elements in the row matrix 𝑣𝑒𝑐𝑡𝑜𝑟NSG ∈ R1×𝑁

become zero. This matrix identifies with 1 the bodies (columns) not assigned to an SG, and then, this loop ends when the complete
kinematic structure has been obtained, or no kinematic structure is available. This task is carried out by Algorithm 3.

In Algorithm 3, two flags (𝑓𝑙𝑎𝑔1 𝑦 𝑓𝑙𝑎𝑔2) controls when a new structural group has been created, and each time an SG is obtained,
the search for new ones must begin with kinematic chains formed by only one body; if none of the candidates forms a structural
group by itself, the sum of the components of vector 𝑣𝑒𝑐𝑡𝑜𝑟NSG does not change, 𝑓𝑙𝑎𝑔1 = 𝑓𝑙𝑎𝑔2 and the variable 𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟 is
increased in one unit to search for longer kinematic chains.

Algorithm 3 is divided in two parts; the first one uses the INDIVIDUALS_SG_3D function to check Eq. (5) for one-body SG and the
second part searches for kinematic chains using SEEKER_3D and SG formed by more than one body by means of GROUPS_SG_3D.
Both parts call the function CANDIDATES_3D which provides the bodies candidates to form structural group. These functions are
described next.

Algorithm 2: Frame isolation and DOF assignment

for 𝑐 = 2 ∶ 𝑁 do
if 𝑚𝑎𝑡𝑟𝑖𝑥GDL(1, 𝑐) ∼= 0 update:

𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(𝑐, 1);
𝑣𝑒𝑐𝑡𝑜𝑟PAIR(1, 𝑐);
𝑣𝑒𝑐𝑡𝑜𝑟DOF(1, 𝑐);

end
if 𝐾𝑛𝑜𝑤𝑛𝐼𝑛𝑝𝑢𝑡𝑠(1, 𝑐) ∼= 0 update:

𝑣𝑒𝑐𝑡𝑜𝑟BL(1, 𝑐);
end

nd

Algorithm 3: Structural groups decomposition

Result: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA
𝑟𝑑𝑒𝑟SG = 1;
𝑙𝑎𝑔1 =

∑ (𝑣𝑒𝑐𝑡𝑜𝑟NSG[2 ∶ 𝑁]);
𝑙𝑎𝑔2 = 0;
hile ∃ 𝑣𝑒𝑐𝑡𝑜𝑟NSG[2 ∶ 𝑁] ∉ 0 do
if 𝑓𝑙𝑎𝑔1 ∼= 𝑓𝑙𝑎𝑔2 then

𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟 = 1;
% search for candidates
CANDIDATES_3D
% check if any candidate forms SG
INDIVIDUALS_SG_3D
𝑓𝑙𝑎𝑔2 = 𝑓𝑙𝑎𝑔1;
𝑓𝑙𝑎𝑔1 =

∑ (𝑣𝑒𝑐𝑡𝑜𝑟NSG[2 ∶ 𝑁]);
else

𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟 = 𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟 + 1;
CANDIDATES_3D
SEEKER_3D
forall 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐ℎ𝑎𝑖𝑛𝑆𝐺 do

GROUPS_SG_3D
𝑓𝑙𝑎𝑔2 = 𝑓𝑙𝑎𝑔1;
𝑓𝑙𝑎𝑔1 =

∑ (𝑣𝑒𝑐𝑡𝑜𝑟NSG[2 ∶ 𝑁]);
if 𝑓𝑙𝑎𝑔1 ∼= 𝑓𝑙𝑎𝑔2 then

break;
end
break;
disp error % if not 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑆𝐺

end
break;
disp error % if not Structural Analysis solution found

end
end
StructuralAnalysisResults
16
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Function CANDIDATES_3D identifies any body candidate to form a structural group, which must satisfy two conditions: it does
not belong to any structural group already obtained, and the body has, at least, one active external kinematic pair.
Function CANDIDATES_3D

Result: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG
or 𝑖 = 2 ∶ 𝑁 do

for 𝑗 = 1 ∶ 𝑁 do
if 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(𝑖, 𝑗) ∼= 0 & 𝑣𝑒𝑐𝑡𝑜𝑟SG(𝑖) == 0 then

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG(𝑖) = 𝑖;

%bodies with assigned DOFs but not included in any SG become candidates
end

end
nd

In the example of the spatial four-bar, applying the function CANDIDATES_3D we obtain Eq. (7) showing that bodies 2 and 4
are candidates as, for both of them, the external kinematic pairs KP(1,2) and KP(1,4) are active.

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG =
(

0 2 0 4
)

; (7)

Function INDIVIDUALS_SG_3D is executed after function CANDIDATES_3D to check if any of the obtained candidates satisfies
Eq. (5), and then, forms a structural group. The sequence is shown in Fig. 9. A pseudo-code of the main steps carried out is used
to make this function more readable in INDIVIDUALS_SG_3D. Basically, for each candidate 𝑒 the function reads all elements from
columns 2 to 𝑁 in row 𝑒 within 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA, searching for the bodies 𝑓 which are active external kinematic pairs to this candidate 𝑒
but only if the KP(e,f) was not previously considered. Each kinematic pair found is added to 𝑣𝑒𝑐𝑡𝑜𝑟PAIR(𝑒) to calculate 𝑃 of Eq. (5);
moreover, from the set of active kinematic pairs it is easy to read from 𝑚𝑎𝑡𝑟𝑖𝑥GDL(𝑓, 𝑒) the DOF of each of them which are added to
𝑣𝑒𝑐𝑡𝑜𝑟GDL(𝑒) to evaluate 𝑆𝑐 ; finally, from the matrix 𝑘𝑛𝑜𝑤𝑛𝐼𝑛𝑝𝑢𝑡𝑠(𝑓, 𝑒) it is also easy to read number of driven DOF in each active
kinematic pair which is added to 𝑣𝑒𝑐𝑡𝑜𝑟BL(𝑒) to calculate 𝑛𝑐 .

