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Abstract The development of machinery often requires system-level analysis, in which
non-mechanical subsystems, such as hydraulics, need to be considered. Co-simulation al-
lows analysts to divide a problem into subsystems and use tailored software solutions to deal
individually with their respective dynamics. On the other hand, these subsystems must be
coupled at particular instants in time, called communication points, through the exchange
of coupling variables. Between communication points, each subsystem solver carries out
the integration of its states without interacting with its environment. This may cause the
integration to become unstable, especially when non-iterative co-simulation is used. The co-
simulation configuration, i.e., the parameters and simulation options selected by the analyst,
such as the way to handle the coupling variables or the choice of subsystem solvers, is often
a critical factor regarding co-simulation stability. In practice it is difficult to anticipate which
selection is the most appropriate for a particular problem, especially if some inputs come
from external sources, such as human operators, and cannot be determined beforehand. We
put forward a methodology to automatically determine a stable and computationally effi-
cient configuration for Jacobi-scheme co-simulation. The method uses energy residuals to
gain insight into co-simulation stability. The relation between energy residual and commu-
nication step-size is exploited to monitor co-simulation accuracy during a series of tests in
which the external inputs are replaced with predetermined input functions. The method was
tested with hydraulically actuated mechanical examples. Results indicate that the proposed
method can be used to find stable and accurate configurations for co-simulation applications.
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1 Introduction

The use of multibody-based simulation tools has enabled engineers to iteratively design,
validate, and re-design new products with reduced prototyping costs. This approach has
also been extended to real-time environments [23]. Growing product complexity and the
increasing importance of system-level simulation have resulted in renewed research interest
in the efficient and accurate coupling of dynamical system solver tools.

A straightforward way to couple the simulation of multiple dynamical systems is the
strongly coupled or monolithic approach [22, 27, 29] that yields a single set of equations
to be integrated. The benefits of simple and accurate coupling, however, are often over-
shadowed in practical applications by the loss of modularity. For this reason, co-simulation
approaches [2, 3, 15, 35] are used in a large number of multidisciplinary simulations. In
co-simulation setups the application under study is divided into several subsystems and a
different numerical solver is assigned to each of them. This makes it possible to select sim-
ulation tools that specifically fit the nature of each subsystem and allows one to tune their
parameters independently. The information exchanged between solver tools is limited to a
reduced set of input and output quantities, i.e., coupling variables, and takes place at discrete
instants in time. In the macro-step between these communication points the integration of
each subsystem proceeds independently, without knowledge of the internals of other system
components. This is an attractive feature when coupling solvers and models from differ-
ent vendors in industrial applications, as the implementation details of each software tool
remain unknown to other system components, and so intellectual property is protected.

Following a co-simulation approach, however, poses multiple challenges regarding the
stability of the numerical integration and the accuracy of the results. Coupling errors inher-
ently occur as a consequence of discrete-time information exchange and, for that reason,
accuracy and stability cannot always be guaranteed. Iterative approaches have been pro-
posed to alleviate this problem [20, 32], but in some cases, such as demanding real-time
environments, this may not be a feasible option and, thus, non-iterative schemes need to
be used. Moreover, some simulation packages and models do not permit to retake an inte-
gration step once it has been completed, which prevents the use of iterative co-simulation
schemes if such tools are to be used. When computational efficiency is an issue, the execu-
tion of the numerical integration of the subsystems should take place in parallel, following
the well-known Jacobi scheme. This means that in each macro-step [t0, t0 + H ] all the sub-
systems should perform their numerical integration only with the input variables available
at t0, without knowledge of the results delivered by other subsystems at time t0 + H .

The use of non-iterative schemes demands additional effort to guarantee the accuracy
and stability of the results. This often requires some numerical treatment of the coupling
variables. In some cases, a simple polynomial extrapolation of the input values of a sub-
system may increase the accuracy of the results and allow the use of larger communication
step-sizes. However, as shown in [18], an optimal solution valid for any system at all times
cannot be found, in general.

The topic of enhancing the stability of non-iterative co-simulation schemes in a system-
atic way has been addressed several times in the literature. It is possible to deal with this
issue from different points of view. Extrapolation of the coupling variables can be used to
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make the integration process more stable [9], especially in multi-rate co-simulation environ-
ments [14]. As noted in [18], the selection of the extrapolation method often has a critical
and strongly case-dependent impact on the accuracy and robustness of the co-simulation
process. The performance of extrapolation methods for co-simulation has often been as-
sessed using linear test problems [1, 10]; it is not straightforward, however, to generalize
the conclusions obtained with linear systems to more complex applications of industrial in-
terest, whose behavior is frequently highly nonlinear. The methodology introduced in [4]
represents a practical way to choose an extrapolation method when simulating complex sys-
tems: the degree of the extrapolation polynomial is selected online during the numerical
integration process, as a function of the previously known system behavior and a prediction
of its immediate evolution. System energy can also be used as a relevant source of infor-
mation about the stability and accuracy of a co-simulation process [16]. Maintaining the
energy balance at the co-simulation interface is the basis for the nearly energy-preserving
coupling element introduced in [7]. In [28], in turn, the concepts of power bond and en-
ergy residual were used to adaptively select the communication step-size in non-iterative
co-simulation schemes. The online selection of macro step-size was also addressed in [6],
using frequency-domain analysis instead of energy residuals. Moreover, if one or more of
the components of the co-simulation environment are mechanical systems, and some infor-
mation is available about their internal configuration, other methods can be used as well to
achieve a more stable integration procedure. These include using the partial derivatives of
the subsystem states with respect to the coupling variables to model more accurately the
behavior of mechanical constraints [21, 31] and building reduced-order interface models of
the mechanical subsystems to provide more accurate estimations of their evolution between
communication points [25].

