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Abstract The simulation of mechanical devices using multibody system dynamics (MBS)
algorithms frequently requires the consideration of their interaction with components of a
different physical nature, such as electronics, hydraulics, or thermodynamics. An increas-
ingly popular way to perform this task is through co-simulation, that is, assigning a tai-
lored formulation and solver to each subsystem in the application under study and then
coupling their integration processes via the discrete-time exchange of coupling variables
during runtime. Co-simulation makes it possible to deal with complex engineering applica-
tions in a modular and effective way. On the other hand, subsystem coupling can be carried
out in a wide variety of ways, which brings about the need to select appropriate coupling
schemes and simulation options to ensure that the numerical integration remains stable and
accurate. In this work, the co-simulation of hydraulically actuated mechanical systems via
noniterative, Jacobi-scheme co-simulation is addressed. The effect of selecting different co-
simulation configuration options and parameters on the accuracy and stability of the numer-
ical integration was assessed by means of representative numerical examples.
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1 Introduction

During the last decades, multibody-based simulation tools have established themselves in
industry as they allow rapid testing of mechanical systems without costly prototyping. With
the increase in computational power at affordable prices, these tools have also achieved the
real-time limit outside the realm of academic discussions; see, for example, [1, 2]. How-
ever, in parallel with the maturity of this technology, the demand has risen for system-level
simulation tools. Most engineering applications of industrial interest include not only me-
chanical components whose behavior can be described with conventional multibody system
dynamics (MBS) formulations, but also elements with different physical properties, behav-
ior, and time scale. These include control and electronics components, hydraulics circuits,
and thermodynamic subsystems, among many others. When this is the case, the dynamics of
the multibody components can no longer be considered on its own; instead, the interaction
with the rest of elements in the engineering assembly must be appropriately described and
taken into account in the simulation. For some of these applications, it is possible to develop
monolithic formulations that are capable of describing the overall system dynamics with a
common set of equations [3].

Monolithic methods are often accurate and efficient but require the modeling details of
every subsystem to be accessible by the solution solver. This poses a problem in industrial
applications in which at least some of the information about the system components must
remain undisclosed to safeguard intellectual property rights. Moreover, in some applications
the different physical behavior and time scales of the subsystems can make it challenging
to develop a dynamics formulation able to represent all the phenomena involved. Assign-
ing a particular solver to each subsystem, on the other hand, makes it possible to tailor its
equations and implementation to the nature of the component that it is meant to represent.
Although it would be, in theory, possible to build an all-encompassing simulation tool to
suit all the engineering needs, in practice, this may not always be the case, and, in addition,
the use of tailored modeling and solver tools for each engineering field is often advanta-
geous. Co-simulation is an alternative to monolithic methods, which addresses these issues
by assigning a solver to each subsystem in an application and then coupling their solution
processes rather than developing a unified model of the whole system under study [4]. The
subsystems exchange information through coupling variables, that is, input and output vari-
ables, at communication points in a discrete-time fashion. The result is a modular simulation
environment, in which the implementation details of each subsystem remain hidden from the
others. Additionally, co-simulation setups enable the distribution of the computational work-
load between several processing units [5, 6], even over network connections, and thus they
can be used to improve the computational efficiency.

One of the main disadvantages of co-simulation with respect to its monolithic counter-
parts is the introduction of discontinuities and delays caused by the discrete-time nature of
the communication interface [7]. These can eventually render the numerical integration pro-
cess unstable in some cases, especially when noniterative co-simulation schemes are adopted
[8]. Iterative co-simulation methods can be used to alleviate this problem; see, for example,
[9, 10]; their use, however, becomes problematic in certain applications. This is the case of
some real-time environments, in which the available time to carry out the computations is
limited, and of systems that include components that cannot retake their integration steps, for
example, physical components in hardware- or system-in-the-loop settings. In these cases,
noniterative co-simulation schemes must be used.

The stability of noniterative co-simulation schemes can be improved in a number of ways.
Polynomial extrapolation and approximation are among the most popular and simplest ap-
proaches [11–14]. The only information they require is the time history of the coupling
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variables exchanged at the co-simulation interface; moreover, they are relatively easy to
implement. Further analysis of the evolution of the coupling variables has led to the devel-
opment of methods to improve stability based on the energy exchanges at the interface [15,
16] and to the determination of instantaneous frequencies of the subsystems in the setup
[17]. The availability of additional information about the behavior and properties of the
subsystems enables the use of stabilization techniques that can be particularized to match
the needs of particular problems [18, 19]. It is also possible to estimate these properties
from the information contained in the coupling variables to develop correction algorithms
[20].

Co-simulation has been applied successfully to a wide range of applications that involve
mechanical systems in multiphysics contexts, such as automotive [12], railway [21, 22],
biomechanics [23], and heavy machinery [24] simulation. Hydraulically actuated mecha-
nisms are a particularly interesting case of these, as they are present in a large number of
industry and research applications. Several monolithic approaches to solve together the dy-
namics of mechanical and hydraulic components can be found in the literature [25–27].
Hydraulics and mechanics have also been coupled by means of co-simulation schemes [24,
25] and publications exist that deal with particular applications of this approach [28, 29].
However, the systematic study of the coupling method and the effect of selecting a given
co-simulation scheme and set of coupling parameters on the efficiency and accuracy of the
numerical integration has received comparatively less attention [30].