Eq. (5) is checked and, if satisfied by candidate 𝑒, the following matrices and variables are updated: 𝑣𝑒𝑐𝑡𝑜𝑟SG, 𝑣𝑒𝑐𝑡𝑜𝑟NSG,
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA and 𝑜𝑟𝑑𝑒𝑟SG, and the external KP(e,g) not active for body 𝑒 will become active for the bodies 𝑔 which are
not yet structural group.
Function INDIVIDUALS_SG_3D

Output: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA, 𝑜𝑟𝑑𝑒𝑟SG
forall 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG do

e=𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG;
for f=2:N do

% evaluate P, DOF and nc

if 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(e,f) ∼= 0 & CounterPair(e,f) = 0 update:
𝑣𝑒𝑐𝑡𝑜𝑟PAIR(𝑒);
𝑣𝑒𝑐𝑡𝑜𝑟GDL(𝑒);

end

if KnownInputs(e,f) ∼= 0 update:
𝑣𝑒𝑐𝑡𝑜𝑟BL(𝑒);

end
𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑃𝑎𝑖𝑟(𝑒, 𝑓 )=1;

end

% Check SG condition and update matrices accordingly

if (𝑣𝑒𝑐𝑡𝑜𝑟GDL(𝑒) − 𝑣𝑒𝑐𝑡𝑜𝑟BL(𝑒)) = 𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑇 𝑦𝑝𝑒 ⋅ (𝑣𝑒𝑐𝑡𝑜𝑟PAIR(𝑒) − 1) then
𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(1, 𝑒) = 𝑜𝑟𝑑𝑒𝑟SG;
𝑜𝑟𝑑𝑒𝑟SG = 𝑜𝑟𝑑𝑒𝑟SG + 1;

update 𝑣𝑒𝑐𝑡𝑜𝑟SG(𝑒), 𝑣𝑒𝑐𝑡𝑜𝑟NSG(𝑒), 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG(𝑒);

% New DOF assignment

for g=2:N do
if 𝑚𝑎𝑡𝑟𝑖𝑥GDL(e,g) ∼= 0 & 𝑣𝑒𝑐𝑡𝑜𝑟SG(g) ∼= 0 then

𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(𝑔, 𝑒) = 𝑜𝑟𝑑𝑒𝑟SG;
end

end
end

nd
17
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After the first execution of INDIVIDUALS_SG_3D over the example (Fig. 8.a), matrix 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA is resulting as (8):

𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA =

⎛

⎜

⎜

⎜

⎜

⎝

0 𝟏 0 0
1 0 0 0
0 𝟐 0 0
1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

(8)

here the value from the first row, reserved for the kinematic structure of the MBS: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(1, 2) = 1 means that body 2 (second
column) is the first (𝑜𝑟𝑑𝑒𝑟SG = 1) structural group obtained.

As shown in algorithm 3, when INDIVIDUALS_SG_3D is executed, both flags are updated and compared. As in this case, a new
SG has been obtained, 𝑓𝑙𝑎𝑔1 ≠ 𝑓𝑙𝑎𝑔2, the functions CANDIDATES_3D and INDIVIDUALS_SG_3D are again executed and vector
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG is updated:

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG =
(

0 0 3 4
)

; (9)

Both candidates, 3 and 4, are analysed by function INDIVIDUALS_SG_3D. As the parameters for body 4 have not suffered any
change from previous iteration, this body is not SG. Body 3 is also not a structural group; then 𝑓𝑙𝑎𝑔1 = 𝑓𝑙𝑎𝑔2, and it becomes
necessary to increase in one unit the length of the kinematic chains that can form new structural groups.

Function SEEKER_3D is in charge to find kinematic chains candidates to form a new structural group; the conditions they must
satisfy are:(1) their length is given by the value of 𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟; (2) none of their bodies belongs to a SG already obtained and
(3), at least, one of its bodies has one active external kinematic pair (the body must appear in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑆𝐺).

First, the function calculates all chains combination of the 𝑁 −1 bodies in the MBS taken 𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟 at a time. The outcome
is the matrix 𝑐ℎ𝑎𝑖𝑛 with (𝑁−1)!

((𝑁−1)−𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟)! 𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟! rows and 𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟 columns. The first condition is satisfied. Only the
chains whose elements are connected according to the 𝑚𝑎𝑡𝑟𝑖𝑥GDL are consider for the next step.

Over each row of 𝑐ℎ𝑎𝑖𝑛 is checked the conditions: (2) none of their elements belongs to a SG which can be only satisfied if all
hese elements in 𝑣𝑒𝑐𝑡𝑜𝑟SG are zero, and then, the variable 𝑐ℎ𝑒𝑐𝑘1 = 0; and (3) at least one body has one active external pair is

satisfied if one of the elements has already been stored in matrix 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG, and then, the variable 𝑐ℎ𝑒𝑐𝑘2 ≠ 0.
The filtered kinematic chains by the fulfilment of 𝑐ℎ𝑒𝑐𝑘1 = 0 and 𝑐ℎ𝑒𝑐𝑘2 ≠ 0, are extracted out from 𝑐ℎ𝑎𝑖𝑛 and resulting in the

matrix 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐ℎ𝑎𝑖𝑛𝑆𝐺 with the SG candidate chains to continue with the structural analysis algorithm 3.
When function SEEKER_3D is executed for the spatial MBS of the example under study, the only kinematic chain which is

candidate is:

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐ℎ𝑎𝑖𝑛𝑆𝐺 =
(

3 4
)

; (10)

Function SEEKER_3D

Output: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑐ℎ𝑎𝑖𝑛SG
ℎ𝑎𝑖𝑛 =

( 𝑁−1
𝐵𝑜𝑑𝑖𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟

)

orall 𝑐ℎ𝑎𝑖𝑛 ∩ 𝑚𝑎𝑡𝑟𝑖𝑥GDL do

check1=∑

𝑣𝑒𝑐𝑡𝑜𝑟SG([𝑐ℎ𝑎𝑖𝑛, ∶]);

check2=∑

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG([𝑐ℎ𝑎𝑖𝑛, ∶]);

if check1 = 0 & check2 ∼= 0 then
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑐ℎ𝑎𝑖𝑛SG = 𝑐ℎ𝑎𝑖𝑛;

end
end

Function GROUPS_SG_3D studies if any of the kinematic chains contained in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑐ℎ𝑎𝑖𝑛SG satisfies Eq. (5) considering
both external (active) and internal kinematic pairs to evaluate 𝑃 , all the DOFs 𝑆𝑐 contained in these kinematic pairs, which ones
are driven 𝑛𝑐 and which ones are not 𝐿th. At this stage of the structural analysis, these parameters have already been stored for all
bodies with active external kinematic pairs but must be modified due to internal kinematic pairs.