Despite recent developments and the wide variety of available coupling techniques, poly-
nomial extrapolation is likely to remain a relevant method in the information exchange in
co-simulation setups due to its generality and simple implementation. Polynomial extrapola-
tion can be used even when information about the internals of the subsystems is completely
unavailable, and lends itself well to multi-rate co-simulation setups and subsystems with
nonmatching time-grids. On the other hand, selecting an adequate extrapolation method for
a particular co-simulation task is still a challenging and time-consuming endeavor in many
cases. Relevant settings in the co-simulation environment, such as the integrator method
used in the subsystems, may not be tunable, because their implementation can be hidden
from third-party software. Even if they are, their selection is often conducted by trial and er-
ror, with little or no information about their effect on the overall accuracy of the simulation.
Either way, it is difficult to predict from a theoretical standpoint which extrapolation meth-
ods would suit best the co-simulation problem at hand. This is even more challenging if some
of the simulation inputs come from external sources, which is the case in Human/Hardware-
in-the-Loop (HiL) and System-in-the-Loop (SiTL) applications, where the co-simulation
environment interacts with physical components or human operators. Such inputs cannot be
anticipated in many cases, and they have a critical effect on simulation stability. For this
reason, an automated methodology to select a functional co-simulation configuration, based
on a set of pre-determined tests, can represent a valuable tool to co-simulation analysts [5].

In this paper we put forward a methodology to determine a stable and efficient configura-
tion for non-iterative Jacobi scheme co-simulation setups, especially aimed at multiphysics
problems in the context of simulation of machinery. The models used in this field often
receive inputs that are difficult to predict and feature frequent discontinuities in their dy-
namics, e.g., the above-mentioned HiL/SiTL simulators and test benches. The subsystems
in such applications are commonly solved using relatively simple integration formulas and
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constant step-sizes, in order to keep the elapsed time in computations short and predictable.
A major concern when using these setups is preventing the numerical integration from be-
coming unstable during execution [33]. Because co-simulation can be used to deal with a
very wide range of applications, these conditions may differ from the ones encountered in
other co-simulation environments, where it is possible to theoretically determine acceptable
error bounds for a given problem, or to modify the integration step-size to match the chang-
ing system dynamics [30]. In some cases, the introduction of errors at the coupling interface
will give rise to latency instead of instability, which requires a different treatment [34].

The method described in this paper relies on the evaluation of energy residuals at the co-
simulation interface, which are used as indicators of the stability of the numerical integra-
tion. Subsystem inputs are replaced during the initialization phase with a series of standard
test functions and the communication step-size H is gradually increased until the stability
limit is reached. Determining a priori an optimal set of integration parameters and configura-
tion settings for each particular co-simulation application is not feasible in most cases [18],
partly because the actual inputs of the numerical simulation are often unknown and the
system behavior is highly dependent on these. However, the proposed method provides in-
formation to determine a stable co-simulation configuration in a simple manner with little
additional effort for the user. The viability of the algorithm was verified in the co-simulation
of benchmark problems composed of mechanical and hydraulic subsystems.

2 Methods

This section introduces the co-simulation methodology used in this research and the error
estimation via conservation laws, and its application in non-iterative co-simulation. For the
sake of clarity the coupling of only two subsystems is considered in this section, although
the presented methods could be applied, as it is shown with a case-example, to co-simulation
environments with more than two co-simulation units.

2.1 Co-simulation setup

A non-iterative, parallelizable Jacobi-scheme co-simulation approach was selected for the
purposes of this work. This scheme is often found in applications that require computa-
tional effort to be kept to a minimum, such as real-time environments like heavy machinery
simulators, and HiL and SiTL platforms. A generic co-simulation manager tool, intended
to couple several subsystems in multi-rate co-simulation applications, was implemented to
test the methods described in this paper. The scope of this research is limited to subsystems
with fixed integration step-sizes and matching communication time grids, although with
multi-rate integration. The proposed method, however, could also be used with variable-step
integrators.

Figure 1 shows the model used in this research, namely two subsystems, 1 and 2, coupled
in a co-simulation setup through a co-simulation manager. Each subsystem has its own set
of internal states, not disclosed to the rest of the simulation environment. The integration
of these internal states is carried out with integrator

∫
1 and step-size h1 for subsystem 1,

and
∫

2 and h2 for subsystem 2. The communication between 1 and 2 takes place only at
discrete points in time, separated by macro time steps of duration H . At communication
points, the subsystems provide their outputs y1 and y2 to the co-simulation manager and
receive their inputs u1 and u2. Subsystem 2, moreover, receives a set of external inputs w2.
These may represent interactions with elements that are not contained in the computational
environment, e.g., inputs provided by a human operator.
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Fig. 1 Two subsystems in a co-simulation setup with external inputs w2

Fig. 2 Power bonds in a
Jacobi-scheme co-simulation

2.2 Power bonds

Multiple error estimation methods have been applied to co-simulation setups [15]. In prac-
tice, however, the available options are limited by the application requirements, such as no
rollback and fixed step-sizes in real-time cases. A possible solution for this problem was
recently introduced by Sadjina et al. in [28], where a conservation law based approach was
proposed for a non-iterative adaptive step-size control and error estimation. The method is
based on the concept of power bonds and it allows one to monitor the spurious energy cre-
ated or lost in the signal extrapolation at the co-simulation interface, and requires only little
domain knowledge about the co-simulation units. As the underlying theory of power bonds,
and bond graphs in general, has been extensively presented in the literature [8, 24], only the
topics relevant to this work are presented here.

A power bond is defined by a pair of variables such as velocity and force, often referred
to as flow and effort in the literature, whose product is a physical power, and it connects
two systems via their power ports, i.e., parts of the system where power flows in and out.
In the context of co-simulation, this pair of variables corresponds to the inputs and outputs
exchanged between the subsystems, i.e., the coupling variables. To illustrate this, consider
the progress of Jacobi-scheme co-simulation between two communication time steps shown
in Fig. 2. At communication point i − 1 subsystems 1 and 2 receive inputs uk1(ti−1) and
uk2(ti−1), respectively. As explained previously, both subsystems then integrate their internal
states independently until the next communication point i, when they send outputs yk1(ti)

and yk2(ti), computed based on their previous inputs uk(ti−1). Here, the subscript k refers to
power bond k, and, in general, u and y can be vectors of power bond variables, as will be
explained in Sect. 2.3.