The objective of the present paper is to gain insight into the co-simulation of multibody
and hydraulic dynamics when noniterative Jacobi schemes are used to couple the subsys-
tems. Although there exist other noniterative schemes, such as Gauss–Seidel, in this study,
we have chosen the Jacobi scheme for its efficiency potential. Moreover, explicit Jacobi
schemes are often the option of choice in industrial applications with demanding compu-
tational requirements, such as those that couple physical and virtual components, that is,
Hardware-in-the-Loop and System-in-the-Loop setups. To this end, we carry out a bench-
mark study. We compare the influence on the solution and coupling accuracy of two sets
of coupling variables, two approaches to extrapolate the coupling variables, two multibody
dynamics formulations with different internal integrators, and three solvers for the hydraulic
system. We take the largest achievable communication step-size as an indicator of the sim-
ulation efficiency; in this work, we adjust its value to match the integration step-size of
the slow subsystem, that is, the mechanical one. It can be expected that the computational
overhead associated with information exchanges at communication points in practical ap-
plications will be reduced when the size of the communication step increases. On the other
hand, longer step-sizes decrease the computational load required to integrate the multibody
system dynamics. The maximum achievable step-size required to integrate the hydraulic
subsystem is also touched upon, since it can also be expected to have an effect on system-
level efficiency. To limit the number of considered variables, here we consider only systems
with constant integration step-sizes and matching time grids.

We use two representative examples of hydraulically actuated mechanical systems to il-
lustrate the effect of the above-mentioned co-simulation configuration options on the overall
system behavior and coupling accuracy. The results showed that the accuracy of Jacobi-
scheme co-simulation of mechanical and hydraulic systems can be enhanced by a proper
selection of coupling variables and integration schemes.



146 J. Rahikainen et al.

2 Simulation of multibody and hydraulic dynamics

For the purposes of this study, we implemented a generic co-simulation manager and rel-
evant subsystems. Here we only briefly introduce the multibody and hydraulic dynamics,
whereas the co-simulation scheme and coupling accuracy evaluation are covered in more
detail.

2.1 Multibody formalisms

A mechanical system can be described with a set of n generalized coordinates q subjected to
m kinematic constraints � = 0, which in this work are assumed to be holonomic for simplic-
ity. Without loss of generality, we assume that the generalized velocities are the derivatives
with respect to time of the coordinates q, that is, v = q̇. The equations of motion can then
be expressed as

Mq̈ + c = Q + Qc, (1a)

�(q, t) = 0, (1b)

where M is the n× n mass matrix, c contains the Coriolis and centrifugal forces, and Q and
Qc are the applied and constraint forces, respectively. The generalized constraint reactions
can be expressed as Qc = −�T

qλ, where �q = ∂�/∂q is the m × n Jacobian matrix of the
constraints, and λ contains m Lagrange multipliers.

The dynamics in (1a), (1b) are described by a system of differential-algebraic equations
(DAEs). Several algorithms have been proposed to perform the numerical solution of such
sets of equations. One of them is the index-1 augmented Lagrangian algorithm (ALI1),
introduced in [31] and further developed in [32]. This method enforces the satisfaction of
kinematic constraints via an iterative algorithm, in which both the Lagrange multipliers and
the system accelerations q̈ are consecutively updated:

(M + �T
qα�q)q̈ + �T

qλ∗

= Q − c − �T
qα

(
�̇qq̇ + Φ̇ t + 2ξω�̇ + ω2�

)
. (2a)

λ∗
j+1 = λ∗

j + α
(
�̈ + 2ξω�̇ + ω2�

)
, (2b)

where λ∗ are the m modified Lagrange multipliers, and the subscript j stands for the iteration
number. The modified Lagrange multipliers are made proportional via a penalty factor α to
the violation of kinematic constraints at the configuration, velocity, and acceleration levels,
following an approach similar to Baumgarte stabilization [33], in which ω and ξ are scalar
parameters.

The ALI1 formalism can be used together with a given numerical integrator, in this study
a semi-implicit forward Euler formula, following a fixed-point integration procedure to con-
duct the forward-dynamics simulation of the system motion. If the state of a mechanism at
time-step n, qn and q̇n, is known, then Eqs. (2a), (2b) can be used to obtain the acceler-
ations q̈n. These can be later integrated to obtain the positions and velocities in time-step
n + 1.

On the other hand, replacing the fixed-point scheme with a Newton–Raphson solution
approach can contribute to the improvement of the efficiency and stability of the solution
process [34]. This requires the merging of the integration formulas, for example, the New-
mark integrator family, and the dynamics equations, the latter of which now take the form

Mq̈ + �T
qα� + �T

qλ∗ = Q. (3)
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Fig. 1 A volume with equally
distributed pressure and effective
bulk modulus

Introducing the equations of the integrator in the dynamics equations (3) and establishing
the equilibrium at time-step n + 1, we obtain a system of nonlinear equations

g (q, q̇) = 0. (4)

The solution of this nonlinear system of equations can be found through Newton–Raphson
iteration:

[
dg(q, q̇)

dq

]

j

�qj+1 = − [
g(q, q̇)

]
j
,

qj+1 = qj + �qj+1.