The function checks if any two bodies 𝑖 and 𝑗 of a kinematic chain contained in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑐ℎ𝑎𝑖𝑛SG form KP(i,j) and, if so it
adds: 0.5 units to the columns 𝑖 and 𝑗 from 𝑣𝑒𝑐𝑡𝑜𝑟PAIR, 𝑆𝐶∕2 units to the same columns from 𝑣𝑒𝑐𝑡𝑜𝑟GDL and 𝑛𝐶∕2 units to the ones
from 𝑣𝑒𝑐𝑡𝑜𝑟BL.

Next, the condition for structural group, Eq. (5), is applied to the kinematic chain under study and, if it is a structural group,
matrices: 𝑣𝑒𝑐𝑡𝑜𝑟SG, 𝑣𝑒𝑐𝑡𝑜𝑟NSG, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA and variable 𝑜𝑟𝑑𝑒𝑟SG will be updated, included the new DOF assignment of the
external kinematic pairs which become active to the bodies that form kinematic pair with the bodies of the obtained SG. If Eq. (5) is
not fulfilled, the parameters: 𝑣𝑒𝑐𝑡𝑜𝑟PAIR, 𝑣𝑒𝑐𝑡𝑜𝑟GDL and 𝑣𝑒𝑐𝑡𝑜𝑟BL will be reset to their original values without accounting for internal
kinematic pairs.

When GROUPS_SG_3D is applied to the MBS studied as an example, the function returns Eq. (11):

𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA =

⎛

⎜

⎜

⎜

⎜

0 1 2 2
1 0 0 0
0 2 0 0

⎞

⎟

⎟

⎟

⎟

(11)
18

⎝

1 0 0 0
⎠



Mechanism and Machine Theory 176 (2022) 104985A. Celdran et al.

e

4
(

3

T
s
t

s
k

c

Function GROUPS_SG_3D

Output: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA, 𝑜𝑟𝑑𝑒𝑟SG
foreach chain ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑐ℎ𝑎𝑖𝑛SG do

for e=1:length(chain)-1 do
for f=e+1:length(chain) do

% evaluate 𝑃 , 𝐷𝑂𝐹 and 𝑛𝑐
if 𝑀𝑎𝑡𝑟𝑖𝑥𝐺𝐷𝐿([𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 )]) ∼= 0 then

𝑣𝑒𝑐𝑡𝑜𝑟PAIR([𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 )]) = 𝑣𝑒𝑐𝑡𝑜𝑟PAIR([𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 )]) + 0, 5;
𝑣𝑒𝑐𝑡𝑜𝑟GDL([𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 )]) = 𝑣𝑒𝑐𝑡𝑜𝑟GDL([𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 )]) +𝑀𝑎𝑡𝑟𝑖𝑥𝐺𝐷𝐿([𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 )])∕2 ;

end

if KnownInputs(chain(e),chain(f)) ∼= 0 then
𝑣𝑒𝑐𝑡𝑜𝑟BL([𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 )]) = 𝑣𝑒𝑐𝑡𝑜𝑟BL([𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 )]) +𝐾𝑛𝑜𝑤𝑛𝐼𝑛𝑝𝑢𝑡𝑠(𝑐ℎ𝑎𝑖𝑛(𝑒), 𝑐ℎ𝑎𝑖𝑛(𝑓 ))∕2 ;

end
end

end
𝑃 =

∑

𝑣𝑒𝑐𝑡𝑜𝑟PAIR([𝑐ℎ𝑎𝑖𝑛]);
𝑆C =

∑

𝑣𝑒𝑐𝑡𝑜𝑟GDL([𝑐ℎ𝑎𝑖𝑛]);
𝐿G =

∑

𝑣𝑒𝑐𝑡𝑜𝑟BL([𝑐ℎ𝑎𝑖𝑛]);
𝑁m = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐ℎ𝑎𝑖𝑛);

% check SG condition and update matrices accordingly

if 𝑆𝑐 - 𝐿𝐺 = ProblemType ⋅ (𝑃 - 𝑁𝑚) then
𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(1, [𝑐ℎ𝑎𝑖𝑛]) = 𝑜𝑟𝑑𝑒𝑟SG; ;
𝑜𝑟𝑑𝑒𝑟SG = 𝑜𝑟𝑑𝑒𝑟SG + 1;

update 𝑣𝑒𝑐𝑡𝑜𝑟SG([𝑐ℎ𝑎𝑖𝑛]), 𝑣𝑒𝑐𝑡𝑜𝑟NSG([𝑐ℎ𝑎𝑖𝑛]), 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒SG([𝑐ℎ𝑎𝑖𝑛]);

% DOF assignment

for g=2:N do
if 𝑚𝑎𝑡𝑟𝑖𝑥GDL([chain],g) ∼= 0 & 𝑣𝑒𝑐𝑡𝑜𝑟SG(g) ∼= 0 then

𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(g,[chain])=𝑜𝑟𝑑𝑒𝑟SG;
end

end
% if the kinematic chain is not a SG the original values are restored
else

restore all
end

nd

where the first row contains the kinematic structure of the multibody system: SG-I{2} and SG-II{3,4} which coincides with the
kinematic structure obtained using the graph-analytic method and shown in Fig. 8(g)). The remaining rows indicate the sequence
in which the DOFs are assigned from one body in a structural group to the bodies in their external kinematics pairs. For example, in
Eq. (11), the values 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(2, 1) = 1 and 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(4, 1) = 1 shows that body 1 (first column) has assigned DOFs to bodies 2 and
. Then, the value 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA(3, 2) = 2 informs us that the second assignment of DOFs goes from body 2 (second column) to body 3
third row).

.5. Module 5. Results and modelling

The last module in the MBSSA3D algorithm offers the user two options: ’Structural Analysis Results’ and ’Structural Modelling’.
he objective of the latter is ongoing and not implemented. It should call an interface program that automatically generates and
tores the kinematic/dynamic model of the multibody system in a text file that can be read from an external library to perform
hese types of analyses. We have two mature libraries in mind at this moment: MBDSBEG from [6], and MBSLIM from [36].

The option ’Structural Analysis Results’ shows the kinematic structure obtained for the MBS analysed (Fig. 11). When several
olutions (structural transformations) are obtained, they can be ordered attending to different criteria, as the number of SG in the
inematic structure, or the number of SG available in a specified library.