As inputs u are only known at the communication points, subsystems that use shorter
internal time steps h < H need to extrapolate their inputs until the next update instant. In the
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case shown in Fig. 2, subsystem 1 needs extrapolated inputs uk1 at every internal micro time
step. If only the input value u is known, but not its derivatives, Lagrange polynomials or least
squares fitting can be used to carry out this extrapolation. If the input derivatives u̇, ü, . . . ,
etc. are also available, the inputs can also be integrated over the communication time step.
Both input extrapolation and integration can be carried out either by subsystem 1 or by the
co-simulation manager; in the latter case, the subsystem needs to establish a communication
with the manager every time that it takes a new internal time step.

In any case, the concept of power bonds can be used to monitor the flow of energy
between the systems. Subsystems 1 and 2 exchange energy via power ports k1 and k2, cor-
respondingly, and thus create a power bond k between the systems. From the Subsystem 1
point of view, the total transmitted power Pk1 at a communication time t can be computed
as

Pk1(t) = ũk1(t)yk1(t), (1)

where ũk1(t) is the extrapolated value of the input uk1(t) at the end of the communication
time step, and yk1(t) is the output. Correspondingly, the power transmitted by Subsystem 2,
Pk2 takes the form

Pk2(t) = ũk2(t)yk2(t), (2)

where ũk2(t) and yk2(t) are, again, the inputs and outputs, respectively.
Ideally, no power should be lost at the coupling interface between the subsystems. Thus,

the following balance should hold at any communication point:

−(Pk1 + Pk2) = 0. (3)

However, as the extrapolation error is an inherent issue in non-iterative co-simulation due to
the independent integration of the subsystems, Eq. (3) will be violated during the simulation,
and, therefore

−(Pk1 + Pk2) �= 0. (4)

Since the transmitted energy is the power integrated over time, this violation of power leads
to the accumulation of errors in the system energy.

2.3 Energy residuals

The violation of energy conservation that unavoidably occurs in non-iterative co-simulation
interfaces can be exploited to monitor the simulation accuracy. As presented in [28], a resid-
ual power δP can be defined for the power bond k as

δPk = −(Pk1 + Pk2). (5)

The dot product can be utilized to conveniently compute the residual power for the
whole system. For power bonds [k l . . . ], the inputs can be grouped into a vector ũ =
[ũk1 ũk2 ũl1 ũl2 . . . ]T, and the outputs, similarly, y = [yk1 yk2 yl1 yl2 . . . ]T. Then the residual
power for the whole system can be expressed as

δP = −ũ · y (6)

where · stands for a dot product between two vectors.
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In [28], zero-order hold extrapolation was assumed for the input values u, and, thus,
following the notation used in Fig. 2, the residual power δPk at communication time step i

can be written as

δPk(ti) = −uk(ti−1) · yk(ti). (7)

On the other hand, if we assume that an extrapolated input is available or can be computed in
the co-simulation interface, a more accurate value for the residual power at communication
time step i can obtained:

δPk(ti) = −ũk(ti ) · yk(ti ). (8)

The corresponding energy residual can now be defined [28] by an integral

δEk(ti) =
∫ ti

ti−1

δPk(t) dt, (9)

which gives the energy incorrectly added to the coupled system as a result of the extrapola-
tion errors during the time step ti−1 → ti . These local energy fluxes will inevitably alter the
energy balance of the coupled system, and, therefore, deteriorate the co-simulation accuracy.

Numerical approximation can be used to evaluate the integral in Eq. (9). For a constant
extrapolation ũk(ti ) = uk(ti−1) the rectangle quadrature rule can be used, resulting in

δEk(ti) ≈ δPk(ti)H(ti), (10)

where H(ti) is the communication step-size. For higher-order extrapolation, higher-order
quadrature rules should be used, to prevent integration errors from becoming of the same
order as the accumulated residuals. In the case of linear extrapolation, the energy residual
can be approximated with the trapezoidal rule

δEk(ti) ≈ −H

2

(
δPk(ti−1) + δPk(ti)

)
. (11)

For m = 2, in turn, Simpson’s rule might be appropriate. However, since this formula would
require one to know the outputs yk(ti−1 + 0.5H), which may not be available, in this work
trapezoidal rule is used for the extrapolation orders m > 1.

2.4 Co-simulation configuration search

The above presented concept of energy residual [28] allows us now to monitor the co-
simulation accuracy. The energy residual is, however, only a scalar value that is not normal-
ized, thus, it may be difficult to interpret on its own. While it is obvious that a relatively low
amount of spurious energy with respect to the total transmitted energy accumulated or dissi-
pated at the coupling process indicates stable and accurate co-simulation, the exact point at
which the co-simulation accuracy degrades to insufficient or the stability is lost is much less
clear. In addition, the residual energy is dependent on the extrapolation method used in the
information exchange, which further complicates the accuracy estimation. For this reason, in
[28] the energy residual was utilized to develop a scalar error indicator, which requires tun-
ing for each power bond, and an adaptive step-size control for non-iterative co-simulation.
Here, a different direction is taken to methodologically evaluate the co-simulation accuracy
under different configurations, based on the energy residual.
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Fig. 3 Relation between energy residual Ek and communication step-size H

The definition of co-simulation accuracy, however, also needs to be discussed in this
context. The energy residuals do measure the accuracy of the simulation, but only at the
co-simulation interface. Assuming that the internal integrators of the subsystems do not
introduce any additional errors, the energy residuals directly define the system-level energy
error. However, in practice this will not be the case, since the subsystem integrators will
introduce their own error into the system-level solution. In this work, it is assumed that the
internal integrators are accurate enough for the purposes of the analyst, and therefore the
accuracy depends only on the co-simulation configuration. Since the scope of the work is in
the area of HiL/SiTL simulators, it is assumed that numerically stable solutions also have
sufficient accuracy.

