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Abstract
Cable-driven parallel robots are parallel robots where light-weight cables replace rigid bod-
ies to move an end-effector. Their peculiar design allows obtaining large workspaces, high-
dynamic handlings, ease of reconfigurability and, in general, low-cost architecture. Know-
ing the full state variables of a cable robot may be essential to implement advanced control
and monitoring strategies and imposes the development of state observers. In this work a
general approach to develop nonlinear state observers based on an extended Kalman fil-
ter (EKF) is proposed and validated both numerically and experimentally by referring to
a cable-suspended parallel robot. The state observer is based on a system model obtained
by converting a set of differential algebraic equations into ordinary differential equations
through different formulations: the penalty formulation, the Udwadia–Kalaba formulation,
and the Udwadia–Kalaba–Phohomsiri formulation, which have been chosen since they can
handle the presence of redundant constraints as often happens in cable-driven parallel robots.
In the numerical investigation, the EKF is validated simulating encoders heavily affected
by quantization errors to demonstrate the filtering capabilities of EKF. In the experimen-
tal investigation, a very challenging validation is proposed: only two sensors measuring the
rotations of two motors are used to estimate the actual position and velocity of the end-
effector. This result cannot be achieved by sole forward kinematics and clearly proves the
effectiveness of the proposed observer.

Keywords State estimation · Extended Kalman filter · Cable-driven parallel robots ·
Penalty formulation · Udwadia–Kalaba · Udwadia–Kalaba–Phohomsiri

1 Introduction

Cable-driven parallel robots (CDPRs) are a class of parallel robots where the end-effector
is actuated by light-weight cables. Each cable is wound around a winch driven by a motor.
The winch can easily provide several meters of cable by enabling large workspaces, reduced
inertias, and high velocities at the end-effector. CDPRs also give the opportunity to imple-
ment deployable and reconfigurable topologies that may expand the application of robotics
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in new environments (e.g., search and rescue operations, large buildings maintenance and
construction).

Despite these advantages, the current employment of CDPRs seems hampered mainly by
the consequences deriving from the unilateral nature of cables: they can only exert pulling
forces. In practice, CDPRs need cable tensions to be kept always positive during motion,
thus requiring accurate control schemes [1, 2]. Nonetheless, the use of CDPRs seems very
promising and has already been suggested in several different operation fields, such as the
already cited heavy handling and industrial manufacturing, but also: medical rehabilitation,
rescue and home assistance, or sport shooting (see for example [3, 4] and the references
therein). In the future, a wide use of CDPRs is expected thanks to their lightweight struc-
ture (which makes them energy efficient), modularity and reconfigurability (which makes
them flexible and easy to transport), and finally, the potentially high dynamics and payload
capacity (which makes them effective in a wide range of industrial applications).

The development of advanced control schemes mainly relies on the availability of models
and, often, of the full state vector [1] (usually defined as positions and velocities in many
control schemes for multibody systems [5]). Whenever the direct measurement of the state,
or of the controlled outputs of interest, is not possible (or it is difficult to implement), state
observers are required to provide estimates of such quantities. State observers (also named
state estimators) are widely adopted in the field of multibody dynamics and several recent
studies discuss this relevant issue [6, 7]. The need of a state observer is further stressed in
the field of CDPRs by the difficulties in directly measuring the position of the suspended
load in large dimensional robots, as shown in [8, 9].

The dynamics of a CDPR is nonlinear and imposes the development of nonlinear state
observers, such as extended Kalman filters (EKFs), which are widely used in state estimation
of nonlinear systems starting from a complete model formulated through first-order ordinary
differential equations (ODEs). A widespread approach in the literature of CDPRs is writing
the Newton–Euler equations of motion for the end-effector under the hypothesis that cables
are stiff, massless, and straight, and often the contribution of the motor inertial properties
to the overall system dynamics is neglected or just considered through approximations or
through nonsystematic approaches. The use of redundant coordinates has only been rarely
suggested in the literature of CDPRs, although this choice may provide some benefits that
are well known to scholars working in the field of multibody dynamics, to handle some
peculiarities of cable robots, such as simulating cable failures or bouncing motions (that
make some kinematic constraints vanishing [10]), or to easily include motor dynamics [11].

In this paper, an EKF for CDPRs modeled through redundant coordinates is developed to
estimate the state variables of a CDPR. The paper is focused on the EKF; other formulations
that can be found in the literature (such as the sigma-point Kalman filters discussed in [7])
go beyond the goal of this study. The theoretical achievements presented in the paper can be
applied to any CDPR topology, but for the sake of clarity, they are here applied to a simple
and widespread CDPR design: a CDPR actuated by four cables in a crane-like configura-
tion, which means that all the cables reach the end-effector from above. This cable layout
classifies the robot as cable-suspended parallel robot (CSPR).

Since the models implemented in the state observer need to be in ODE representa-
tion, the conversion of DAEs into ODEs must be performed. This step can be carried out
taking advantage of different formulations. In this work, three well established formula-
tions are investigated: the penalty formulation [12], the Udwadia–Kalaba, and Udwadia–
Kalaba–Phohomsiri formulations [13, 14], since all these approaches effectively handle
multibody systems with redundant constraints [12, 15] as often occurs in CDPRs, where
overconstrained (also denoted as overactuated) architectures are adopted to increase the
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workspace [16]. Additionally, these formulations easily allow the computation of the La-
grange multipliers linked to the algebraic constraints due to the presence of cables, thus
allowing for a straightforward evaluation of the cable tensions [17].

2 Dynamic modeling of a cable-driven parallel robot

2.1 Differential-algebraic equations (DAEs) modeling technique

Let us collect the s generalized coordinates of an arbitrary CDPR into the vector of redun-
dant coordinates q ∈ R

s . By adopting the usual formalism of multibody system dynamics
[18], the following set of DAEs of index-3 is obtained to model the system dynamics:{

Mq̈ + �T
q λ = f,

�(q) = 0,
(1)

where �(q) is the set of n position kinematic constraint equations, M ∈ R
s×s is the mass

matrix, f ∈R
s is the vector of the generalized external forces, λ is the vector of the Lagrange

multipliers, and �q = �q(q) ∈R
n×s is the Jacobian of the kinematic constraint equations.