The most relevant information of the kinematic structure is formatted for the interface program and organised in different
olumns (see Fig. 11 upper side) being a explicit representation of the matrix’s 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA (Eq. (11)) rows and columns, meaning:

• Structural Groups: lists the ordered set of structural groups obtained in the format ∕𝑖, 𝑗∕, where 𝑖 and 𝑗 are bodies of this
structural group. For the example used along the paper, first SG is ∕2∕ and second one ∕3, 4∕.
19

• 𝑁 of bodies: shows the number of bodies in the SG of the same row.
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Fig. 11. Results window in the 𝐌𝐁𝐒𝐒𝐀𝟑𝐃 app for the structural analysis of multibody system shown in Fig. 8(a).

• SG type: the name assigned to this type of structural group. The format for the name is a sequence of characters combining
the numbers of kinematic pairs of a certain type (i.e. 1P1C1S means one prismatic, one cylindrical, one spherical) ending with
a ’2D’ or a ’3D’ for planar or spatial MBS, respectively. This is thought to be the baseline for the next steps required in the
modelling libraries connection.

• DOFs from external kinematic pairs: lists the active external kinematic pairs from which bodies of the SG of the same row
participate. The format is i&jT. where 𝑖 is the body that belongs to the SG, 𝑗 is the body out of the SG, and 𝑇 is the type of
kinematic pair; the dot is used to end the chain of characters and to separate different external active kinematic pairs. In the
example: 3&2S.4&1P. means that KP(3,2) is spherical and KP(4,1) is prismatic.

• Internal pairs: lists the internal kinematic pairs in the same format that the external ones.
• DOF to external kinematic pairs: lists how many DOFs assigns one body 𝑖 that becomes SG to other bodies 𝑗 of the KP(i, j)

which becomes active to the later (𝑗). The format is similar to the preceding item and, in the example, 2&3S. means that body
2 assigned the three DOFs of the 𝑆 spherical KP(2, 3) to body 3.

The bottom part of the interface Fig. 11 is dedicated to inform the analyst about the MBS topological input (the extended
adjacency matrix and 𝐾𝑛𝑜𝑤𝑛𝐼𝑛𝑝𝑢𝑡𝑠 matrix) used for the structural analysis. That will be specially useful when different solutions
are handling by the algorithm on structural transformation and singularities management in the future.

4. Case studies

In this section, the algorithm 𝐌𝐁𝐒𝐒𝐀𝟑𝐃 has been applied for the kinematic substructuring of spatial multibody systems. The
results are validated with the graph-analytical method introduced in Section 2 and compared to the kinematic structures offered by
a graph-analytical LGA, and the computational linear graph algorithm introduced in [13].

4.1. Rotor of a helicopter

Fig. 12.a shows part of the main rotor control mechanism of a helicopter introduced by Kecskeméthy in [11] with the
corresponding topological graph in Fig. 12.b. The mechanism consists of 15 movables bodies and the frame 1, joined through 21
joints giving rise to four prismatic pairs: KP(1-2), KP(1-3), KP(1-4) and KP(1-13), five revolute pairs: KP(8-9), KP(11-9), KP(13-9,
KP(13,15) and KP(15-16), six universal pairs: KP(2-5), KP(3-6), KP(4-7), KP(1-10), KP(8-12) and KP(11-14), and six spherical pairs
KP(5-8), KP(6-9), KP(7-11), KP(10-9), KP(12-16) and KP(14-16). Moreover, the rotational movements of KP(9-13) and KP(13-15)
and one of the two DOFs in KP(11-14) are considered as the independent coordinates.

This mechanism is originally modelled in [11] with 18 nonlinear constraint equations from six independent closed-loops open
at their spherical joints. Following Fig. 12.b and opening at the spherical joints, the kinematic structure is formed by these six
modules with the corresponding bodies: CL-I {1, 13, 9, 10}, CL-II: {1, 13, 9, 6, 3}, CL-III: {13, 9, 11, 14, 16, 15}, CL-IV{1, 13, 9, 11, 7, 4},
CL-V: {13, 15, 16, 12, 8, 9}, and CL-VI: {1, 13, 9, 8, 5, 2}. The kinematic graph in Fig. 12.c, reveals the closed-loops dependency between
closed-loops.
20
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Fig. 12. (a) Main rotor control mechanism of a helicopter introduced by Kecskeméthy in [11]. b) Topological graph considering bold lines in KP(9-13), KP(13-15),
and one of the two DOFs in KP(11-14) as independent coordinates. c) Kinematic graph for the six independent closed-loops when cut at the spherical joints.

Table 4
Parameters for computational kinematic substructuring of the rotor using the LGA described in
[13].
List Items

P = [0, 1, 1, 1, 2, 3, 3, 9, 13, 1, 9, 8, 1, 11, 13, 15, 5, 10, 6, 7, 16, 12]
loop_terminators = [[9, 18], [9, 19], [14, 21], [11, 20], [16, 22], [8, 17]]
parent_joints = [None, ’S ’, ’E’, ’M’, ’T’, ’F’, ’N’, ’P’, ’B’, ’C’, ’H’, ’Q ’,

’A’, ’I’, ’J’, ’K’, ’U’, ’D’, ’G’, ’O’, ’L’, ’R’]

Table 5
Results for the computational kinematic substructuring of the rotor using the LGA described in [13].
Substructure id Loops Loop members Loop correspondence

1 i 1, 13, 10, 9, 18 CL-I
2 ii 1, 13, 3, 6, 9, 19 CL-II
3 iv 1, 13, 4, 9, 7, 11, 20 CL-IV
4 vi 1, 13, 2, 9, 5, 8, 17 CL-VI
5 [iii], [v] [13, 9, 15, 11, 16, 14, 21], [13, 15, 9, 8, 12, 16, 22] CL-III + CL-V

LGA computational solution
Once the closed-loops and their body members have been identified, we may provide the computational linear graph algorithm

described in [13] with the information shown in Table 4. Virtual bodies {17, 18, 19, 20, 21, 22} have been included between the
kinematic pairs: KP(4-7), KP(8-9), KP(5-8), KP(6-10), KP(13-15) and KP(11-15).