The basis of the proposed approach is illustrated in Fig. 3, where the dependency be-
tween energy residual and communication step-size for a nonlinear case example described
in Sect. 3.1.1 is presented. In the figure, the energy residual is plotted for polynomial ex-
trapolations of orders 0 to 4 (m = 0 to m = 4) and integration of the system inputs (I2). As
can be seen, when the communication step-size is reduced, the residuals appear to approach
zero. In the figure, the extrapolation methods other than m = 0 yield practically the same
value for the linear approximation of the residual by the trapezoidal rule of Eq. (11) at small
communication step-sizes, and, thus only one line is visible. In theory, the depicted errors in
the energy residuals should be O(Hm+1) [28]. As the figure indicates, this property is lost
when the simulation goes unstable, i.e.,

∑
i |δEk(ti)| � O(Hm+1). When H is increased

the energy residuals are approximately linearly dependent on the communication step-size
at first, until either exponential growth is seen, i.e., the accuracy gradually degrades, or the
residual suddenly rises to a high value, i.e., the simulation goes unstable. This behavior is
further demonstrated in Sect. 4.

In this work, the observed relation between the communication step-size and the accu-
mulated energy residual over all the macro time steps is taken as an indicator of a stable
and accurate co-simulation; it is assumed that the co-simulation is stable and accurate as
long as the relation between the accumulated energy residual and communication step-size
is approximately linear. This criterion allows us to methodologically evaluate the accuracy
of co-simulation under different configurations in a simple manner, with modifications to
the co-simulation scheme only implemented in the co-simulation manager. As the number
of possible configurations can be too large to experiment manually, an automated procedure,
which is described in Sect. 2.4.1, is used to parse through the possible set of configurations.
The produced information can be used by an analyst to find a suitable compromise between
accuracy and efficiency for the case under study.

However, for practical reasons it would be useful or even required, e.g., when the external
inputs w are not known, to perform the evaluation in advance without performing the full
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simulation for each possible configuration. For this reason, and to provide an example of
use-case for the method, an application for the methodology is put forward to find a suitable
configuration for a co-simulation case in which the external inputs are not know. In practice,
the automated procedure uses a set of pre-defined tests for the external inputs w when they
are unknown.

2.4.1 Automated accuracy evaluation

The entire process of testing the different configurations with several communication step-
sizes can be easily automated. In this section an algorithm for the automatic testing proce-
dure, illustrated in Fig. 4, is proposed. Since the external inputs w are not, in general, known
in advance, they are here replaced with a series of pre-defined tests, described in Sect. 2.4.2
in detail, to examine the system response under different excitations. To make the overall
process efficient, the simulation time for each test is defined to be relatively short, i.e., only
long enough to verify the response of each test. In the presented example that will follow, a
simulation time of 1 s is used for step, ramp, and impulse test, and for the sinusoidal tests the
length of one period is used. As information exchange at communication points adds over-
head to the co-simulation process, the configuration that achieves the largest communication
step-size can often be considered the most efficient for the system. While it would also be
possible to tune the internal step-sizes of the co-simulation units, in this work the subsys-
tem with the largest internal step-size is assumed to share the communication step-size, i.e.,
h = H , and in subsystems with h < H , the internal step-size is kept constant.

Admittedly, the assumption of h = H in the slow subsystem leads to internal integration
errors being scaled with H . While the use of smaller internal step-sizes would better decou-
ple the errors that occur in the co-simulation interface and in the subsystem integrators, in
practical co-simulation environments this would decrease the overall efficiency of the simu-
lation, as the higher number of integration steps of slow subsystems would increase the total
computational load of the problem. As the proposed test methodology aims to reproduce
actual operating conditions, the assumption h = H in the slow subsystem can be justified.
Note that the procedure itself is valid for any value of h inside the subsystems.

In the first step, an initial communication step size Hini and an increment Hinc are se-
lected for the system. The initial communication step size should be selected small enough
for a stable solution to be found, i.e., for the energy residual to be in the linear region. It may
take more than one attempt to find suitable Hini and Hinc for the system, if no knowledge
about the system behavior is available. Secondly, a configuration for the co-simulation is
selected and applied. In this paper, this includes the selection of extrapolation methods and
options that are available for the co-simulation manager and the integrator methods used in
the subsystems; other configuration environments can have different tunable options as part
of their configuration space. The selection of the test input w for the system takes place at
this point as well. In the third step, a simulation is run with the given configuration. Upon
completion, if the simulation had been run for the first time with the current configuration,
i.e., H = Hini, the communication step-size is incremented and the simulation is run again.
If the second simulation run succeeds, the linear relation between communication step-size
and energy residual is checked. If the latest simulation is still in the linear region, the com-
munication step-size is incremented, H = H + Hinc and the simulation is run again. If not,
or if the simulation failed, the configuration and the largest successful communication step-
size are saved, a new configuration set is selected and the process starts again. Finally, after
the configuration set space is exhausted, the obtained results are parsed for the user.
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Fig. 4 Flowchart of the
automated accuracy evaluation

2.4.2 External input tests

To assess the system behavior under different inputs, four typical functions, namely step,
ramp, impulse, and sinusoidal are used.

In the following, v0 is the initial value of the input, and vmin and vmax are the minimum
and maximum values that it can take. In addition, the tests are assumed to have a length of
1 second. The step function, here denoted by w1, is defined piece-wise as follows:

w1(t) =
{

v0, t < 0.5,

vmax, t ≥ 0.5,
(12)

where t is the simulation time. It is assumed that the subsystem inputs can be discontinuous,
which is often the case if discretely sampled digital controllers are used to feed inputs to the
system. The function in Eq. (12) can easily be modified to obtain a continuous approxima-
tion of a step function if required.

A ramp function, w2 is also defined piece-wise, as follows:

w2(t) =
{

v0, t < 0.5,

v0 + 2(t − 0.5)vmax, t ≥ 0.5,
(13)
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where the input reaches its maximum value at the end of the simulation time of 1 second.
An impulse function is defined as follows:

w3(t) =
{

vmax, 0.5 − d
2 ≤ t < 0.5 + d

2 ,

v0, otherwise,
(14)

where d is the width of the signal determined by user. Determining the pulse width requires
some knowledge of the system, but it is not unreasonable to assume that the analyst respon-
sible for the co-simulation has enough information for an educated guess.

Finally, a sinusoidal function is defined as

w4(t) = v0 + a sin(ωt), (15)

where a is the user-defined amplitude of the signal and ω is the input frequency. Again, a
reasonable level of system knowledge is required to set suitable values for these parame-
ters, but it can be assumed that, for instance, the maximum and minimum values and the
frequency limits of the input signals are known.