In the case of CDPRs, �(q) includes the constraint equations set by cables. By assum-
ing that cables are perfectly stiff and taut, as reasonably done by most of the papers in the
literature, and that the exit points of cables are fixed, cables behave as holonomic, sclero-
nomic, ideal kinematic constraints. The constraint equation of the arbitrary ith cable relates
the absolute coordinates of the point of the end-effector where the cable is attached (de-
noted as p = [xp yp zp]T ), the absolute coordinates of the cable exit point (denoted as
ai = [ai,x ai,y ai,z]T ), and the cable length li :

li = ‖p − ai‖ . (2)

In turn, li can be written as a function of the rotation θi of the ith motor that winds and
unwinds the ith cable once the cable length corresponding to θi = 0, denoted as l0,i , and the
winch radius ri are known

li = l0,i + riθi . (3)

The ith position constraint �i can therefore be expressed in the following form:

�i = pT p − 2pT ai + aT
i ai − l2

0,i − 2l0,i riθi − r2
i θ2

i = 0. (4)

The set of DAEs in Eq. (1) does not fit the form of dynamic models required to design
state observers, which are usually formulated as discrete time, first-order ODEs. Therefore,
DAE to ODE transformation is required. The literature in the field of multibody system dy-
namics has widely discussed the issue of converting DAEs to ODEs, especially for solving
the issue of numerical simulation. In the selection of the conversion method, it should be
noted that an analytical model representation is usually required in the design of EKFs, and
therefore approaches based on iterations (such as, for example, the augmented Lagrangian
formulation [19]) are not suitable for being used in developing EKFs, at least in their classi-
cal formulations (see, e.g., [20]). Estimation approaches that do not exploit analytical mod-
els, which have been sometimes proposed in the literature such as for example [21], are not
discussed in this paper.
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Additionally, the presence of redundant constraints should be often addressed in the case
of CDPRs, as in the case of this paper. In the light of these requirements, Sects. 2.2 through
2.4 briefly recall some of the most widely adopted methods. Just their main equations and
assumptions are mentioned; for further details, the readers could refer to the quoted papers.

The vector of the external forces f includes the gravity force, the control torques exerted
by the motors (collected in vector τm), and friction forces on the motor shafts (whenever it is
included in the model, as discussed in Sect. 5.4). f might also include the velocity dependent
inertia forces. Hence, in the general case, f = f (t,q, q̇).

2.2 DAE to ODE conversion through the projection matrix

The first approach here discussed to convert a DAE model into a minimal set of ODE con-
sists in using the “projection matrix method” by means of the velocity projection matrix
relating the redundant velocities q̇ ∈ R

s and the independent (minimal) ones ż ∈ R
ndof , here

denoted as T(q) ∈ R
s×ndof :

q̇ = T(q)ż. (5)

Matrix T can be determined via several methods proposed in the literature (see [22] and
the references therein). Taking the time derivative of Eq. (5), q̈ = T(q)z̈ + Ṫ(q, q̇)ż and
considering that TT �T

q = 0 leads to the minimal set of ODEs

T(q)T MT(q)z̈ = T(q)T
(
f − MṪ(q, q̇)ż

)
, (6)

Equation (6) can be expressed in the following compact form:

¯̄Mz̈ = ¯̄f, (7)

where ¯̄M = T(q)T MT(q) and ¯̄f = T(q)T
(
f − MṪ(q, q̇)ż

)
. An advantage of this formulation

is that it provides an exact conversion of the DAEs without any tuning parameters (as will
be required by the following formulations) and allows the rigorous solution of the constraint
equations at the position, velocity, and acceleration levels [23]. On the other hand, in the case
of design of state observers for overconstrained CDPRs, it does not retain all the actuated
coordinates.

2.3 DAE to ODE conversion through the penalty formulation

To retain all the redundant coordinates in the multibody model used in the observer design, a
set of nonminimal ODEs should be formulated. This approach allows directly estimating the
time evolution of all the generalized redundant coordinates. A common approach is using
the penalty formulation [18]. The use of the penalty formulation in designing state observers
for multibody systems has been already discussed in [20, 24]; here, just the main equations
are proposed to clarify the implementation of the proposed state observer and to compare
this formulation with those in Sect. 2.4 (that are, in contrast, rarely used in the design of
state observers for multibody systems).

Such a formulation assumes that the Lagrange multipliers are proportional to the con-
straint violation at the position, velocity, and acceleration levels. In its simplest form, the
following definition is assumed by means of the three scalar tuning parameters α, ξ , and ω:

λ = α
(
�̈ + 2ξω�̇ + ω2�

)
. (8)
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The choice of their values has been carried out by following the suggestions proposed in
the literature (see, e.g., [12]). Since the constrains represented through Eq. (4) are sclero-
nomic, their time derivative can be expressed as

�̇(q) = �qq̇,

�̈(q) = �qq̈ + �̇qq̇,
(9)

and therefore, the following set of s ODEs is obtained to model the dynamics of the CDPR:

Ä
M + �T

q α�q

ä
q̈ + �T

q α
(
�̇q + 2ξω�q

)
q̇ + �T

q αω2� = f. (10)

Again, Eq. (10) can be written in the following compact form with the obvious meaning
of the new variables introduced:

M̄(q)q̈ + C̄(q, q̇)q̇ + k̄(q) = f(t,q, q̇). (11)

It should be noted that this method effectively handles systems with redundant constraints
or singular kinematic configurations.

2.4 DAE to ODE conversion through the Udwadia–Kalaba formulation

2.4.1 General background

A different approach to convert the DAEs into a set of ODEs retaining all the s redundant
coordinates is through the methods exploiting the exact evaluation of the Lagrange multi-
pliers, most of which are related to the Gauss principle of least constraint. The most famous
of these methods is, probably, the Udwadia–Kalaba formulation, originally proposed in [25]
for systems with nonsingular mass matrix, lately extended in [14] to avoid the use of the ma-
trix pseudoinverse and in [26] to handle systems with singular mass matrix. Other similar
approaches, whose equivalence with the Udwadia–Kalaba formulations has been proved,
have been proposed in [27] and in [28] by providing a different way to evaluate the La-
grange multipliers, which results in a slightly different final form of the ODEs of motion.
These methods should theoretically lead to equal results. In practice, slightly different re-
sults might be experienced for some cases that are for example related to the ill numerical
conditioning of the system matrices and to the numerical methods used in computing pseu-
doinverse matrices [29] or other matrices required by each method (such as the orthogonal
complement required in [14]). Despite the simplicity and effectiveness of this kind of for-
mulations that are widely adopted in simulating multibody systems [29], their use in the
design of state observers is rarely investigated in the literature.