(5)

Mass-damping-stiffness orthogonal projections are used to ensure the satisfaction of kine-
matic constraints at the velocity and acceleration levels, thus improving the algorithm stabil-
ity. Assuming that q̇∗ and q̈∗ are the velocities and accelerations obtained after the Newton–
Rhapson iteration has converged, these projections can be written for velocities as

[
dg(q, q̇)

dq

]
q̇ =

[
M + �t

2
C + �t2

4
K

]
q̇∗ − �t

4
�T

qα�t (6)

and for accelerations, as

[
dg(q, q̇)

dq

]
q̈ =

[
M + �t

2
C + �t2

4
K

]
q̈∗ − �t

4
�T

qα
(
�̇qq̇ + �̇t

)
, (7)

where C and K are the damping and stiffness contributions of the system. These steps rep-
resent the core of the index-3 augmented Lagrangian algorithm with projections (ALI3-P),
described in [35] and extended to handle nonholonomic constraints in [36].

2.2 Hydraulic dynamics

The lumped fluid theory [37] is used in this study to model the dynamics of hydraulic actu-
ators. According to this approach, the hydraulic circuit is divided into volumes V , in which
the pressure p is assumed to be equally distributed. Each volume has sets of incoming and
outgoing volume flows, Qin and Qout, respectively, and an effective bulk modulus Be , which
describes the flexibility of the oil and the containers, such as hoses and cylinders. The con-
cept of the lumped fluid theory is illustrated in Fig. 1.

The pressure p can be solved from the first-order differential equation

ṗ = Be

V
(Qin − Qout), (8)
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Fig. 2 A generic co-simulation scheme

where V is the volume under investigation. The effective bulk modulus, in turn, takes the
form

Be =
(

B−1
o +

nc∑

l=1

Vl

V Bl

)−1

, (9)

where Bo is the oil bulk modulus, nc is the number of chambers in volume V , and Vl and
Bl are the volume and bulk moduli of each chamber, respectively. The volume flows Qin

and Qout, in turn, can originate from, for instance, cylinder movement or pressure difference
over a valve, and therefore their equations are problem-dependent. Thus, these equations are
presented with the case-example in Sect. 3.

2.3 Co-simulation setup

Figure 2 depicts a generic co-simulation scheme with, for simplicity, two subsystems and
a generic co-simulation manager that couples the subsystems and orchestrates the co-
simulation process. Each subsystem has its own internal set of states, which is integrated
with method

∫
1 and step-size h1 in Subsystem 1 and integrator

∫
2 and step-size h2 in Sub-

system 2. To couple their dynamics, the subsystems exchange information at communication
steps of size H . Although, in general, all three step-sizes may be different, it is often prac-
tical to use the largest internal step-size as the communication step-size. It should also be
noted that hereafter the notation of the subscripts h1 and h2 is for clarity particularized for
each example.

In the used noniterative Jacobi scheme co-simulation, at each communication step the
subsystems send outputs y1 and y2 and receive inputs u1 and u2, respectively. During the
communication step, both subsystems integrate their states independently. Since the up-
dated values of inputs u1 and u2 are not available during this time, data extrapolation may
be needed. For the purposes of this study, we implement a polynomial extrapolation and
a reduced interface model [24]. The former method uses Lagrange polynomials, that is, it
is oblivious to the actual system dynamics, whereas the latter makes a physics-based as-
sumption on the mechanical system dynamics for the update of subsystem inputs, as will be
explained next.

2.3.1 Co-simulation via interface models

In co-simulation setups, multibody systems are often coupled to other subsystems with faster
dynamics, which need to be integrated with shorter step-sizes. When a multibody system M
integrated with step-size hM is coupled in a multirate Jacobi co-simulation setup to another
subsystem S with faster dynamics, integrated with step-size hS < hM, the fast subsystem
needs to anticipate its inputs between two consecutive communication points. This can be
done by means of polynomial extrapolation. It is also possible to build an interface model
(IM), to provide a prediction of the evolution of the dynamics of M between communication
points [24]. Such an interface model expresses the dynamics of the multibody system M in
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terms of the variables that describe its interface to S . Let us assume that the dynamics at the
interface can be described with a set of p generalized velocities wi such that

wi = Aiq̇, (10)

where Ai is a p ×n Jacobian matrix that makes it possible to express the interface velocities
wi in terms of the generalized velocities q̇ originally used to describe the multibody system.
The matrix Ai also enables writing the interaction forces Qi that couple the dynamics of M
and S in terms of the local coupling forces at the interface λi as

Qi = AT
i λi. (11)

Then the multibody dynamics can be expressed in terms of the velocities wi that describe
the interface as

Meffẇi = Qeff + λi, (12)

where

Meff = (
Ai (I − Pc)M−1AT

i

)−1 (13)

and

Qeff = Meff
(
Ai (I − Pc)M−1 (Q − c) + Ȧiwi + AiPcẇi

)
, (14)

and where Pc is the projector matrix

Pc = M−1�T
q

(
�qM−1�T

q

)−1�q. (15)

It should be noted that the present form of Eq. (15) relies on the mass matrix M being
invertible, and therefore the method is limited to mechanical systems with a regular mass
matrix.

The multibody dynamics provided by Eq. (12) can be used to obtain a physics-based
prediction of the evolution of the inputs of the fast subsystem S between communication
points in the way shown in Fig. 3.

The terms Meff and Qeff are evaluated at each communication point and sent to the inter-
face model, which keeps them constant during the macrostep. These are used to formulate
the dynamics of the interface model, which is integrated in a computationally inexpensive
way with the same integration step-size of S . This integration process is updated with the
exchange of inputs between the IM and the faster subsystem S . This way the IM provides
S with a prediction of its inputs between communication points, which is based on the dy-
namics of the multibody system M.