The algorithm offers a kinematic structure divided into the five kinematic substructures in Table 5. In the last column, we identify
the correspondence between the loops in the visual and the computational LGA methods. Same results mean that we made most of
the algorithm’s work and the provided information ( Table 4) was closed to the solutions. This kinematic structure is not used by
their authors for a combination of sequential/parallel solution of the closed loops, but to reorganise the elements of the Jacobian
matrix of the multibody system. As the fifth substructure is composed by two loops (CL-III and CL-V), the corresponding Jacobian
sub-matrix must be less efficient than a kinematic structure containing six modules.

As the kinematic structure of a multibody system is not unique, we tested the computational algorithm with a different set
of closed-loops, searching for a sixth module. In this second case, the closed-loops and members are: CL-I {1, 13, 9, 10}, CL-II:
{1, 2, 5, 8, 12, 16, 14, 11, 7, 4}, CL-III: {1, 2, 5, 8, 12, 16, 15, 13}, CL-IV{1, 2, 5, 8, 9, 10}, CL-V: {1, 9, 10, 13, 3, 6}, and CL-VI: {1, 2, 5, 8, 12, 16, 14,
11, 9, 10}. Including the virtual bodies {17,… , 22} now between the kinematic pairs: KP(9-13), KP(1-4), KP(15-16), KP(8-9), KP(6-9)
and KP(9-11). The new information for the algorithm is shown in Table 6, and the new results, in Table 7.

The new kinematic structure consist in the six substructures shown in Table 7. Again, we find an exact correspondence with the
visual LGA results for this structural transformation, and an important effort has been done collecting the information needed by
the algorithm.

MBA graph-analytical solution
The kinematic structure based on structural groups must be obtained for the kinematic and dynamic analysis based on group

equations [6]. Applying the concepts introduced in Section 2 to the rotor control mechanism and considering the same input
21
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Table 6
Modified parameters in one structural transformation for the computational kinematic
substructuring of the rotor.
List Items

P = [0, 1, 1, 7, 2, 3, 11, 5, 10, 1, 14, 8, 1, 16, 13, 12, 13, 4, 16, 8, 9, 11]
loop_terminators = [[9, 17], [1, 4], [19, 15], [20, 9], [6, 21], [9, 22]]
parent_joints = [None, ’S ’, ’E’, ’N’, ’T’, ’F’, ’O’, ’U’, ’D’, ’C’, ’I’,

’Q ’, ’A’, ’L’, ’J’, ’R’, ’B’, ’M’, ’K’, ’P’, ’G’, ’H’]

Table 7
Substructures for the structural transformation of the rotor using computational LGA [13].
Substructure id Loops Loop members Loop correspondence

1 i 1, 10, 13, 9, 17 CL-I
2 iii 1, 2, 13, 5, 8, 12, 16, 19, 15 CL-III
3 iv 1, 2, 10, 5, 8, 20, 9 CL-IV
4 v 1, 3, 10, 9, 6, 21 CL-V
5 vi 1, 10, 2, 5, 8, 12, 16, 14, 11, 9, 22 CL-VI
6 ii 2, 5, 8, 12, 16, 14, 11, 7, 1, 4 CL-II

Fig. 13. (a) Topological graph and structural groups obtained for the rotor control mechanism in Fig. 12. b) Structural graph for the seven independent structural
groups.

movements as in [11], an experienced analyst would obtain the structural graph in Fig. 13.a showing the seven structural groups
obtained and their corresponding bodies. Fig. 13.b shows the corresponding structural graph, where the careful distribution of the
SGs reflects their dependency and how they must be solved (from the upper to the lower level). For example, SG-I{9,10,13} is at
the first level and must be solved first. Then, SG-II{15} and SG-III{3,6} are at the second level and might be solved in parallel if
explicit parallelism is considered [7] or sequentially otherwise. At the third level, SG-IV{11,14,16} must be analysed. Then, at the
fourth level, SG-V{8,12} and SG-VI{4,7} may be solved in parallel and finally, at the lower level, solving the last SG-VII{2,5} will
end the solution of the whole multibody system.

MBSSA3D Computational solution
The new module ’Results’ for the computational solution with MBSSA3D algorithm offers the main results in tabular form. The

first column in Table 8 shows the same structural groups than with the graph-analytical method. The other columns and Table 9
offer information devoted to classifying this specific solution among other kinematic structures obtained if structural transformation
is launched. Also, this information is needed for an interface program that automatically generates the kinematic or dynamic model
of the multibody system. Both, the automatic structural transformations and the interface to generate the kinematic and dynamic
model are ongoing.

The obtained SGs are ordered in the matrix 𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA.M first row, which defines the kinematic structure of the problem at hand.
The solution offered by the MBSSA3D algorithm (Eq. (12)) coincided with the one provided in Fig. 13.a.

𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA =
(

0 7 3 5 7 3 5 6 1 1 4 6 1 4 2 4
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

)

(12)
22
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Table 8
Kinematic structure offered by MBSSA3D for the rotor control mechanism with the original independent coordinates.
SGs Num bodies SG type DOFs from Ext KP Int KP DOFs to Ext KP

9,10,13 3 1R1P1U1S3D 10&1U.13&1P. 9&10S.9&13R. 9&6S.9&8R.9&11R.13&15R.
15 1 1R3D 15&13R. – 15&16R.
3,6 2 1P1U1S3D 3&1P.6&9S. 3&6U. –
11,14,16 3 2R1U1S3D 11&9R.16&15R. 11&14U.14&16S. 11&7S.16&12S.
4,7 2 1P1U1S3D 4&1P.7&11S. 4&7U. –
8,12 2 1R1U1S3D 8&9R.12&16S. 8&12U. 8&5S.
2,5 2 1P1U1S3D 2&1P.5&8S. 2&5U. –

Table 9
MBSSA3D offers additional information to classify and order kinematic structures
depending on their complexity and inclusion in a library. For example, a smaller
number of SGs implied higher complexity and included SGs are ready for
kinematic and dynamic analysis.
SG type Num of SGs SG on library

1R1P1U1S3D 1 0
1R3D 1 1
1P1U1S3D 3 1
2R1U1S3D 1 0
1R1U1S3D 1 1

Fig. 14. Results for the structural transformation of the mechanism shown in Fig. 12.a with new input movements: KP(1-2), KP(1-13) and KP(13-15). a) Structural
raph. (b) structural diagram.