Basically, all these methods formulate the acceleration of the s redundant coordinates of
the constrained system q̈ as the sum of the free body (unconstrained) accelerations q̈f =
M−1f and the perturbation due to the kinematic constraints q̈c:

q̈ = M−1f + q̈c. (12)

Depending on the specific method adopted, among [14, 15, 25–28], a different evaluation
of q̈c is provided. In this paper, two of these formulations are evaluated in Sects. 2.4.2 and
2.4.3. Similar treatments should be adopted for the other ones.
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A similar interpretation can be provided to the penalty formulation by introducing the
matrix α = αIn×n and by developing the inverse of

Ä
M + �T

q α�q

ä
through the Woodbury

formula for inverse matrix [30]

Ä
M + �T

q α�q

ä−1 = M−1 − M−1�T
q

Ä
α−1 + �qM−1�T

q

ä−1
�qM−1 (13)

that leads to

q̈ = M−1f + M−1�T
q

Ä
α−1 + �qM−1�T

q

ä−1
�qM−1

(
C̄q̇ + k̄

)
. (14)

2.4.2 The original formulation

Let us now consider the original Udwadia–Kalaba formulation, which is a milestone in the
field of multibody system dynamics as proved by the several papers exploiting it (see, e.g.,
[25, 31, 32] and the references therein). The other ones can be treated in a similar way.
According to such a method, q̈c is computed as follows:

q̈c = M− 1
2 B†

(
γ − �qq̈f

)
, (15)

matrix B† is the pseudoinverse of B with

B = �qM− 1
2 , (16)

and γ arises from the acceleration constraint equations

γ = − (
�qq̇

)
q q̇ − 2�̇qq̇. (17)

Since this formulation has been obtained from a DAE system of index-1 by writing the
constraints at the acceleration level, position and speed constraints usually drift during nu-
merical integration of the equation of motions. Therefore, the Baumgarte stabilization [33]
is usually introduced by leading to the following set of ODEs to be integrated:

q̈ = M−1f + M− 1
2 B†

(
γ − 2χ�̇ − ϕ2� − �qq̈f

)
, (18)

where χ and ϕ are Baumgarte stabilization parameters that are tuned either with some es-
tablished rules [34] or with a trial-and-error procedure. The terms of the Baumgarte stabi-
lization play a role similar to 2ξωα and αω2 used in the penalty formulation [22].

2.4.3 The Udwadia–Kalaba–Phohomsiri formulation

The Udwadia–Kalaba formulation relies on the pseudoinversion of matrix B, which could
be computationally demanding or ill-conditioned in some cases [29] the previous formu-
lation has been extended [14] through a new formulation to compute q̈c by exploiting the
orthogonal complement matrix of B (as defined in Eq. (16)), here denoted as V (BV = 0):

q̈c = M− 1
2
(
BT B + VVT

)−1
BT

(
γ − �qq̈f

)
. (19)

Again, the Baumgarte stabilization is usually adopted, leading to the following set of
ODEs:

q̈ = M−1f + M− 1
2 NBT

(
γ − 2χ�̇ − ϕ2� − �qq̈f

)
. (20)
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3 Development of the extended Kalman filter (EKF)

3.1 Model formulation for state estimation

The EKF is implemented in discrete time through the state space, difference equation, ex-
ploiting the discretized form of the following continuous time, first-order dynamic model

ẋ(t) = f c(x(t),u(t)), (21)

where x(t) is the state vector, u(t) is the input vector, and f c is obtained from the dynamic
models discussed in Sect. 2. Let us now assume that redundant ODEs are adopted through
one of the methods in Sects. 2.3–2.4, and therefore let us introduce the state vector of the
first-order model x(t) = [q̇T qT ]T .

This state definition is adopted for all the three model formulations investigated in this
paper and it is common in several EKF designed for multibody systems [35–37]. In contrast,
different model matrices are formulated, as described in the following.

If the penalty formulation is adopted, as in Eq. (11), then accelerations are written in the
form

q̈ = M̄(q)−1f(t,q, q̇) − M̄(q)−1k̄(q) − M̄(q)−1C̄(q, q̇)q̇, (22)

thus, leading to the following first-order representation of the nonlinear model:

ï
q̈
q̇

ò
=
ï−M̄(q)−1C̄(q, q̇) 0

I 0

òï
q̇
q

ò
+
ï

M̄(q)−1 0
0 0

òï
f̄(t,q, q̇)

0

ò
, (23)

where the equivalent external forces vector f̄(t,q, q̇) is

f̄(t,q, q̇) = f(t,q, q̇) − k̄(q), (24)

clearly, given the structure of Eq. (23), u =
ï

f̄
0

ò
.

If the Udwadia–Kalaba formulation is used (together with the Baumgarte stabilization),
as in Eq. (18), accelerations are written in the following form:

q̈ = M−1(I − M
1
2 B†(ϕ2� + �qM−1))f + M−1M

1
2 B†(�̇q − 2χ�q)q̇, (25)

thus, leading to the following first-order representation of the nonlinear model:

ï
q̈
q̇

ò
=
ñ

M−1ÛC 0
I 0

ôï
q̇
q

ò
+
ï

M−1 0
0 0

òñÛf
0

ô
, (26)

where the equivalent external forces vector is

Ûf = (I − M
1
2 B†(ϕ2� + �qM−1))f (27)

and the velocity-dependent matrix is

ÛC = M
1
2 B†(�̇q − 2χ�q). (28)
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Finally, when the Udwadia–Kalaba–Phohomsiri formulation is employed (together with
the Baumgarte stabilization), as in Eq. (20), the first-order representation of the nonlinear
model is expressed as

ï
q̈
q̇

ò
=
ï

M−1C̆ 0
I 0

òï
q̇
q

ò
+
ï

M−1 0
0 0

òï
f̆
0

ò
, (29)

where equivalent vector of external actions is composed as

f̆ = (I − M
1
2 NBT (ϕ2� + �qM−1))f (30)

and the velocity-dependent matrix is modified as

C̆ = M
1
2 NBT (�̇q − 2χ�q). (31)

Since these three formulations embed the constraint equation, the models in Eqs. (23),
(26), and (29) fit the form of Eq. (21) and are therefore suitable to be adopted for developing
Kalman filters.

Discretization requires casting the model in the following form (k is the index of the
discrete time step):

{
xk = f (xk−1,uk−1) ,

yk = g (xk,uk) ,
(32)

y ∈ R
ny is the output vector that is related to the state and input vectors through the alge-

braic equation g. The output vector collects the sensor measurements (excluding the mea-
surements of the input that are collected within u) and should be carefully selected to ensure
observability. Basically, a system is said to be observable if it is uniquely determined by the
system model, its inputs, and its output [38]. Several discretization schemes can be adopted
with different accuracy, stability, and computational effort [7, 18].

In this paper, to simplify the computational cost for boosting real time estimation, and
being aware of the effect of the closed-loop correction introduced by the state observer (see
Sect. 3.2) that can compensate for energy losses due to the numerical integration scheme,
discretization is performed with a simplified method based on an approximation of the for-
ward Euler scheme (with sample time 	t ), as often done in control theory and proved to
be effective in multibody systems as well [1, 39]. This approach is a first-order exponential
discretization scheme that assumes a zero-order hold (ZOH) approximation of the system
input over the time step 	t .