2.3.2 Systematic evaluation of co-simulation accuracy

In the benchmark process that will follow, a systematic method to evaluate the accuracy of
the co-simulation is needed. Although the total energy of the system provides useful infor-
mation about the system-level solution, it gives indication if the energy error is due to the
decoupling of the problem or due to the internals of each subsystem. On the other hand, indi-
cators, such as the RMS-value of position errors with respect to a certain reference solution,
may be a poor indicator in some cases. For instance, a small phase shift in a high-frequency
signal can appear as a large error, even if the resulting solution can be considered other-
wise acceptable. For these reasons, this work uses a method based on the work presented
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Fig. 3 Scheme of the operation
of an interface model (IM)

Fig. 4 An explicit Jacobi
scheme co-simulation

in [15], where the energy flows in the co-simulation interface are monitored via the concept
of power bonds. This allows the error estimation at the co-simulation interface based on the
input and output signals only, namely in terms of energy residuals. In contrast to [15], but
similar to [16], the error indicator here can be considered a “generalized energy” and may
not strictly represent energy in the physical sense.

To briefly introduce the key concepts related to the energy flow based error estimation,
consider a Jacobi scheme co-simulation of two subsystems with scalar inputs and outputs
between communication points tn and tn+1, as presented in Fig. 4. In the figure, at tn, each
subsystem sends and receives its input uk(tn) and output yk(tn), respectively, k being an in-
dex of power bond between the systems. After the time integration within each subsystem
has taken place without additional communications, at time instant tn+1, both subsystems
send and receive uk(tn+1) and yk(tn+1), which are computed based on the previous inputs.
With this information only, it is possible, as shown in [15], to estimate the introduced energy
error in the co-simulation interface. It is important to note that, from hereafter, the general-
ized power and energy may not be power and energy in the physical sense if the product of
inputs and outputs at each power bond does not correspond to an energy magnitude.
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The concept of power bonds can now be applied to monitor the energy flow between
the subsystems [15]. Applied to Fig. 4, this concept states that the energy transfer between
Subsystems 1 and 2 via power ports k1 and k2 is called a power bond k. At communication
time t , Subsystem 1 reports the total transmitted generalized power Pk1 as

Pk1(t) = ũk1(t)yk1(t), (16)

where ũk1(t) is the extrapolated value of the previous input at the current communication
time t , and yk1(t) is the computed output. Subsystem 2, in turn, reports that the power it
received from Subsystem 1 via the power port k2 is

Pk2(t) = ũk2(t)yk2(t), (17)

where ũk2(t) and yk2(t) are the respective inputs and outputs.
Should the extrapolation within the subsystem be error-free, no energy would be lost or

gained at the interface, and balance −(Pk1 + Pk2) = 0 would hold. However, as the extrapo-
lation error cannot be, in general, avoided, this balance will be violated, and therefore

−(Pk1 + Pk2) �= 0. (18)

The above violation in the generalized power can now be exploited to monitor the co-
simulation accuracy:

δPk = −(Pk1 + Pk2), (19)

where δPk is a generalized power residual of the power bond k, that is, the spuriously in-
troduced power due to extrapolation errors. For multiple power bonds, this figure can be
computed as

δP = −ũTy, (20)

where ũ and y are the vectors of extrapolated inputs and computed outputs, respectively.
Should the number of inputs and outputs not be equal, as it will be the case with the used
examples, only a subset of inputs or outputs is used to define a power bond. Following the
notation introduced in Fig. 4, now we can write Eq. (20) as

δPk(tn+1) = −ũk(tn+1)
Tyk(tn+1), (21)

which can be implemented in the co-simulation manager in a straightforward manner. The
generalized residual energy is, in turn, defined piecewise between each communication in-
stance with integral

δEk(tn+1) =
∫ tn+1

tn

δPk(t) dt, (22)

which now exactly defines the incorrectly added or dissipated energy that results from the
extrapolation errors during the communication step tn → tn+1. A numerical approximation
can be used to compute Eq. (22) in the practical implementations. For m = 0, a rectangular
rule can be used, for example,

δEk(tn+1) ≈ δPk(tn+1)H(tn+1), (23)
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where H(tn+1) is the communication step size. For m > 0, higher-order quadrature rule
should be used. Trapezoidal rule, which reads as

δEk(tn+1) ≈ −H

2

(
δPk(tn) + δPk(tn+1)

)
, (24)

is a straightforward solution with linear extrapolation. Although higher-order formulas, such
as Simpson’s rule, could provide a more accurate approximation, the outputs yk are not
known between communication instants, and therefore in this work, for extrapolation orders
m > 1, we use the trapezoidal rule.

It should be noted that the residual energy in Eq. (22) defines the spurious energy added
to the system or removed from it due to the decoupling of the original problem, regardless
of the internal energy conservation in the subsystems. This means that the power sources or
sinks in the subsystems are not visible in the residual, and therefore in this paper, two defini-
tions exist for simulation accuracy. Firstly, there is the coupling accuracy defined in terms of
Eq. (22) and its approximations. Secondly, there is system-level accuracy, which is defined
in this paper by the energy balance of the entire system. While the former has an effect on
the latter, since the decoupling error is added to the simulation error, the latter may not be
visible in the former. These two definitions are jointly used to provide a comprehensive view
to the accuracy of the simulation.