From the group-equations topological approach, this mechanism may be modelled using the SGs gathered in Table 9. However,
e see that some of the SGs: 1R1P1U1S3D and 2R1U1S3D are not included in the library (MBDSBEG), and then, their model and

olution are not available. If there were no more options, we would need to generate the model and the closed-form or iterative
olutions of these structural groups as shown in [6]. However, one of the main advantages of the developed computational MBA
s that it may perform a structural transformation and classify and organise the different kinematic structures by simply modifying
he knownInputs matrix.

If we consider the DOFs of the kinematic pairs KP(1-2), KP(1-13) and KP(13-15) as independent coordinates, the algorithm
btains the kinematic structure shown in Table 10. We validate this solution with the graph-analytical method in Fig. 14. This
olution offers more SGs (simpler), and all of them are included in the library ( Table 11), so we might use them to solve the
inematics and the dynamics of this multibody system. The interface program that would perform these analyses automatically is
ngoing, but we may build the needed files manually, as introduced in [6].

𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA =
(

0 1 5 9 6 5 9 6 4 4 8 7 2 8 3 7
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

)

(13)

4.2. Micro-manipulator

Fig. 15.a shows a micro-manipulator for electronic microscopes, closed to the one presented in [20]. The original system has
been modified for validation purposes and to avoid singularities as, for example, the redundant DOFs introduced by one body joined
only by two spherical kinematic pairs.
23
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Table 10
Structural groups obtained with input movements: KP(1-2), KP(1-13) and KP(13-15).
SGs Num bodies SG type DOFs from Ext KP Int KP DOFs to Ext KP

2 1 1P3D 2&1P. – 2&5U.
13 1 1P3D 13&1P. – 13&9R.13&15R.
15 1 1P3D 15&13R. – 15&16R.
9, 10 2 1R1U1S3D 9&13R.10&1U. 9&10S. 9&6S.9&8R.9&11R.
3, 6 2 1P1U1S3D 3&1P.6&9S. 3&6U. –
5, 8 2 1R1U1S3D 5&2U.8&9R. 5&8S. 8&12C.
12, 16 2 1R1U1S3D 12&8U.16&15R 12&16S. 16&14S.
11, 14 2 1R1U1S3D 11&9R.14&16S. 11&14U. 11&7S.
4, 7 2 1P1U1S3D 4&1P.7&11S. 4&7U. –

Table 11
Additional information of the kinematic structure. If all the
obtained SGs are defined in the library, the multibody system
might be solved.
SG type Num of SGs SG on library

1P3D 2 1
1R3D 1 1
1R1U1S3D 4 1
1P1U1S3D 2 1

Table 12
MBSSA3D Results for the 6 DOFs micro-manipulator. Input movements are defined over the linear actuators.

SGs Num bodies SG type DOFs from Ext KP int KP DOFs to Ext KP

4,5,6,7 4 3R1C1ER3D 4&1ER.7&1R. 4&5C.5&6R.6&7R. 5&3S.5&21S.
2,3 2 1C1ER1S3D 2&1ER.3&5S. 2&3C. –
10,11,12,15 4 3R1C1ER3D 12&1R.15&1ER. 10&11R.10&15C.11&12R. 10&9S.10&14S.10&21S.
8,9 2 1C1ER1S3D 8&1ER.9&10S. 8&9C. –
13,14 2 1C1ER1S3D 13&1ER.14&10S. 13&14C. –
21 1 2S3D 21&5S.21&10S. – 21&18S
18,19,20 4 3R3S3D 20&1R.&18&21S. 18&19R.19&20R. 18&17S.
16,17 2 1C1ER1S3D 16&1ER.17&18S. 16&17C. –

Fig. 15. (a) 6 DOF micro-manipulator mechanism extracted from [20]. (b) Structural graph of the micro-manipulator. (c) Kinematic structure using the
graph-analytical method introduced in Section 2.

The mechanism has a platform (body 21) with three main branches divided into smaller ones. The input movements are defined
on the six cylindrical joints as 𝑞𝑖 (i = 1, . . . ,6). Bodies 2, 4, 8, 13, 15, and 16 are joined to the frame with universal joints. Joints
KP(3-5), KP(5-21), KP(9-10), KP(10-21), KP(10-14), KP(18-21) and KP(17-18) are spherical, and the rest are rotational joints.

With these input movements, the structural graph and the kinematic structure obtained using graph-analytical methods are
shown in Fig. 15.(c) which coincides with the results offered by the algorithm in Table 12 and Eq. (14). Also, the results show that
none of the obtained SGs is available in the library.

𝑅𝑒𝑠𝑢𝑙𝑡𝑠SA =
(

0 2 2 1 1 1 1 4 4 3 3 3 5 5 3 8 8 7 7 7 6
)

(14)
24
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Fig. 16. (a) 6 DOFs Stewart’s platform. (b) Structural graph. (c) Kinematic structure based on a graph-analytical method.

Table 13
Only one complex structural group is obtained in the original Stewart platform.

SGs Num bodies SG type DOFs from Ext KP

2,3,4,5,6,7,8,9,10,11,12,13,14 13 6P6U6S1F3D 2&1U.4&1U.6&1U.8&1U.10&1U.12&1U.14&1F. ...
2&3P.4&5P.6&7P.8&9P.10&11P.12&13P. ...
3&14S.5&14S.7&14S.9&14S.11&14S.13&14S.

Table 14
Structural Groups obtained with six input movements defining the position and orientation of the floating terminal KP(1-14). In
(*) the given KP are: 14&3U.14&5U.14&7U.14&9U.14&11U.14&13U.
SGs Num bodies SG type DOFs from Ext KP Int KP DOFs to Ext KP

14 1 1F3D 14&1F. – *
2,3 2 1P1U1S3D 2&1S.3&14U. 2&3P. –
4,5 2 1P1U1S3D 4&1S.5&14U. 4&5P. –
6,7 2 1P1U1S3D 6&1S.7&14U. 6&7P. –
8,9 2 1P1U1S3D 8&1S.9&14U. 8&9P. –
10,11 2 1P1U1S3D 10&1S.11&14U. 10&11P. –
12,13 2 1P1U1S3D 12&1S.13&14U. 12&13P. –

4.3. Stewart’s platform

Another spatial multibody system of interest is the parallel kinematic manipulator based on Stewart’s platform. It is a 6 DOFs
igh accuracy positioning mechanism with aerospace, nautical or medical applications. The six linear prismatic actuators with input
ovements KP(2-3), KP(4-5), KP(6-7), KP(8-9), KP(10-11) and KP(12-13) are joined to the terminal (body 14) and the frame with
niversal and spherical joints respectively (Fig. 16.a).