Within this formulation, matrix exponentials and integral of matrix exponentials appear.
Since the presence of these terms can lead to high computational efforts, the state-space ma-
trices involved in the continuous representation are approximated through a Taylor’s series
expansion. This choice remarkably reduces the computational burden without introducing
noticeable discretization errors. Higher-order discretization methods could be used at the
cost of an increase of the computational effort.

The nonlinear, discrete time model xk = f (xk−1,uk−1) is cast in the following compact
form (that apparently resembles the one of a linear system):

xk = Ad,k−1xk−1 + Bd,k−1uk−1. (33)
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As an explicative example, by adopting the first-order representation achieved through
the penalty formulation in Eq. (23) (the extension to other two methods is straightforward)

uk−1 =
ï

f̄k−1

0

ò
, (34)

the state-dependent matrices, due to the dependence of some submatrices on q and q̇ (that
is omitted for clarity of representation), are defined as follows:

Ad,k−1 ≈ I +
ï−M̄−1C̄ 0

I 0

ò

k−1

	t, Bd,k−1 ≈
ï

M̄−1 0
0 0

ò

k−1

	t . (35)

In practice, Ad,k−1 and Bd,k−1 represent the discrete counterpart of the continuous time
matrices of Eq. (23). The computation of Ad,k−1, Bd,k−1, and uk−1 is performed by firstly
evaluating matrices M̄, C̄ and vector f̄ at sample k-1 through Eq. (11) exploiting qk−1, q̇k−1

and secondly by employing Eqs. (34), (35).
M̄, C̄, and f̄ in Eq. (35) are, obviously, replaced by M, ÛC, and Ûf (see Eq. (26)) in

the Udwadia–Kalaba formulation, and by M, C̆, and f̆ (see Eq. (29)) in the Udwadia–
Kalaba–Phohomsiri formulation.

3.2 The prediction-correction scheme

An EKF provides optimal estimates x̂(t) of the actual state by fusing the prediction of a nom-
inal model with a closed-loop correction inferred through the measurements retrieved from
a proper set of sensors ensuring observability. The resulting closed-loop estimation is based
on a prediction-correction scheme, where the correction is aimed at compensating modeling
errors, including those related to energy leaks in numerical integration of the equations of
motions.

The discrete time model f and the noisy input measurements uk−1 are adopted for com-
puting the prediction (or a-priori estimation) x̂k|k−1 = f

(
x̂k−1|k−1,uk−1

)
, which is then cor-

rected through the output estimation error
(
yk − ŷk|k−1

)
, usually denoted as the innovation,

with ŷk|k−1 = g
(
x̂k|k−1,uk−1

)
being the estimated output vector. The following recursive

scheme is formulated:

x̂k|k = x̂k|k−1 + Lk|k
(
yk − ŷk|k−1

)
. (36)

Lk|k ∈ R
2s×ny is a time-varying filter gain and Lk|k

(
yk − ŷk|k−1

)
is the closed-loop cor-

rection in the control theory sense, forcing the estimation to track sensor measurements by
compensating for noise and model uncertainty. To compute Lk|k at each time step, the EFK
algorithm replaces the nonlinear model with its Jacobian matrices computed about the es-
timated state trajectory and uses them in the propagation of the noise covariance matrices
[7].

By following the recursive scheme of the EKF, the updated covariance propagation ma-
trix P̂k|k−1 ∈ R

2s×2s is computed by exploiting the covariance propagation matrix Pk−1 of
the previous time step as follows:

P̂k|k−1 = Ad,k−1Pk−1AT
d,k−1 + Q, (37)

where Q ∈ R
2s×2s is the covariance matrix of the model noise, which is in practice a tun-

ing parameter that represents in an abstract way the amount of model uncertainty [38, 40].
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Ad,k−1 is the Jacobian matrix of the discrete transition model with respect to the state vector
[38], and it is directly obtained in this work through an approximated and computation-
ally efficient formulation that exploits the discretized model in Eq. (35) obtained through
the first-order approximation. In practice, the computation of Ad,k−1 is performed by firstly
evaluating matrices M̄ and C̄ at sample k-1 through Eq. (11). It should be noted that the
recent literature has often shown that approximate Jacobians are still effective in state esti-
mation [35].

Then, the filter gain is computed as follows:

Lk|k = P̂k|k−1HT
Ä

HP̂k|k−1HT + R
ä−1

, (38)

where R ∈ R
ny×ny is the covariance matrix of measurement noise that can be treated as a

further tuning parameter, and H is the Jacobian of g.

H =
ï

∂g

∂q̇
∂g

∂q

ò
(39)

Finally, the covariance propagation matrix is updated by setting

Pk = (
I − Lk|kH

)
P̂k|k−1. (40)

4 Simulation assessment

4.1 Motivations

The first assessment of the proposed estimation scheme is done through numerical simula-
tions. Section 5 provides experimental validation in a slightly different condition and with a
different, and even more challenging, goal. The choice of firstly providing a numerical vali-
dation is justified by several motivations. First of all, in numerical simulations the reference
system (whose state should be tracked by the state observer) is represented by a numerical
simulator, and therefore the actual system state is exactly known; in contrast, the actual state
is not available in experimentations. Therefore, a correct and fair comparison of different
DAE to ODE conversion methods within the EKF can be done in a fair way [20]. Secondly,
numerical simulations allow assuming the use of encoders providing a very coarse quanti-
zation of the measured positions, which is very critical in speed estimation, especially when
numerical time derivation approaches are adopted [41].

4.2 Description of the test case

The CDPR studied in this work, as sketched in Fig. 1, is a cable-suspended parallel robot: a
three-DOF suspended end-effector (modeled as a lumped mass m = 3 kg) is driven by four
cables winding on winches and actuated by motors (whose equivalent moments of inertia re-
flected to the motor shaft are Jm,1, Jm,2, Jm,3, Jm,4). The system is therefore overconstrained.

Vector q = [pT θT ]T includes the absolute Cartesian positions of the end-effector p =
[xp yp zp]T and the angular positions of the motors θ = [θ1 θ2 θ3 θ4]T .
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Fig. 1 Scheme of the studied CSPR

The following matrices for the model in Eq. (1) are therefore obtained:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0 0
0 m 0 0 0 0 0
0 0 m 0 0 0 0
0 0 0 Jm,1 0 0 0
0 0 0 0 Jm,2 0 0
0 0 0 0 0 Jm,3 0
0 0 0 0 0 0 Jm,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

�q = 2

⎡
⎢⎢⎣

(p − a1)T −r(rθ1 + l0,1) 0 0 0
(p − a2)T 0 −r(rθ2 + l0,2) 0 0
(p − a3)T 0 0 −r(rθ3 + l0,3) 0
(p − a4)T 0 0 0 −r(rθ4 + l0,4)

⎤
⎥⎥⎦ .