3 Examples

We implemented two nonlinear problems to evaluate co-simulation performance under dif-
ferent coupling approaches. Firstly, we used a planar model of a crane with a single actuator
to examine the co-simulation with two interacting subsystems only. Secondly, we obtained
a system with multiple actuators by attaching a second hydraulic cylinder to the crane. We
modeled and integrated the dynamics of the two hydraulic actuators separately. In practice,
hydraulic actuators are coupled through the dynamics of the mechanical system. In a Jacobi
co-simulation setup, the integration of these two hydraulic subsystems proceeds separately
between communication points, without information about the evolution of the other actu-
ator. For this reason, keeping the co-simulation of the two-actuator model stable is more
challenging than in the case of its single-actuator counterpart.

3.1 Multibody models

3.1.1 Single-actuator model

The first example is a two-link hydraulically actuated crane, shown in Fig. 5. A similar
model was used as a test problem in [24] and [25].

The system has two degrees of freedom, one of which is controlled by a hydraulic ac-
tuator between the center point P of the first link and point B on the ground. The first link
in the system is a rigid rod of length L with a homogeneously distributed mass m. Link 2
is a massless rod of length Lh. Point masses mp and mh are located at the tips of the first
and second links, points Q and R, respectively. The set of generalized coordinates chosen to
describe the example motion is q = [

xP yP θ1 xR yR

]
T; three kinematic constraints � = 0

are used to enforce that the distance between points Q and R remains constant and that an-
gle θ1 is proportional to the x and y coordinates of point P. The interface velocity wi in this
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Fig. 5 A single-actuator crane

Table 1 Mechanical parameters
of the single-actuated model Parameter Symbol Value

Length of link 1 L 1.0 m

Length of link 2 Lh 0.5 m

Mass of link 1 m 200 kg

Point mass at Q mp 250 kg

Point mass at R mh 100 kg

Coordinates of fixed point B (xB, yB)
(√

3/2,0
)

m

Initial angle, link 1 (θ1)0 π/6 rad

Initial angle, link 2 (θ2)0 3π/2 rad

Gravity g −9.81 m/s2

example corresponds to the actuator rate ṡ1 and can be related to the generalized velocities
as follows:

wi = ṡ1 =
[

xP − xB

s1

yP − yB

s1
0 0 0

]
q̇ = Aiq̇. (25)

The force transmitted at the interface λi corresponds to the force exerted by the cylinder.
The physical properties of the single-actuator crane are summarized in Table 1.

3.1.2 Double-actuator model

The second example is a crane with two hydraulic actuators obtained after adding a second
cylinder, identical to the previously existing one, between point P and the center point of
link 2, as shown in Fig. 6. Such a system was used in [24] to assess the behavior of interface
models in the co-simulation of multiply actuated systems.

The set of variables used to describe the system motion remains unchanged. However, a
new component of the interface velocity is required to describe the interaction between the
second actuator and the mechanical system. The rate ṡ2 of the second cylinder is selected to
this end:

wi =
[

ṡ1

ṡ2

]
=

⎡

⎢
⎣

xP − xB

s1

yP − yB

s1
0 0 0

0 0 0
xR

4 s2

yR

4 s2

⎤

⎥
⎦ q̇. (26)
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Fig. 6 A double actuator crane

Fig. 7 A hydraulic circuit

The mechanical properties of the system remain the same as those in the single-actuator
model.

3.2 Hydraulic circuit

Figure 7 depicts the hydraulic actuator circuit used in both examples in Sect. 3. In the latter,
this circuit is duplicated with slightly different parameters to add the second actuator to
the system. The circuit includes a pump and a tank, which are assumed to have constant
pressures pP and pT , respectively. Oil volumes flow from or to these sources via a 4/3
directional valve, which is controlled with a control signal U produced with a joystick, the
positive direction of the signal being depicted in the figure. The circuit is split into three
volumes, one between the directional and a throttle valve and one at each side of the piston
head. Additionally, the figure depicts the total cylinder length l and lengths at rod and piston
sides, l2 and l1, respectively. A full list of the used parameters is presented in Table 2.
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Table 2 Parameters of the
example circuit Parameter Symbol Value

Length of the piston l 0.3 m

Initial piston-side length l10 0.05 m

Initial rod-side length l20 0.25 m

End damper length ld 0.008 m

End damper spring coefficient kd 1 × 107 N/m

End damper damping coefficient cd 5 × 103 Ns/m

Initial actuator length s0 0.5 m

Fluid density ρ 850 kg/m3

Oil bulk modulus Bo 1500 MPa

Cylinder bulk modulus Bc 31500 MPa

Hose bulk modulus Bh 150 MPa

Volume of hose 1 Vh1 3.14 × 10−5 m3

Volume of hose 2 Vh2 7.85 × 10−5 m3

Volume of hose 3 Vh3 7.85 × 10−7 m3

Diameter of piston d1 80 mm

Diameter of piston rod d2 35 mm

Tank pressure pT 0.1 MPa

Pump pressure pP 7.6 MPa

Cylinder efficiency η 0.88

Throttle discharge coefficient Cd 0.8

Semiempirical coefficient Cv 1.0690 × 10−8 m3/s
√

Pa

−45°phase shift frequency f−45 35 Hz

The hydraulic circuit has three volumes, and therefore applying Eq. (8) yields three first-
order differential equations, which describe the system dynamics:

ṗ1 = Be1

V1
(Q31 − A1ṡ), (27)