3 Examples

Two case examples were implemented to evaluate the proposed method. A 2-D model of a
single-actuator crane was used first to test the method in single-input co-simulation scenar-
ios. A second actuator was later added to this model to evaluate cases with multiple inputs.
In this section, both examples are presented together with the hydraulics model used in this
research. The different co-simulation configurations tested are subsequently described.

3.1 Multibody models and algorithms

The mechanical systems used as test problems were modeled as multibody systems com-
posed of rigid links, using a set of generalized coordinates q subjected to a set of kinematic
constraints Φ = 0.

3.1.1 Single-actuator model

A 2-D model of a hydraulically actuated crane is shown in Fig. 5. A similar model was
described in [22] and used as test problem in [25].

Link 1 is a rod of length L and distributed mass m. Link 2 has length Lh and is considered
to be massless. Two point masses mp and mh are placed at points Q and R. The system moves
under gravity effects and is actuated with a hydraulic piston that connects points B and P.
The values of the system properties used in the numerical experiments are summarized in
Table 1. The generalized coordinates used to model this system are the x and y global
coordinates of points P and R, and angle θ1: q = [xP, yP, θ1, xR, yR]T. The system has two
degrees of freedom; accordingly, three kinematic constraints are imposed on coordinates q

Φ =
⎡

⎣
L cos θ1 − 2xP

L sin θ1 − 2yP

(xR − L cos θ1)
2 + (yR − L sin θ1)

2 − L2
h

⎤

⎦ = 0. (16)
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Fig. 5 Single-actuated planar
model of a hydraulic crane

Table 1 Mechanical parameters
of the single-actuated model Parameter Symbol Value

Length of link 1 L 1.0 m

Length of link 2 Lh 0.5 m

Mass of link 1 m 200 kg

Point mass at Q mp 250 kg

Point mass at R mh 100 kg

Coordinates of fixed point B (xB, yB) (
√

3/2,0) m

Initial angle, link 1 (θ1)0 π/6 rad

Initial angle, link 2 (θ2)0 3π/2 rad

Gravity g −9.81 m/s2

Fig. 6 Double-actuated planar
model of a hydraulic crane

3.1.2 Two-actuator model

Adding a second hydraulic actuator to the mechanical system in Sect. 3.1.1 we obtain the
system in Fig. 6. The mechanical properties of the system are those reported in Table 1. Both
actuators are identical; the second one acts between point P and the middle point of link 2.
The generalized coordinates q and kinematic constraints Φ = 0 used to model this example
are the same ones used in Sect. 3.1.1 for the single actuator model.

3.1.3 Multibody system dynamics algorithms

The dynamics of the examples in Sects. 3.1.1 and 3.1.2 was solved by means of two aug-
mented Lagrangian algorithms described in [11]. The trapezoidal rule (TR) was used as
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integration formula. The first algorithm is an index-1 algorithm (I1AL), in which the system
accelerations q̈ are used as primary integration variables. The dynamics is solved via the
following iterative process:

(
M + Φq

TαΦq
)
q̈j + Φq

Tλ∗
j

= Q − Φq
Tα

(
Φ̇qq̇ + Φ̇ t + 2ξωΦ̇ + ω2Φ

)
, (17a)

λ∗
j+1 = λ∗

j + α
(
Φ̈ + 2ξωΦ̇ + ω2Φ

)
, (17b)

where j stands for the iteration number. In a problem with n generalized coordinates and
m kinematic constraints, term M is the n × n system mass matrix, Q stands for the n × 1
generalized applied forces term, Φq is the m × n Jacobian matrix of the constraints, Φ t =
∂Φ/∂t , and λ∗ represents the m Lagrange multipliers of the method. Term α is a scalar
penalty factor, and ξ and ω are scalar parameters that play a role similar to those used in
Baumgarte stabilization.

The second method is an index-3 augmented Lagrangian algorithm (I3AL) that uses the
generalized coordinates q as primary variables. The dynamics equations (17a), (17b) are
combined with the trapezoidal rule expressions

q̇i+1 = 2

h
qi+1 −̂̇qi; where ̂̇qi = 2

h
qi + q̇i ,

q̈i+1 = 4

h2
qi+1 −̂̈qi; where ̂̈qi = 4

h2
qi + 4

h
q̇i + q̈i ,

(18)

where h is the integration step-size, and subscript i stands for the integration time step, to
obtain a system of nonlinear equations at time step i + 1 in the form

g(q, q̇) = 0, (19)

which is solved by means of Newton–Raphson iteration. Upon convergence of the general-
ized coordinates q, the generalized velocities and accelerations q̇ and q̈ are projected upon
the constraint manifold to ensure the satisfaction of the derivatives of the kinematic con-
straints. The method is described in detail in [12] and [13]. Both I1AL and I3AL methods
have displayed a robust and efficient performance in the simulation of challenging multibody
dynamics problems, e.g., [17].

3.2 Hydraulic model

The hydraulic circuit used to command the actuators was represented using a simple model.
The schematics of the circuit are presented in Fig. 7 and its physical parameters can be found
in Table 2. The cylinder is connected to a pump and a tank, both of which are simplified as
constant pressure sources, and the flow is controlled by a 4/3 directional valve. In addition,
at the piston side the flow is restricted with a throttle valve. This model was originally
described in [27] and later used with minor modifications in [26]; it is used in this research
with different parameters and with the addition of end dampers to the cylinder. The modeling
approaches have not been altered for this work. In the case study, the cylinder is connected
to the manipulators described at Sects. 3.1.1 and 3.1.2 such that the piston side is attached
to point B, and the rod side to point P.