(42)
The frame dimensions are 1.69×1.775×1.89 m (w×d×h in Fig. 1). The exit points are

assumed to coincide with the upper the vertices ai of the frame (i = 1, ..,4). The actuators
have equal rotational moments of inertia Jm,i = 5.12 · 10−4 kg m2 (i = 1, ..,4) (including
both the motor rotor and the winch). The winches have equal radii ri = 0.036 m (i = 1, ..,4).
Rigid and taut cables are assumed, as it is often and reasonably assumed in the literature [8].

In this numerical example, the actuators are supposed to be equipped with low resolution
encoders measuring θ with just 150 pulses per revolution and operating in 4x resolution. The
measured angles are therefore corrupted by relevant white noise due to this coarse quanti-
zation. An estimate of torques exerted by each motor is available through the knowledge of
the current provided by the motor drive, as usually supplied by commercial drivers and as
required by the state observer. The reference system that produces the “actual” values of the
state vector to be estimated by the state observer has been implemented through the projec-
tion matrix method, which uses a minimal coordinate representation and does not require
any tuning parameter in the conversion of the DAEs to ODEs, as in contrast is required
by the penalty formulation, the Udwadia–Kalaba, and Udwadia–Kalaba–Phohomsiri for-
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mulation. The “actual” values of θ that are fed to the state observer are corrupted by quan-
tization noise. Three different multibody formulations are tested by adopting the penalty,
the Udwadia–Kalaba formulations for the model-based filter prediction, and the Udwadia–
Kalaba–Phohomsiri formulation. In this way, the impact of different multibody formulations
on the estimate accuracy is evaluated.

Besides comparing the observer outcomes with the actual state, the estimates of the end-
effector position and velocities are performed through the forward kinematics and the noisy
measurements provided by the encoders. As for the estimation of the motor shaft speeds, it
is obtained by numerical time differentiation and by low pass filtering through a first-order
filter with a 15 Hz bandwidth. This filter bandwidth has been selected, after some trial-and-
errors, to remove the high frequency noise introduced by the numerical differentiation of
the quantized encoder. As it is well known, increasing such a bandwidth reduces the noise
filtering capabilities, while reducing it creates a phase lag in the estimated speeds, thus
decreasing the stability margin if such estimates are used in feedback control loops.

Forward kinematics has been adopted since it is the usual approach adopted in cable
robotics to estimate the pose and the speed of the end-effector [4, 42].

The simulated test consists of a rest-to-rest motion from point pi = [0.89 0.84 0.95]T m
to point pf = [1.0 1.0 1.5]T m through a linear path, as shown in Fig. 1, by means of a
5th-degree polynomial law of motion.

4.3 State observer based on the penalty formulation

The EKF based on the penalty formulation relies on the dynamic model of Sect. 2.3, which
requires a set of penalty parameters to avoid drifts of the algebraic constraints at the position,
velocity acceleration levels. A time step 	t = 1 ms has been adopted for the numerical sim-
ulations. According to the literature [12], parameters α = 107, ξ = 1, and ω = 10 have been
chosen by leading to a reduced constraints violation. Just to provide a concise evaluation of
such a violation, the maximum and RMS (root mean square) values of �T � experienced in
forward dynamics simulation, as suggested for example in [23, 43], are 3.8e-16 m4 and 2.8e-
16 m4 for this test case, which is considered acceptable (this assumption of acceptability is
corroborated by the accurate estimates sported by the EKF).

To simplify the observer tuning, the covariance matrices have been modeled as diagonal
and constant matrices, although EKF can handle nonconstant values and off-diagonal terms.
It has been assumed that only three encoder readings are available and, for the test case under
investigation, the angular position of motors 1, 2, and 3 are fed to the EKF. The covariance
matrix of the model noise is Q = 0.1 · I14×14, the covariance matrix of the measurement
noise is R = 10−3 · I3×3, and the initial error covariance matrix is P0 = 0.2 · I14×14. The same
values have been adopted also for the EKFs based on the Udwadia–Kalaba and Udwadia–
Kalaba–Phohomsiri formulations. Since angular positions of the motors are part of vector
q and encoder readings are used as measurements, the Jacobian matrix H employed in the
EKF can be easily obtained exploiting Eq. (39), which yields to the following matrix:

H =
⎡
⎣0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎦ . (43)

The Cartesian coordinates of the end-effector positions (xp , yp , and zp) and velocities
(ẋp , ẏp , and żp) are shown in Figs. 2, 3 and 4. In each figure, a comparison is shown among
the coordinates of the reference system, the estimates of the EKF based on penalty formula-
tion (hereafter denoted as EKF-P), and the estimations obtained through forward kinematics,
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Fig. 2 Comparison of the actual and estimated xp and ẋp

Fig. 3 Comparison of the actual and estimated yp and ẏp

Fig. 4 Comparison of the actual and estimated zp and żp
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Fig. 5 Time-history of position and velocity estimation errors of the EKF-P

Table 1 RMS errors of position
estimates against the reference
system

EKF-P EKF-UK EKF-UKP FK

eRMS
x [m] 1.13e-4 1.08e-4 1.05e-4 1.20e-4

eRMS
y [m] 1.32e-4 1.28e-4 1.31e-4 1.26e-4

eRMS
z [m] 2.04e-4 1.99e-4 1.97e-4 2.43e-4

Table 2 RMS errors of velocity
estimates against the reference
system

EKF-P EKF-UK EKF-UKP FK

eRMS
dx/dt

[m/s] 2.13e-3 2.18e-3 2.13e-3 0.064

eRMS
dy/dt

[m/s] 2.24e-3 2.29e-3 2.23e-3 0.059

eRMS
dz/dt

[m/s] 2.53e-3 2.55e-3 2.52e-3 0.055

hereafter denoted as FK. The inspection of the velocity estimates reveals that the use of the
EKF remarkably reduces the effect of the quantization noise on the numerical time deriva-
tives, compared to the kinematics estimation, without introducing visible delay. A closer
look to the result can be inferred from the error plots shown in Fig. 5, which are also sum-
marized in Tables 1 and 2 through the RMS values.

4.4 State observers based on Udwadia–Kalaba and Udwadia–Kalaba–Phohomsiri
formulations

The Udwadia–Kalaba and Udwadia–Kalaba–Phohomsiri formulations have been imple-
mented as well, leading to the observers hereafter denoted as EKF-UK and EKF-UKP. The
Baumgarte constraints stabilization has been adopted by setting χ = ϕ = 103 to bound the
constraint violation within an allowable threshold (that should be smaller than the accuracy
required in the state estimates), while stabilizing numerical integration and making negli-
gible the spurious dynamics introduced [34]. Again, a simulation time step 	t = 1 ms has
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Fig. 6 Time history of position and velocity estimation error of the EKF-UK

Fig. 7 Time history of position and velocity estimation error of the EKF-UKP

been adopted. The maximum and RMS values of �T � sported by the model are respectively
7.3e-15 m4 and 1.4e-15 m4 for both the formulations, which is, again, acceptable.