ṗ2 = Be2

V2
(A2ṡ − Q2V ), (28)

ṗ3 = Be3

V3
(QV 3 − Q31), (29)

where A1 and A2 are piston and rod side areas in the cylinder, and ṡ is the actuator rate. The
volume flows over the valves, Q2V , QV 3, and Q31, are computed with the semiempirical
model [38], and their positive directions are depicted in Fig. 7. The expression for the volume
flow over the throttle valve can be written as

Q31 =

⎧
⎪⎨

⎪⎩

Ct

√|�p|, �p > 0,

0, �p = 0,

−Ct

√|�p|, �p < 0,

(30)

where Ct is the semiempirical coefficient, and �p is the pressure difference over the valve.
In the case of a simple throttle valve the semiempirical coefficient is computed as Ct =
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CdAt

√
2
ρ

, where Cd is the discharge coefficient, At is the throttle area, and ρ is the oil

density. The volume flows Q2V and QV 3 over the directional valve take the form

Q =

⎧
⎪⎨

⎪⎩

CvU
√|�p|, �p > 0,

0, �p = 0,

−CvU
√|�p|, �p < 0,

(31)

where Cv is the semiempirical coefficient computed based on one operational point of the
valve, and U is the control signal computed as

U̇ = Uref − U

τ
, (32)

where Uref the reference, in this case from the joystick, U is the achieved position, and
τ = (2πf−45)

−1 is the time constant computed based on the −45°phase shift frequency.
The force produced by the cylinder can be computed as follows:

Fs = p1A1 − p2A2 − cṡ − Fd , (33)

where c is a viscous coefficient of 1 × 105 Ns/m, and Fd is the end damper force computed
in this case as

Fd =

⎧
⎪⎨

⎪⎩

kd(ld − l1) − cd ṡ, l1 ≤ ld ,

−kd(ld − l2) − cd ṡ, l2 ≤ ld ,

0 otherwise,

(34)

where kd and cd are, respectively, the spring and damping coefficients of the dampers, and
ld is the damper length. Note that the cylinder lengths l1 and l2, as depicted in Fig. 7, include
the dampers.

3.3 Co-simulation setup

The described systems are coupled by the co-simulation manager via a noniterative Jacobi
scheme. The mechanical system sends at each communication point the actuator length s,
velocity ṡ, and acceleration s̈ to the manager. The hydraulic systems, in turn, send either the
cylinder force Fs or the pressures p = [p1 p2 p3] to the interface. In the latter option the
cylinder force is computed within the multibody system; accordingly, information about the
properties of the hydraulic system needs to be available to the multibody subsystem, so that
it can evaluate Eq. (33) to obtain the cylinder force. These two options are hereafter referred
to as velocity–force and velocity–pressure couplings, and both can be used with and without
the reduced interface model. Polynomial extrapolation, based on the Lagrange polynomials,
is used on the inputs of the hydraulic system when the IM is not used.

Regarding time integration, the mechanical system is solved with the index-1 and index-3
augmented Lagrangian algorithms described in Sect. 2.1 and shares the constant commu-
nication step-size of the co-simulation manager, that is, hm = H . The ALI1 formulation
is integrated with a semi-implicit forward Euler formula, and the ALI3-P with the trape-
zoidal rule integrator. The hydraulic system, in turn, has a smaller internal step-size, that is,
hh < H , which forms a matching grid with the communication instances. To evaluate the ef-
fect of the internal integration scheme of the hydraulic subsystem, three different integrators
are implemented for experimenting, namely the forward Euler formula (labeled Euler) as a
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Table 3 Configuration variables
Mech Hyd Coupling variables Extrapolation

ALI1 Euler s, ṡ, Fs Order m

ALI3-P RK4 s, ṡ, p IM

TR

Fig. 8 Simulated work cycle

single-step explicit integrator, the fourth-order Runge–Kutta method (RK4) as a multistep
explicit integrator, and the trapezoidal rule (TR) as an implicit integrator. Fixed step-sizes
are used during the integration process. These configurations are summarized in Table 3.

4 Results

The given examples are used in the benchmark to gain insight into the noniterative Jacobi-
scheme co-simulation of multibody and hydraulic dynamics. The focus of the benchmark is
on the influence of the configuration on the achievable communication step-size, since it is
known to have a significant effect on co-simulation accuracy and efficiency [12, 18]. To this
end, the internal step-size hh of hydraulics is locked to a value, in this case 0.1 ms, small
enough to obtain a stable solution, whereas H is varied under each tested co-simulation
configuration. The generalized residual energy at the end of the simulation is taken as an
indicator of the coupling accuracy, whereas the overall solution accuracy is measured by the
energy balance of the entire system. In addition to the study of the achievable communica-
tion step-size with a predetermined value of hh, here the effect of the internal integrator of
the hydraulics subsystem on the achievable internal step-size is also briefly touched upon.
A monolithic solution, which follows the integration scheme shown in [26], is used to pro-
duce a set of reference results with the ALI3-P formulation. As the case examples are imple-
mented in a Matlab environment and the used implementation does not produce comparable
computation times, here CPU-times are omitted.