When structural analysis is performed using the MBSSA3D algorithm, only one complex structural group with thirteen bodies
nd six input movements forms the kinematic structure (Table 13 and Eq. (15)). This result coincides with the obtained using
raph-analytical methods (Fig. 16.c).

𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑆𝐴 =
(

0 1 1 1 1 1 1 1 1 1 1 1 1 1
... ... ... ... ... ... ... ... ... ... ... ... ... ...

)

(15)

Again, we may specify in the MBSSA3D algorithm certain changes, as in the knowninputs matrix, to study new kinematic
tructures. For example, we might be interested in the path-planning and control of the terminal, which is considered a floating
ody connected to the frame with a 6 DOFs fictitious kinematic pair allowed in the algorithm. The inverse kinematic problem must
alculate the displacements of the actuators in order to achieve the defined position and orientation of the terminal. The kinematic
tructure offered by the algorithm is shown in Table 14 and Eq. (16) which coincides with the one obtained using graph-analytical
ethods (Fig. 17.c). The structural transformation offers six structural groups, already defined in the library (Table 15), modelled
ith a reduced number of coordinates and high parallelism because, once the terminal is solved, these six SGs might be solved in
arallel, as shown in the kinematic route 23, in Fig. 7.

Improvements in the efficiency of the group-coordinates approach, which is based on MBA for kinematic substructuring, have
25

een reported in the literature using the simulation software PARCSIM (PARallel Computing SIMulator) [7].
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Table 15
Only two types of SGs are needed and their kinematic and
dynamic models are included in a library as MBDSBEG.
SG type Num of SGs SG on library

1F3D 1 1
1P1U1S3D 6 1

Fig. 17. Structural transformation for inverse kinematic problem of 6 DOFs Stewart platform. (a) Structural graph. (b) Structural diagram obtained using
graph-analytical methods.

The first row in the results matrix assigns to each body (column) the number of SG it pertains to, which is a counter increased
y the algorithm each time an SG is found. The dependency among the structural groups must be specified to define the kinematic
tructure of the multibody system. This information is obtained from the remaining rows in matrix 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑆𝐴, as explained in

Eq. (11). In the kinematic structure (Eq. (16)), we see these dependencies clearer than in the graph-analytical method (Fig. 17.b)
because this matrix shows which body assigns DOFs from one SG to another body of a dependent SG. In our example, the frame
(first column) assigns DOFs to bodies (rows) {2, 4, 6, 8, 10, 12 and 14} and the first obtained SG {14} (value ’1’ in the first row)
provides the second assignment to bodies (rows) {3, 5, 7, 9, 11, 13}.

𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑆𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 2 2 3 3 4 4 5 5 6 6 7 7 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

5. Robustness and efficiency of the new proposed approach

This section compares the robustness and the efficiency of the MBSSA3D approach introduced in this paper to the former
version [21]. While the previous version was limited to planar multibody systems, the MBSSA3D deals with spatial ones; that is its
main advantage. However, to give an idea about the efficiency of both approaches and compare their robustness, some tests have
been launched on an Intel Core i7-8550U Quad Core 2.5 GHz CPU, RAM 8 GB DDR4 Microsoft Windows 10 Chinese Version, 64-bit
OS, and Matlab 2020a programming environment. The most relevant information is shown in Table 16.

In the first test series, the kinematic structure of planar linkages with increasing complexity is obtained. The linkages have been
automatically generated by adding 𝑛AG = 2, 4, 8 Assur groups of a specific class (𝑘 = I, II, III) to a 1-DOF group of primary elements.
The first Assur group is joined to the primary element and the frame, and any added Assur group is aleatorily joined to the existing
bodies. This process generates the linkages named: ’ASSUR k-𝑛AG’ as, for example, ASSUR I-2, ASSUR I-4, ASSUR I-8, ASSUR II-2,
or ASSUR III-4. More complex linkages are included as case studies, obtained as structural transformations of the original ones
26

(e.g. ASSUR I-4), by considering the controlled DOF between the two last bodies, giving rise to the linkages with the suffix ’B’
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Table 16
Number of structural groups 𝑆𝐺𝑆𝐴𝑋𝐷 and computational cost 𝑡𝑆𝐴𝑋𝐷 (in seconds) for the cases studies launched to compare
robustness and efficiency of the 2D [21] and the MBSSA3D computational algorithms.
Case study Bodies Joints 𝑆𝐺𝑆𝐴2𝐷 𝑆𝐺𝑆𝐴3𝐷 𝑡𝑆𝐴2𝐷 (s) 𝑡𝑆𝐴3𝐷 (s)

2D multibody systems

ASSUR I-2 6 7 3 3 0.13409 0.90490
ASSUR I-4 10 11 5 5 0.10449 0.92285
ASSUR I-8 18 19 9 9 0.11734 0.98798
ASSUR I-2B 6 7 2 2 0.23736 0.84546
ASSUR I-4B 10 11 3 3 0.24463 0.92714
ASSUR I-8B 18 19 – 3 – 4.65035
ASSUR II-2 10 15 3 3 0.09860 0.91421
ASSUR II-4 18 27 5 5 0.21787 1.16003
ASSUR II-8 34 51 9 9 0.16228 2.33128
ASSUR II-2B 10 15 – 1 – 0.90840
ASSUR II-4B 18 27 – 2 – 5.39380
ASSUR II-8B 34 51 – – – –
ASSUR III-2 14 21 3 3 2.82447 1.04206
ASSUR III-4 26 39 5 5 8.50998 5.22487
ASSUR III-2B 14 21 – 1 – 1.39049
ASSUR III-4B 26 39 – 1 – 70940.31

3D multibody systems

Rotor Control (Fig. 12) 16 21 N/A 7 N/A 1.11330
Rotor Control (Fig. 14) 16 21 N/A 9 N/A 1.20191
Micromanipulator 21 28 N/A 8 N/A 1.15843
Stewart Platform (Fig. 16) 14 18 N/A 1 N/A 0.96645
Stewart Platform (Fig. 17) ST 14 18 N/A 7 N/A 0.80041

(e.g. ASSUR I-4B). In Table 16, the number of bodies and joints of the case studies, together with the number of structural groups
(𝑆𝐺𝑆𝐴2𝐷, 𝑆𝐺𝑆𝐴3𝐷) obtained and the computational cost (𝑡𝑆𝐴2𝐷, 𝑡𝑆𝐴3𝐷) for the 2D (SA2D) and the 3D (SA3D) approaches are listed.