The results of the simulations are compared with the actual values, and the estimation er-
rors are plotted in Figs. 6 and 7. The results are very similar to those provided by the EKF-P,
and an effective speed noise rejection is, again, obtained. Tables 1 and 2 allow comparing the
four different estimation approaches. While similar errors are obtained in terms of position,
the use of any of the EKFs drastically reduces the speed RMS estimation error.

4.5 Estimation in the presence of model uncertainty

A sensitivity analysis on the developed state observers has also been carried out by simul-
taneously applying a 20% increase of all the entries of M, i.e., m and Jm,i , thus remarkably
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Table 3 RMS errors of position and velocity with model mismatch

EKF-P EKF-UK EKF-UKP EKF-P EKF-UK EKF-UKP

eRMS
x [m] 1e-4 1e-4 1e-4 eRMS

dx/dt
[m/s] 1.9e-2 2e-2 2e-2

eRMS
y [m] 1e-4 1e-4 1e-4 eRMS

dy/dt
[m/s] 2.3e-2 2.2e-2 2.2e-2

eRMS
z [m] 2e-4 2e-4 2e-4 eRMS

dz/dt
[m/s] 1.1e-1 1.1e-1 1.1e-1

	M-P 	M-UK 	M-UKP 	M-P 	M-UK 	M-UKP

eRMS
x [m] 1.5e-2 1.5e-2 1.5e-2 eRMS

dx/dt
[m/s] 4.7e-2 4.7e-2 4.7e-2

eRMS
y [m] 2e-2 2e-2 2e-2 eRMS

dy/dt
[m/s] 7e-2 7e-2 7e-2

eRMS
z [m] 3.1e-1 3.1e-1 3.1e-1 eRMS

dz/dt
[m/s] 7e-1 7e-1 7e-1

Fig. 8 CPU time relative to EKF-P a), EKF-UK b) and EKF-UKP c)

perturbing the inertial terms and gravity forces. Despite the relevant mismatch between the
actual system model and the ones used in the state observer, the estimates computed by the
EKFs are accurate since the maximum position errors is 2e-4 m in the vertical direction (that
is the one also affected by the mismatch in the gravity force), as shown in Table 3.

It should be noted that even better results could have been obtained by performing a better
tuning of Q, R matrices (to reflect the worse accuracy of the model); however, to perform a
fair comparison, such values have been not changed compared to the nominal case.

To further stress the benefits of the state observers, the same perturbations have been
applied to the models (developed through the three formulations) in forward dynamics, i.e.,
without the “closed loop” correction provided by the Kalman filter innovation. The results
are shown in Table 3 and denoted as 	M-P for the penalty formulation, 	M-UK for the
Udwadia–Kalaba formulation, 	M-UKP for the Udwadia–Kalaba–Phohomsiri formulation.
In this case, the position errors are two (in the x and y directions) and three (in the z direc-
tion) orders of magnitude greater than those sported by the EKFs.

4.6 Brief analysis of the computational effort

A simplified analysis of the computational effort of the three estimation schemes is here
reported by displaying the CPU time required to perform the state estimation at each time
step in Fig. 8. The total estimation time (named “Tot”) is composed by the contribution of the
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prediction (“Pred”), comprehensive of discretization, and prediction of the state through the
model in Eq. (35), and by the contribution of the correction (named “Corr”) that includes the
computation of P̂k|k−1, Eq. (37), of Lk|k , Eq. (38), the correction of the state, Eq. (36), and the
final update of Pk , Eq. (40). Simulations have been carried out with a laptop PC with 8 GB
RAM and a quad-core processor Intel Core i7-8565U. The filter implementation has been
done through MatLab with a single-core programming by using the standard native functions
for algebraic calculations, for example, for computing matrix inverse (through function inv),
pseudoinverses (through function pinv), matrix orthogonal complement (through function
null), for linear system solution (through the function mldivide).

For the case under investigation, and with the adopted implementation, shorter compu-
tational effort is required by the penalty formulation, requiring a root mean square (RMS)
value of 0.8e-4 s and a maximum value of 6.1e-4 s. Slightly greater computational efforts
are required by the EKF-UKP with 0.9e-4 s and 2.9e-4 s, and by the EKF-UK with 0.99e-4 s
and 6.4e-4 s. The increase is due to the prediction phase of the filter, and hence to the way
of formulating the model. In particular, the calculation of the pseudoinverse of matrix B for
EKF-UK, and of its orthogonal complement for EKF-UKP cause such increases. All these
values are, however, remarkably smaller than the sample time 	t = 1 ms.

5 Experimental results

5.1 Physical setup

The state observers have been implemented in the physical setup shown in Fig. 9 to verify
the real time capability and the online state estimation of the full state of the system. The
experimental setup resembles the one used in the numerical analysis, except for the use of
resolvers in measuring the angular positions of the motors. These sensors, that are embedded
in the motors, provide high-resolution and low-noise position signals, that enable accurate
estimation of the rotational velocities, with negligible noise and lags. The model adopted is
the one developed in Sect. 2 (and in the simulation analysis in Sect. 4) with 3 DOFs. Any
deviation of the actual system dynamics from such a simplified model (such as, for example,
the neglected cable dynamics, the lumped model approximation of the end-effector, the ideal
model of the actuators) is implicitly treated as an uncertainty that the EKF should be able
of compensating through the filter innovation (i.e., the feedback correction based on some
sensor measurements).

The EKF has been deployed in TwinCAT which acts as a benchmark for an industrial
environment. TwinCAT 3 is a software developed by Beckhoff that is suited for controlling
industrial servodrivers and motors by deploying a control scheme into an industrial PLC.
The main advantage of this setup is focused on the presence of TwinCAT 3, which allows
the design of the control scheme, and in this case the state observer, in a MatLab/Simulink
environment. In this case, the PLC is simulated by a workstation that has embedded and
EtherCAT board that enables the EtherCAT communication with the servodrivers. This vir-
tual PLC controls two Beckhoff AX5206 drivers, which in turn control two third-part rotary
motors each. The clock of the PLC has been set to 500 Hz and in every sample time the
system manages controlling the four servodrivers and running the EKF (i.e., 	t = 2 ms).
Four independent controllers are developed for the motors, by exploiting the classical multi-
loop scheme: an inner proportional-integral (PI) current controller, an intermediate PI speed
controller, and an outer P position controller.