4.1 Single actuator model

For the first studied case, that is, the single actuator crane in Sect. 3.1.2, a reference signal
U is produced for the directional valve with a joystick. The resultant actuator length that
corresponds to this input is depicted in Fig. 8. During the work cycle, the actuator hits both
end dampers, the models of which are similar to contact models, which can be assumed to
be challenging for the integrators. Figure 8 shows the reference result obtained with a mono-
lithic simulation at 1 ms step size. This reference solution is compared to others obtained
with Jacobi-scheme co-simulation using different coupling strategies.
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The effect of the communication step-size H , used integrators
∫

m
and

∫
h
, and extrapo-

lation methods, that is, m = 2 and IM, on the coupling accuracy are shown in Figs. 9a–9f,
where the generalized energy has been normalized so that the configuration of ALI1 with
second-order extrapolation and forward Euler integrator for hydraulics at hh = 1 ms inter-
nal step size equals zero. It must be noted that the generalized energy residuals are directly
comparable when the coupling variables are the same, that is, within left- and right-hand
side columns of figures, and in both cases, the lower energy residual indicates a better solu-
tion. The achievable step-size is taken to be the segment of the curve where the accumulated
energy residual is relatively low, almost linearly dependent on the communication step size
H . When the curve “takes off”, accuracy of the coupling and therefore the simulation can
be assumed to be lost.

As Fig. 9 shows, the index-1 formulation can achieve significantly larger communication
step-sizes with a similar level of coupling error introduced at the co-simulation interface,
when compared to the index-3 formulation. The lower energy residual likely results from
the explicit integrator used with the ALI1 formulation, which eliminates the need for sig-
nal extrapolation, and thus is indifferent to the co-simulation scheme. However, as Fig. 10
shows, in turn, the index-1 solution introduces losses in the total system energy as the sim-
ulation progresses, whereas the index-3 solution maintains system-level accuracy until the
stability of the solution is lost. This difference may stem from the dissipative terms in the
ALI1 formulation and, in addition, from the used explicit integrator. This demonstrates the
fact that the coupling accuracy alone cannot be used to fully determine if the solution for the
system is accurate, even if it can be indicative of it, as is the case with the ALI1 solutions.
However, on the other hand, the coupling accuracy can be computed even if the system level
energy balance is not known and can be used, as Fig. 9 shows, as an indirect indicator of
solution stability.

Regarding the use of the different coupling variables, the use of velocity pressure cou-
pling seems to yield more accurate coupling and stable results, as Fig. 9 shows. This is
true for both implemented formulations for the mechanical system, although in this case the
index-1 formulation seems to benefit more from the use of pressures in the coupling, espe-
cially when the reduced interface model is used. This demonstrated that difference originates
from the hydraulic force description in Eq. (33), i.e., Fs = p1A1 − p2A2 − cṡ − Fd , which
couples the mechanical and hydraulic states. If velocity-force coupling is used, then this
equation is evaluated within the hydraulic subsystem, and for this reason, the actuator rate
ṡ is that extrapolated from the previous time step. This causes a direct feed-through, that is,
the output of the hydraulic subsystem directly depends on its inputs. It has been shown in [8,
39] that algebraic loops caused by direct feed-through are detrimental for the stability of the
cosimulated solution. Conversely, if a velocity–pressure coupling is used, then Eq. (33) is
evaluated within the multibody system with the integrated value of ṡ and pressures p ob-
tained from the previous time step, which removes the direct feed-through and therefore, as
demonstrated here, yields a more stable simulation.

As demonstrated in the literature, the used extrapolation method has a significant effect
on co-simulation accuracy [12]. For the purposes of this study, polynomial extrapolation is
used to compare to the interface model [24], which allows us to extrapolate the data from the
mechanical system based on the system dynamics. The order of polynomial extrapolation
was decided based on experiments with a configuration of ALI1, Euler, and hh = 0.1 ms. As
the results show, with the single-actuator model, polynomial extrapolation is performed in
most cases better than the reduced interface model, both in the sense of solution and coupling
accuracy and achievable communication step-size. Figure 11 exemplifies the difference in
results between the polynomial extrapolation and reduced interface model. As we can see,
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Fig. 9 Effect of the communication step-size H on coupling accuracy with different hydraulic integrators
and coupling variables; single-actuator model

use of the reduced interface model may lead to degraded velocity level solution, whereas
smaller deviations can be seen at the configuration level. This behavior also explains the
increase in the residual energies seen in Fig. 9a.
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Fig. 10 Energy balance with
Euler integrator at
hhyd = 0.1 ms, polynomial
extrapolation, and velocity-force
coupling; single-actuator model

Fig. 11 Polynomial extrapolation vs. IM; single-actuator model

Figures 12 and 13 summarize the effect of the internal configuration of the fast subsys-
tem on co-simulation accuracy. As already demonstrated in Fig. 9, the internal integrator of
the fast subsystem, hydraulics in this case, in turn, seems to have only little impact on the
achievable communication step-size H , should the internal step hh be sufficiently small to
ensure a stable integration. For a clearer demonstration, in Figs. 12a–12b the normalized
energy residuals with different integrators for the hydraulic subsystem are presented when
the rest of the system configuration is kept constant. This suggests that changing the hy-
draulic integrator may not allow larger communication step-sizes to be taken, should the
internal step-size be small enough for the used integrator to produce an accurate solution
for the system. Regarding the possibility to increase the internal step-size hh, in turn, as
demonstrated in Figs. 13a–13b, it seems to be possible only when H is sufficiently small.
Notice how the solution with the trapezoidal rule integrator at H = 4 ms becomes unstable,
whereas with H = 1 ms a stable solution can be found. The solution accuracy behaves in a
similar manner. At H = 1 ms the solutions with hh = 0.1 ms and hh = 0.5 ms are closer to
the monolithic solution than with H = 4 ms. This shows that in the studied case, there is a
coupling between achievable H and the used hh. This further indicates that depending on
the location of the computational bottleneck of the co-simulation setup, it may be possible
to optimize the overall efficiency by tuning step-sizes in fast and slow subsystems together.
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Fig. 12 Effect of the hydraulics integrator on the coupling accuracy; single-actuator model