Lumped fluid theory [36] is applied to compute the pressure rates in the hydraulic vol-
umes. This approach splits the circuit into volumes, in which the pressures can be assumed to
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Fig. 7 A hydraulic circuit with
three volumes

be equally distributed, i.e., phenomena such as pressure waves are ignored. For the pressure
rates in the volumes V1, V2, and V3, this approach yields the following expressions:

ṗ1 = Be1

V1
(Q31 − A1ṡ), (20)

ṗ2 = Be2

V2
(A2ṡ − Q2V ), (21)

ṗ3 = Be3

V3
(QV 3 − Q31), (22)

where Be1, Be2, and Be3 are the effective bulk moduli of the volumes, A1 and A2 are the
piston-side and rod-side areas, respectively, of the cylinder, ṡ is the cylinder velocity, and,
finally, Q31, Q2V , and QV 3 are the volume flows over valves. The positive directions of the
volume flows are depicted in Fig. 7. The pump and tank pressures, pP and pT , correspond-
ingly, are assumed to be constant.

The effective bulk moduli take the oil and chamber compressibility into account, and can
be expressed for the volumes as

Be1 =
(

B−1
o +

(
V1Bc

A1l1

)−1

+
(

V1Bh

Vh1

)−1)−1

, (23)

Be2 =
(

B−1
o +

(
V2Bc

A2l1

)−1

+
(

V2Bh

Vh2

)−1)−1

, (24)
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Table 2 Parameters of the
example circuit Parameter Symbol Value

Length of the piston l 0.3 m

Initial piston-side length l10 0.05 m

Initial rod-side length l20 0.25 m

End damper length ld 0.008 m

End damper spring coefficient kd 1 × 107 N/m

End damper damping coefficient cd 5 × 103 Ns/m

Initial actuator length s0 0.5 m

Fluid density ρ 850 kg/m3

Oil bulk modulus Bo 1500 MPa

Cylinder bulk modulus Bc 31 500 MPa

Hose bulk modulus Bh 150 MPa

Volume of hose 1 Vh1 3.14 × 10−5 m3

Volume of hose 2 Vh2 7.85 × 10−5 m3

Volume of hose 3 Vh3 7.85 × 10−7 m3

Diameter of piston d1 80 mm

Diameter of piston rod d2 35 mm

Tank pressure pT 0.1 MPa

Pump pressure pP 7.6 MPa

Cylinder efficiency η 0.88

Throttle discharge coefficient Cd 0.8

Semi-empirical coefficient Cv 1.069 × 10−8 m3/sV
√

Pa

−45◦ phase shift frequency f−45 35 Hz

Be3 = (
B−1

o + B−1
h

)−1
, (25)

where Bo, Bc , and Bh are the bulk moduli of the oil, the cylinder, and the hoses, correspond-
ingly.

3.2.1 Valve models

The system valves are modeled following a semi-empirical approach [19], which allows for
a simple and accurate model to be built even if all the internal details are not known. For a
simple throttle valve the volume flows can be written as follows:

Q =

⎧
⎪⎨

⎪⎩

Ct

√|�p|, �p > 0,

0, �p = 0,

−Ct

√|�p|, �p < 0,

(26)

where Ct is the semi-empirical flow rate coefficient and �p is pressure difference over the
valve. While the semi-empirical coefficient is usually computed from empirical data, here

we obtain it from Ct = CdAt

√
2
ρ

, an equation for valves with simple geometry where Cd is

the flow discharge coefficient and At is the throttle area.
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For the directional valve the following equations can be used:

Q =

⎧
⎪⎨

⎪⎩

CvU
√|�p|, �p > 0,

0, �p = 0,

−CvU
√|�p|, �p < 0,

(27)

where Cv is the semi-empirical coefficient of the directional valve and U is the feedback
signal that corresponds to spool position. The coefficient Cv can be determined from empir-
ical data with Cv = Q

U
√

�p
when the volume flow is known at one operational point. To avoid

numerical problems with the solution of Eqs. (26) and (27) near zero pressure difference,
these models are replaced with a linear model when |�p| < 2 bar.

To take the valve dynamics into account, the spool position is obtained from the solution
of a first-order differential equation

U̇ = Uref − U

τ
, (28)

where the time constant of the valve, τ , is computed as

τ = 1

2πf−45
, (29)

and Uref is the user-defined reference signal fed to the valve and, here, it can take values
from −10 V to 10 V, zero being the closed position. In Eq. (29), f−45 is the frequency at
−45◦ phase shift, read from the Bode diagram of the valve.

3.2.2 Cylinder force

The cylinder force can be computed based on the pressure difference over the piston, and
the velocity-dependent friction term. In addition, the end dampers can be taken into account
in the force computation. Thus, the force can be expressed as

F = p1A1 − p2A2 − cṡ + Fd, (30)

where c is the viscous coefficient and Fd is the end damper force. In this case, the end
dampers are modeled as a spring–damper system:

Fd =

⎧
⎪⎨

⎪⎩

kd(ld − l1) − cd ṡ l1 ≤ ld ,

−kd(ld − l2) − cd ṡ l2 ≤ ld ,

0 otherwise,

(31)

where ld is length of the end damper, and kd and cd are the spring and damping coefficients
of the damper, respectively.

3.3 Co-simulation configuration

The implemented co-simulation manager is used to couple the above described models by
means of a Jacobi-scheme, and also to compute the energy residuals at the interface. The
available variables for the information exchange are, in the current implementation, the
cylinder length, rate, and acceleration, s, ṡ, and s̈, from the mechanical subsystem, and
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Table 3 Parameter space
Option Mech. Hyd

Extrapolation m = 0 Orders 0–4

Integration of exchanged variables – s and ṡ

Integrator I3AL/I1AL TR/FWE

Step-size hm = H hh = 0.1 ms < H

the actuator force F from the hydraulics. In addition, the co-simulation manager is respon-
sible for evaluating the extrapolated values of these values, thus allowing use of Eq. (8) in
the process of energy residual computation.

Table 3 shows the different co-simulation configuration options used in this study.
The mechanical subsystem shares the communication step-size of the co-simulation, i.e.,
hm = H . The hydraulic subsystem, in turn, has a shorter internal step-size of hh = 0.1 ms
and therefore requires the input variables, in this case the cylinder length s and velocity ṡ,
to be extrapolated. Polynomial extrapolation of orders 0–4, i.e., m = 0 to m = 4, and also
integration of the variables based on their derivatives, i.e., I2 for the integration of s and
ṡ, were implemented to this end. The extrapolation and integration are done on the basis of
the variables exchanged at the communication points, extrapolation being performed by the
means of Lagrange polynomials within the co-simulation manager.