178 J. Bettega et al.

Fig. 9 Prototype of CSPR and a
detail of a motor

The four motors have integrated gearboxes, whose moment of inertia is collected into the
motor inertia.

In both the experimental proposed tests, estimation has been done through the EKF ex-
ploiting the penalty formulation, named EKF-P, since the numerical analysis has shown that
it provides the smallest computational effort among the various approaches adopted (with
reference to the implementation developed in this research), while ensuring similar estima-
tion errors. The same model of Sect. 4 is also exploited.

5.2 Solution of the forward kinematics

The solution of the forward position kinematics for redundant CDPRs usually exploits al-
gebraic equations involving all the cable lengths (see, e.g., [44]). In this case, by exploiting
the relation between the four cable lengths

l2
1 + l2

3 − (
l2
2 + l2

4

) = 0 (44)

the following is obtained (with ai = [ai,x ai,y ai,z]T ):

xp = l2
1 − l2

2 + a2
2,x − a2

1,x

2
(
a2,x − a1,x

) ,

yp = l2
2 − l2

3 + a2
3,y − a2

2,y

2
(
a3,y − a2,y

) ,

zp = a4,z −
√

l2
4 − (

xp − a4,x

)2 − (
yp − a4,y

)2
,

(45)

where each cable length is estimated through the sensed motor position and through Eq. (3).
In the following, this scheme will be denoted as (FK)1,2.3.4.
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Actually, since the robot under investigation has three DOF, the knowledge of just three
cable lengths suffices for the kinematic estimation of the end-effector position. By assuming
an arbitrary triplet of cables (denoted through three indexes ci, cj , ck = [1,2,3,4], ci �= cj �=
ck), four other kinematic estimation schemes are obtained through the following analytical
equations:

xp =
l2
ci

+ l2
cj

+ a2
j,x

2aj,x

,

yp = l2
ci

− l2
ck

+ a2
k,y

2ak,y

,

zp = aj,z −
»

l2
ci

− x2
p − y2

p.

(46)

The availability of four triplets leads to four schemes, henceforth denoted as (FK)1,2,3,
(FK)1,2,4, (FK)1,3,4, (FK)2,3,4. Theoretically, these five kinematic models should lead to iden-
tical results. In practice, calibration and measurement errors create mismatches between
their outcomes, and these differences change along the motion (both because of the unpre-
dictable measurement error and of the position dependent sensitivity of calibration errors).
The calibration of CDPR is a relevant and still-open issue [42, 45] since this kind of robots
are affected by uncertainty or errors on the evaluation of initial end-effector pose and on the
parameters of the kinematic constraint equations.

These mismatches between different models do not allow the end-effector pose to be ex-
actly estimated with the forward kinematics. It is, therefore, more reasonable to assume a
band where it is expected that the actual position should lie by adopting a statistical analysis
of the outcomes of the five methods. The uncertainty band has been defined through the stan-
dard deviations coming from the five methods in each direction (σx , σy , σ z), which have
been computed by averaging the standard deviation of each forward kinematics scheme,
which has been as usual defined with respect to the average values (computed at each time
step k). A representative motion covering the workspace of interest for the two test cases
discussed in Sects. 5.5 and 5.6 has been performed to estimate such standard deviations,
leading to the following values: σx = 9.5e-4 m, σy = 9.5e-4 m, σ z = 1.5e-3 m. By choos-
ing the desired percentage of covered population to be equal to 95%, the lower and upper
bounds have been set to ±2σ .

5.3 Goals of state estimation

The availability of high-resolution, low-noise resolvers allows the speed estimation to be
easily and effectively performed with a simple Euler derivative, without the need of filtering
the signal. This feature of the setup makes it different from the numerical test of Sect. 4,
and therefore there is no need for the EKF to speed estimation. Another ambitious goal is
therefore pursued in this experimental application of the EKF: the estimation of the end-
effector pose, and velocity as well, by means of just two measurements of motor rotations,
i.e., with just the availability of the lengths of two cables. Clearly, this set of measurements
does not allow for using the kinematic models that require at least three measurements of the
motor angular position: by means of two sensor readings, it is possible to retrieve just two
cable lengths leading to infinite solutions of the kinematic forward problem that belong to
the circular arc spanned by such two cables with known lengths. Figure 10 shows an example
of such an indeterminacy by sketching the possible positions of the end-effector in a sample
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Fig. 10 Possible solutions with
just two resolver readings

case of the measurement of motor 1 and 3 rotations. In such a figure, the configurations
with the end-effector lying above the exit points of the cables are excluded, since they are
clearly unfeasible for the CSPR; nonetheless, the kinematic equations would include these
configurations as well.

The state observer can overcome this indeterminacy by fusing the measurements of the
two resolvers with the information of the control torques driving the motor. Indeed, two
resolver measurements, and in the presence of gravity, make the system observable.

Matrices P, Q, and R have been slightly modified compared with the simulative analysis
proposed in Sect. 4 to improve estimation, given the different uncertainty on the model (with
respect of the actual system dynamics) and of the sensors that are actually employed in
the setup. The following values have been tuned: Q = diag(10−10,10−10,10−10,10−5,10−5,

10−5,10−5,10−5,10−5,10−5,10−5,10−10,10−5,10−10), P0 = diag(10−6,10−6,10−6,10−6,

10−6,10−6,10−6,10−15,10−15,10−15,10−5,10−5,10−5,10−5), and R = diag(10−3,10−3).
The results proposed in Sects. 5.5 and 5.6 have been obtained by assuming that just the

angular positions of motors 1 and 3 are available, together with all the motor torques. The
observer will estimate position and velocity of the remaining motors (2 and 4) and of the
end-effector. Since only two encoder readings are used in the EKF, H takes the following
form:

H =
ï

0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0

ò
. (47)

It is interesting to note that, thanks to the low computational effort, two EKFs can run
simultaneously in the developed software architecture. This feature could be favorably ex-
ploited in fault detection schemes that often use more state observer running in parallel.

5.4 Friction

The experimental identification of the model parameters revealed that the actuators, made by
motor with integrated gearboxes, have relevant friction, also exhibiting hysteretic behaviors.
In particular the “average” Coulomb friction for each motor is 0.18 Nm, with local variation
due to the motor cogging torque ranging from 0.15 to 0.21 Nm. These values cannot be
neglected if compared with the torques required for compensating gravity and inertial terms.