Fig. 13 Effect of the step size to the solution accuracy; single-actuator model

4.2 Double actuator model

Similarly to the first case, for the double-actuator model, reference signals for the direc-
tional valves of the hydraulic circuits are produced with a joystick. Figure 14 shows the
resultant actuator lengths obtained with a monolithic simulation of 1 ms step-size. Although
the system still seems fairly simple, the addition of the second hydraulic circuit as a new
subsystem introduces an indirect coupling between the cylinders via the mechanical sys-
tem, which from the co-simulation point of view, is significantly more challenging than
the single-actuator case. The problem is solved again with the Jacobi-scheme co-simulation
with different coupling strategies, as described before. To limit the number of considered
variables, the same settings are used for both hydraulic subsystems.

Figure 15 shows the resultant generalized energy residuals, normalized in a similar man-
ner to the previous case, that is, the ALI1 formulation with forward Euler integrator for the
hydraulics, and first-order extrapolation at H = 1 ms is set to one in the chart. As done with
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Fig. 14 Simulated work cycle
with the double-actuator model

the single-actuator model, the internal step-size for both hydraulic subsystems has been kept
at a constant of hh = 0.1 ms in all cases, whereas other configuration parameters are varied.

As can be seen from Fig. 15, the achieved communication step-size H is, in general,
smaller than those shown in Fig. 9 for the single-actuator model. This result can be ex-
pected, as the previously explained indirect coupling of the hydraulic subsystems makes
this case more challenging for the used noniterative Jacobi scheme. An exception to the rule
is the reduced interface model combined with the ALI1 formulation, which seems to be able
to achieve communication step-sizes close to those of the single-actuator model without loss
of stability. This result, in turn, agrees to the original proposal of the method [24] and, in
addition, shows that the method seems to be viable with stiffer hydraulic models. The ex-
planation behind the large communication step-sizes achieved with IM lies in its capability
to maintain the coupling of the hydraulic subsystems between the communication instants.

Otherwise, the results follow the trends set by the single-actuator case. A clear differ-
ence can be seen in the results between the velocity–force and velocity–pressure couplings,
the latter being able to achieve larger communication step-sizes. In this case, however, the
benefit of the velocity–pressure coupling is more clear than in the single-actuator case, and
it suggests that in more complex cases the elimination of the direct feed-through may be
advisable in the used co-simulation scheme. The effect of the internal solver of the fast sub-
system in this case, as Fig. 15 shows, also has little effect on the achievable communication
step-size. This is again demonstrated in Figs. 16 and 17, where the generalized energy resid-
uals are compared between the different subsystem integrators. The relation between the
achievable communication step-size H and the internal step-size hh is also exemplified. As
we can see, should the communication step-size be small enough, the trapezoidal rule inte-
grator can still achieve 1 ms step-sizes without losing stability, although with the increase in
the communication step-size this property is quickly lost.

5 Conclusions

In this work, we presented a benchmark study to gain insight into noniterative Jacobi-scheme
co-simulation of multibody and hydraulic dynamics. Two nonlinear examples are used for
this purpose, with different approaches to the integration procedures and to the coupling.
Their effects on the coupling and system accuracy have been investigated, and the key con-
clusions can be summarized as follows:

– The selection of variables for the information exchange can have a significant effect on
the achievable communication step-size, since they may introduce or remove direct feed-
through in the coupling scheme. In the light of the presented results, it seems that the use
of the state variables as subsystem outputs in the coupling should be recommended.
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Fig. 15 Effect of the communication step-size H on the coupling accuracy with different hydraulic integra-
tors and coupling variables; double-actuator model

– The used multibody algorithm, and especially the used integrator, can have a significant
effect on the achievable communication step-size and also on the accuracy of both the
solution and the coupling itself. However, an accurate system level solution may not be
the most stable one and vice versa, as the results show.
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Fig. 16 Effect of the hydraulics integrator on the coupling accuracy; double-actuator model

Fig. 17 Effect of the step size to the solution accuracy; double-actuator model

– The interface model (IM) can allow a significant increase in the communication step size,
but with a cost of degraded velocity level solution in some cases. The acceptability of this
trade-off depends on the application, and therefore no definitive guidelines can be given
regarding its use.

– If the step-size of the hydraulics integrator is small enough, here 0.1 ms, then the selection
of the internal integrator seems to have no practical effect on the achievable communi-
cation step-size. In the examples reported in this research the multibody algorithm, the
choice between polynomial extrapolation or use of an IM, and the selection of the cou-
pling variables had a more noticeable effect on the achievable H when hh was kept as the
above-mentioned constant.

– Should the internal step-size of the hydraulic subsystem be increased, in turn, the results
suggest that a relation exists between the largest achievable communication step-size and
the internal step-size used in the fast subsystem. Thus, depending on the location of the
computational bottleneck of the co-simulation setup, it may be possible to optimize the
overall efficiency by tuning step-sizes in fast and slow subsystems together.
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