The dynamics of the multibody systems was solved using the I1AL and I3AL augmented
Lagrangian algorithms described in Sect. 3.1.3, in combination with the trapezoidal rule
(TR) integration formula, the integrated variables being, correspondingly, either the acceler-
ations q̈ or positions q. The hydraulics equations were integrated using either the trapezoidal
rule or the forward Euler (FWE) formula, and the integrated variables, in turn, were the pres-
sures ṗ1, ṗ2, and ṗ3 from Equations (20)–(22). However, it must be noted that in this study
the step-size for the integration of the hydraulics was kept constant and set to 0.1 ms, which
was small enough to keep the integration stable with both integrators. Accordingly, chang-
ing the hydraulics integration formula had little impact on the co-simulation performance.

3.4 Configuration of the test functions

As the external input of the described hydraulic circuit takes values from −10 V to 10 V, 0 V
being the initial position, configuration of the inputs is a rather straightforward process. The
step and ramp functions defined in Sect. 2.4.2 can be directly used. As the coupled system
can be expected to be quite slow, the width of the impulse is set to 0.4 s to give time for the
system to react.

Regarding the sinusoidal input, its amplitude in this case can be set according to mini-
mum and maximum values of the input voltage. Frequencies, in turn, are, in this case, set
according to the time constant of the valve. Thus, 35 Hz and 70 Hz, i.e., the frequency at
−45◦ phase shift and its second order, correspondingly, are used, as well as 17.5 Hz.

4 Results

The validity of the co-simulation accuracy and stability criteria discussed in Sect. 2.4 was
confirmed comparing the results delivered by a series of simulations, in which some config-
urations complied with the criteria and others were outside the region assumed to be stable
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Fig. 8 The joystick input
applied to the directional valve,
and the resultant actuator length

in Fig. 3. In addition, the use of test functions for the external inputs was evaluated. The
single actuator model, which contains one external input, was first used for both cases, and,
secondly, the double actuator model with multiple external inputs was examined. A user-
generated joystick input was introduced in each case as reference signal Uref to the direc-
tional valve in order to evaluate the criteria and the use of the test functions. Results are
compared, when applicable, to a reference solution obtained with a monolithic scheme.

4.1 Single actuator model

Figure 8 shows the actuator length of the single-actuator model with the user-generated
input. This input is used to examine the dependency between the accumulation of Ek and
H , and it is generated such that the end dampers, which are represented by a contact model,
are hit during the simulation. The figure is obtained with H = 0.2 ms and second-order
extrapolation with I1AL and forward Euler integrators, which, as will be shown next, can be
considered a stable and accurate configuration for the system. For this model and input the
graph of Ek as a function of H is already presented in Fig. 3.

Figure 9 compares the co-simulation traces between the simulations that are in the ap-
proximately linear region and the non-linear region, according to Fig. 3. In the figures, the
actuator length s, as obtained from the mechanical system, is depicted for different val-
ues of H during the first half of the simulation cycle. As can be seen, after a certain limit,
depending on the extrapolation order, an increase in the communication step-size quickly
yields incorrect results, and, thus in Fig. 9f, only m = 2 remains stable. Compared to Fig. 3
in Sect. 2.4, it is evident that the unstable solutions lie in the highly nonlinear region. As
Figs. 9d and 9e demonstrate, however, the increase in error shown for m = 1 in Fig. 3 is
barely evident in the position-level solution. This is better illustrated in Fig. 10, where the
corresponding velocity-level solutions are depicted.

Figures 9 and 10 support the statement that an approximately linear relation, demon-
strated in Sect. 2 with Fig. 3, between the energy residual accumulation and the communi-
cation step-size indicates an accurate and stable co-simulation.
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Fig. 9 Stability and accuracy issues associated with the increase of the communication step-size

Next, the external input of the hydraulic subsystem was replaced with the pre-defined
test inputs to determine a stable configuration a priori. The results obtained for the single-
actuator model with the algorithm described in Sect. 2.4.1 are given in Table 4. In the table,
the subscript of H refers to the communication step-size increment of the search algorithm;
in all cases Hini was set to 1 ms. As can be seen, the selected given integrator for the hy-
draulics and algorithm for the multibody dynamics were the same in all cases. The extrapo-
lation method and communication step-size, in turn, were dependent on the external input.
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Fig. 10 A detail of the velocity-level solution

Table 4 Results of the
pre-defined test for the
single-actuator model

Test function Extrapolation
∫
m

∫
h H0.2 ms

Step m = 2 I1AL Euler 4.0 ms

Ramp m = 2 I1AL Euler 5.0 ms

Impulse m = 2 I1AL Euler 3.6 ms

Sinusoidal 17.5 Hz m = 2 I1AL Euler 2.6 ms

Sinusoidal 35 Hz m = 3 I1AL Euler 2.8 ms

Sinusoidal 70 Hz m = 2 I1AL Euler 4.4 ms

Regarding the obtained communication step-sizes and extrapolation methods, a compari-
son to the behavior depicted in Figs. 3 and 9 suggests that a stable and accurate configuration
can be found with the method, given that the most pessimistic result of those shown in the
table, i.e., the configuration with the smallest H , is taken as a final solution. In more detail,
the table shows for the ramp and 70 Hz sinusoidal input test communication step-sizes of
5.0 ms and 4.4 ms, correspondingly, with m = 2. Figure 3, in turn, demonstrates unstable be-
havior at these communication step-sizes. A possible explanation for this result is that while
the user-defined input hit the end-dampers of the cylinder, and thus created a demanding op-
eration point for the simulation, these points were not reached during the short pre-defined
tests. Alternatively, it is also possible that these tests, i.e., ramp and 70 Hz sinusoidal inputs,
are not demanding enough for the step-size limits to be found.

Table 4 also shows that the step-size H and the extrapolation method selected by the con-
figuration algorithm differ depending on the input signal used. This result agrees with [18],
where it was shown that even for a simple model no all-encompassing optimal co-simulation
method can be found, whereas here it is shown that even for exactly the same model a single
optimal solution may not exist.