The issue of friction should be carefully accounted for since the presence of hysteretic
nonlinear terms severely threats the accuracy of the state observer. As a first option, friction
forces could be included in the state observer through accurate models, as those often dis-
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Fig. 11 Three-dimensional and xy-plane view of the end-effector’s trajectory

cussed in [46]. This choice would set some critical issues since friction is a discontinuous
phenomenon that is difficult to model and simulate, often leading to stiff system dynamics
[47]. Including it in the model used in the prediction makes the development of a simplified
discrete time difficult and it does not allow the straightforward calculation of the matrix Ja-
cobians for computing Lk|k . On the other hand, the identification of the parameters required
for these models is not simple, also considering that, in the presence of electric motors, fric-
tion should consider ripple and cogging terms as well [48]. A different strategy is instead
adopted in this paper to remarkably simplify the implementation of the state observer. The
dynamic model of the CDPR just includes viscous friction, mainly due to the electric mo-
tors. Therefore, the torque of the ith motor fed to the observer has been estimated as follows
(index i is omitted for clarity):

τ (t) = kt i(t) − τ̂f r (t), (48)

where kt is the motor torque constant, retrieved from the motor datasheet, i is the motor
armature current that is provided by the current control loop implemented in the motor drive
(although it can be also replaced with the commanded one computed by the controller due
to the high bandwidth of current controllers), and τ̂f r (t) is the estimated friction torque,
computed through a simplified Coulomb model.

Improvement of this implementation, by assuming more accurate models for friction
estimation, will be object of future investigations; nonetheless, despite the simplicity of this
approach and the relevance of nonlinear friction in the system, the experimental results will
prove its effectiveness.

5.5 1st test: circular trajectory

The first test performed is a circular path of the end-effector: it presents a radius of 0.4 m
and having a duration of 4 s, as shown in Fig. 11. Two rest-to-rest motions along a line are
performed at the beginning and the end of the test, from the rest pose (corresponding to the
“home” position) to the initial position of the path vice versa at the end. Figures 12 and 13
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Fig. 12 End-effector Cartesian positions and velocities

Fig. 13 Motor angular positions and velocities
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Fig. 14 End-effector’s Cartesian coordinates and possible pose estimated through kinematics and two re-
solver measurements

show the full state of the multibody system at the configuration and velocity levels com-
pared with the estimations provided by the kinematics involving all the four resolver mea-
surements (and denoted as (FK)1,2,3,4). Figure 14 depicts through the grey area the possible
positions that can be estimated through the forward kinematics exploiting just two angular
measurements and by assuming a CSPR configuration (i.e., the possible configurations that
can be achieved by fixing two cable lengths and imposing that the end-effector cannot over-
take the vertical upper limit defined by the exit point positions ai ). A closer view is provided
by Fig. 15 that details the estimation error in the three directions. The maximum and RMS
estimation errors, respectively, that have been obtained, if compared with the kinematic es-
timation with three or four angular measurements, are: for ex 8.2e-3 m and 1.8e-3 m; for
ey 12.5e-3 m and 2.9e-3 m; for ez 11.9e-3 m and 1.7e-3 m. According to the uncertainty in
the forward kinematics and in the bands defined through the standard deviations, estimation
error is detected when the estimated pose goes beyond such intervals.

All these results show that accurate estimation is achieved through just two angular mea-
surements, thus overcoming the indeterminacy of kinematics estimation.

Finally, Fig. 16 shows the torques retrieved by the servodrive current loop, by means of
the nominal torque constant. It is interesting to note that such signals are quite noisy, and
therefore the EKF should be able to filter these high-frequency components. Additionally,
even if the initial and final end-effector positions are the same, the measured torques are
quite different because of the hysteretic behavior of the Coulomb friction. Finally, keeping in
mind that Coulomb friction can be up to 0.21 Nm, it is evident that it plays a very significant
role in the overall exerted torques.

5.6 2nd test: spiral trajectory

The second trajectory has been chosen because in CDPRs the cable tensions are strongly
dependent on the height of the end-effector with respect to the exit point positions. This test
accounts for an ascending spiral, Fig. 17, which evaluates a wide range of motor torques.
Two rest-to-rest motions along a line are performed at the beginning and at the end of the
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Fig. 15 Time evolution of the estimation errors

Fig. 16 Motor torques

test, from the rest pose (corresponding to the home position) to the initial position of the
path vice versa at the end.

Figures 18 and 19 show the full state of the multibody system at the configuration and ve-
locity levels and compared with the estimations provided by the kinematics involving all the
four resolver measurements (and denoted as (FK)1,2,3,4). Figure 20 depicts through the grey
area the possible positions that can be estimated through the forward kinematics exploiting
just two angular measurements. The estimation errors in the three directions are shown in
Fig. 21. The maximum and RMS estimation errors, respectively, that have been obtained, if
compared with the kinematic estimation with three or four angular measurements are: for ex
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Fig. 17 Three-dimensional and xy-plane view of the end-effector’s trajectory

Fig. 18 End-effector’s Cartesian positions and velocities

6e-3 m and 1.9e-3 m; for ey 16.8e-3 m and 3.2e-3 m; for ez 2.6e-3 m and 4e-4 m. All these
results show that accurate estimation is achieved through just two angular measurements,
thus overcoming the indeterminacy of kinematics estimation.

6 Conclusions

This work addresses the development of nonlinear state observers for CDPRs. The theory
developed can be applied to any CDPR topology and merges the advantages provided by
EKFs and redundant coordinate dynamic modeling. To identify the observer design best
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Fig. 19 Motor angular positions and velocities

Fig. 20 End-effector’s Cartesian coordinates and possible pose estimated through kinematics and two re-
solver measurements
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Fig. 21 Time evolution of the estimation errors

fitting CDPRs, the synthesis of three alternative formulations of EKFs is first discussed
and compared through numerical simulations, which allow knowing the actual state. Three
sound and well-known strategies to obtain ODEs from DAEs in multibody models are
adopted, and a dedicated numerical investigation is carried out: the penalty formulation,
the Udwadia–Kalaba formulation, and the Udwadia–Kalaba–Phohomsiri formulation. The
results achieved prove that very similar results can be obtained if both the model (through
some parameters adopted to enforce constraints) and the EKF (through the model and sensor
covariances) are properly tuned. The analysis of the computational effort shows that penalty
formulation requires slightly smaller CPU time, although two other formulations require
CPU time that is remarkably smaller than the sample time adopted.

An experimental investigation is then carried out to prove the effectiveness of the ob-
server in the very challenging effort to the real time estimation of the full state of a point-
mass cable suspended robot by relying on the knowledge of the angular positions of two
out of four winches. The results achieved in terms of predicted position and velocity of the
end-effector are extremely satisfactory and show how EKF can be used to perform sensor
fusion by exploiting sensor measurements and a dynamic model. The use of industrial grade
components for implementing the observer (industrial PLC and programming environment)
and of the actuators that impose coping with relevant friction provides an additional prove
of the applicability of the strategy to today’s CDPRs.
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