The tests for planar multibody systems with Assur groups of class I and II, with 2 to 8 Assur groups, show that when the structural
groups obtained are of reduced size, the 2D version [21] is faster than the 3D proposed in this paper. However, when the structural
groups increase complexity, as in case studies ASSUR III-2 and ASSUR III-4, the 3D version takes the advantage. Moreover, when
the original algorithm searches for structural groups above ten bodies, it fails, as shown in all case studies with the ’B’ suffix except
in ASSUR I-2B and ASSUR I-4B.

The differences in computational cost between the original mechanisms and the corresponding transformed ones (with suffix ‘B’)
are due to the exponential increase of time needed to check the condition of structural group of a kinematic chain, as its length
(complexity) increases. For example, the case study ASSUR I-8 defines a mechanism formed by 18 bodies: the frame, one rotating
crank (group of primary elements) and 8 Assur groups of class I (two bodies each). The kinematic structure of this case study offers
nine structural groups: one group of primary elements and eight Assur groups of class I. These groups are reduced in size and easily
found (the MBSSA3D algorithm solves this case study in 0.98798 s). However, suppose we change the position of the controlled
DOF in this mechanism as indicated above: case study ASSUR I-8B. The kinematic structure of this structural transformation offers
three structural groups only and is solved in 4.65035 s with the MBSSA3D algorithm. The 2D version cannot solve this case study
which confirms an improvement in our searching algorithm.

Similarly, the case study ASSUR III-4 defines a mechanism composed of 26 bodies. Its kinematic structure offers five structural
groups: one group of primary elements and four Assur groups of class III (six bodies each). Still, the algorithm finds these Assur
groups in a reasonable time (5.22 s). However, the structural transformation ASSUR III-4B with the same topology has a kinematic
structure formed by only one structural group of 26 bodies. The number of kinematic chain combinations of increasing length, from
1 to 26 bodies, that the search algorithm must verify is huge. The MBSSA3D algorithm finds a solution at a high computational
cost, but the 2D version fails.

Multibody systems with kinematic structures based on a reduced number of highly complex structural groups are not very
common. Still, even if the proposed algorithm MBSSA3D had to face the kinematic substructuring of such cases, it might succeed
using different approaches: increasing the length of the kinematic chains, as demonstrated in the case studies or by studying new
possible structural transformations.

The second test series is devoted to 3D multibody systems. The 2D version does not apply, and the MBSSA3D algorithm solves
all the original cases and their structural transformations efficiently.

6. Conclusions

In this work, we discuss different approaches in the literature for kinematic substructuring of multibody systems, and compile
some advantages of a method based on mobility criteria to methods based on linear graph theory. Despite its usefulness,
computational algorithms for kinematic substructuring of spatial multibody systems based on mobility criteria are not available
in the literature.
27



Mechanism and Machine Theory 176 (2022) 104985A. Celdran et al.

o
s
u

k
h
t

t
m

o
b
c
a
c
s

m
s
t

i
m

p
g

w
a
t
i

s

D

t

A

o

R

We have developed the MBSSA3D app for the computational structural analysis of spatial multibody systems with any number
f degrees of freedom. The theoretical steps given in a graph-analytical method are introduced through the spatial crank–slider case
tudy. The MBSSA3D architecture, functions and algorithms have been explained in detail as applied to that mechanism for a better
nderstanding. A graphical user interface has been developed to help users perform kinematic substructuring.

One of the modules in MBSSA3D identifies and deals with certain types of singularities that may appear in multibody systems,
nown as exceptions to the Kutzbach–Grubler mobility criteria. We classify some of the exceptions and reveal the fundamentals of
ow they should be treated in computational kinematic substructuring. However, a detailed explanation of these algorithms and
heir application to different case studies with singularities is ongoing.

The MBSSA3D has been applied to several case studies, both planar and spatial. The results have been successfully compared to
he literature and obtained using graph-analytical methods. In addition, one of the case studies has been compared to a computational
ethod based on a linear graph algorithm.

The case studies showed practical benefits of the computational approach developed in this work, such as the ease generation
f kinematic structures based on structural transformations with respect to the linear graph algorithm. A dedicated module has
een developed to organise and classify kinematic structures from structural transformations under different criteria. The user may
hoose between maximising the number of structural groups, which implies more simplicity and efficiency in kinematic and dynamic
nalysis or maximise the coincidence between the obtained structural groups and those available in a particular library. In case of
omplete coincidence, as shown in some case studies and reported in the literature, the kinematics and dynamics of the multibody
ystem may be directly solved from its kinematic structure. An ongoing interface module will automatically perform this task.

All the results offered by MBSSA3D are organised in matrices and tables for readability and analysis. We have shown that the
odularity and re-usability of these modules may be exploited to find the optimal route in a tree of kinematic routes combining

equential and parallel execution of the modules. We have also demonstrated the robustness of the MBSSA3D algorithm with respect
he 2D version as the complexity of the kinematic structure of the multibody system increases.

Future works should introduce the treatment of singularities and their application to different case studies. In addition, an
nterface module that reads the outputs generated by MBSSA3D should be completed for the automatic kinematic and dynamic
odelling and analysis of multibody systems.

Another interface module should connect the obtained kinematic structures to the simulation software PARCSIM to exploit the
arallelism capabilities of kinematic substructuring, optimising the computational cost of kinematic and dynamic simulations in a
iven hardware and software architecture.

Many structural transformations may appear in medium to large multibody systems, and the structural analysis of all of them
ould be very time-consuming. Therefore, the MBSSA3D app should let the analysts customise some preferences and restrictions to
utomatically generate the structural transformations of interest and obtain their kinematic structures. Analysing the most interesting
opologies will reduce computational costs and achieve the best kinematic structures sooner. In addition, the algorithm should
nclude a database to store all the results and facilitate consulting operations during the analysis or a long time after.

Finally, a new module should also perform the topological synthesis of multibody systems in future developments, as both
ynthesis and analysis problems are based on the same principle of mechanisms generation.
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