4.2 Double actuator model

In Sect. 4.1, a single subsystem with a single external input was considered. To evaluate the
use of the criteria and the automated procedure with more than one subsystem, the double-
actuator model is studied here. As described in Sect. 3.1.2, both hydraulic subsystems take
one external input, and again, these inputs, resultant actuator lengths of which are depicted
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Fig. 11 Actuator lengths
obtained with the joystick input

Fig. 12 Dependency between the energy residual and communication step-size with the double-actuator
model

in Fig. 11, are defined by user. The figure is obtained with H = 1 ms and second-order
extrapolation, which, as will be show next, is inside the stable region.

The dependency between the energy residual and the communication step-size with dif-
ferent extrapolation methods for the work cycle of Fig. 11 is depicted in Fig. 12. A behavior
similar to the single-actuator model can be seen, although in this case the achieved step-sizes
are smaller due to the indirect coupling between the hydraulic subsystems via the mechani-
cal system. Again, the extrapolation methods other than m = 0 yield almost identical results
at small communication step-sizes, and, thus only one line can be seen. The first-order ex-
trapolation and integration of s and ṡ also yield almost the same residuals. In all cases the
energy residual grows at first almost linearly with respect to the communication step-size,
until the simulation becomes unstable. In Fig. 13 the actuator positions and velocities for
the two cylinders with zeroth-order hold and integration of s and ṡ are illustrated. As can be
seen, at certain point, depending on the used configuration, the simulation quickly becomes
unstable. It is noteworthy that the error may not be clearly visible in the position-level solu-
tion, whereas the velocity-level solution shows discrepancies, as shown in the figure. Since
the energy residual is computed from the velocities and forces, the erroneous behavior is,
however, visible in

∑
i |δEk(ti)|.

Again, the external inputs, i.e., the control signals Uref of the hydraulic subsystems were
replaced with the pre-defined tests. To limit the number of possible configurations, the same
input functions were used for both subsystems. Results of the procedure are displayed in
Table 5. In this case, the Hini was set to 0.5 ms, and the increment also to 0.5 ms. Similar to
the single-actuator model, the integrators for hydraulic systems and the formulation for the
mechanical system yielded by the configuration algorithm were found to be the same for all
test cases. Regarding the extrapolation methods and communication step-sizes, in this case
it also seems that a stable configuration can be found, the most pessimistic result from the
table being taken as the configuration for the system. While this result may not be the most
efficient possible configuration, it seems to be, as Fig. 12 shows, in a stable region also for
a more demanding simulation.
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Fig. 13 Positions and elongation rates of the actuators

Table 5 Co-simulation options
delivered by the configuration
algorithm for each test case for
the double-actuator model

Test function Extrapolation
∫
m

∫
h H0.2 ms

Step I2 I1AL Euler 1.6 ms

Ramp m = 3 I1AL Euler 2.0 ms

Impulse I2 I1AL Euler 1.6 ms

Sinusoidal 17.5 Hz I2 I1AL Euler 1.8 ms

Sinusoidal 35 Hz m = 2 I1AL Euler 1.8 ms

Sinusoidal 70 Hz m = 3 I1AL Euler 1.8 ms

5 Discussion

The proposed configuration method discussed in this paper intends to provide a stable initial
configuration for a Jacobi-scheme co-simulation in which some external inputs are unknown
beforehand. Discontinuities in system dynamics need to be addressed, as they are often
detrimental to system stability. In the demonstrated examples, the hydraulic circuit contains
multiple potential sources of discontinuities, the end dampers being the most obvious as
they represent a contact model. Should the spring and damping coefficients not be properly
tuned, an otherwise stable simulation might fail, since the maximum communication step-
size in this region might be significantly shorter than in other operation points. In addition to
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the end dampers, the valve model may become numerically problematic if the linearization
of the volume flows is neglected, or if the valve dynamics given in Eq. (28) are not included.

The need for careful modeling of the potentially discontinuous operating points holds
true also in the context of the proposed algorithm, since, as is the case with the demonstrated
examples, these discontinuities may not be encountered when using test functions as inputs.
In these cases the algorithm might fail to provide a useful configuration, if a smooth solution
cannot be obtained. This, however, is not a fault of the algorithm itself, but a consequence
of the fixed communication step-size and the blind evaluation of states in Jacobi-scheme
co-simulation.

In addition to the modeling aspects, attention must be paid to the internal solvers of the
subsystems. Regarding this, an interesting observation about the integrators can be made
from Tables 4 and 5, as the integrators chosen by the algorithm were the same in all cases.
The hydraulic system is numerically stiff, and therefore a small internal integration step-size
is required for the forward Euler formula to provide correct simulation results. In this work,
it was assumed that the step-size used for the hydraulics was small enough to guarantee that
the integration proceeded in an accurate and stable way.

6 Conclusions

In this paper a method for the automatic configuration of Jacobi-scheme co-simulation se-
tups in which some inputs are provided by external sources has been put forward. The
method is based on the relation between energy residuals of a stable simulation and the com-
munication step-size at the co-simulation interface; this relation is here exploited to monitor
co-simulation accuracy and stability. During the initialization phase of the co-simulation
setup, the proposed method replaces the external inputs with standard test functions. A bat-
tery of short tests is run during this initialization stage to determine a combination of co-
simulation parameters, such as extrapolation method, subsystem integrators, and communi-
cation step-size, that can be used to conduct the actual simulation of the system. The energy
residual is employed as an indicator to achieve an efficient and stable set of parameters.

The initialization method was tested in the simulation of two mechanical systems with
hydraulic actuation. The results indicate that the approximately linear region in the relation
between communication step-size and energy residual is the region in which a stable and
accurate solution can be found. Thus, the algorithm put forward in this paper seems to be
able to provide a stable initial configuration for co-simulation environments in an automated
fashion. The use of standardized test functions as a replacement for unknown external sys-
tem inputs during the initialization phase enables the selection of a set of co-simulation
parameters, such as the communication step-size and extrapolation method, to keep the nu-
merical integration stable in an efficient way. As it is the case with co-simulation in general,
carefully constructed subsystem models are required for reliable results to be obtained.
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