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Abstract There has been a growing attention to effi-
cient simulations of multibody systems, which is appar-
ently seen in many areas of computer-aided engineering
and design both in academia and in industry. The need
for efficient or real-time simulations requires high-
fidelity techniques and formulations that should sig-
nificantly minimize computational time. Parallel com-
puting is one of the approaches to achieve this objec-
tive. This paper presents a novel index-3 divide-and-
conquer algorithm for efficient multibody dynamics
simulations that elegantly handles multibody systems
in generalized topologies through the application of
the augmented Lagrangian method. The proposed algo-
rithm exploits a redundant set of absolute coordinates.
The trapezoidal integration rule is embedded into the
formulation and a set of nonlinear equations need to be
solved every time instant. Consequently, the Newton—
Raphson iterative scheme is applied to find the system
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coordinates and joint constraint loads in an efficient and
highly parallelizable manner. Two divide-and-conquer-
based mass-orthogonal projections are performed then
to circumvent the effect of constraint violation errors
at the velocity and acceleration level. Sample open-
and closed-loop multibody system test cases are inves-
tigated in the paper to confirm the validity of the
approach. Challenging simulations of multibody sys-
tems featuring long kinematic chains are also per-
formed in the work to demonstrate the robustness of
the algorithm. The details of OpenMP-based parallel
implementation on an eight-core shared memory com-
puter are presented in the text and the parallel per-
formance results are extensively discussed. Significant
speedups are obtained for the simulations of small- to
large-scale multibody open-loop systems. The men-
tioned features make the proposed algorithm a good
general purpose approach for high-fidelity, efficient or
real-time multibody dynamics simulations.

Keywords Divide-and-conquer algorithm -
Multibody dynamics - Real-time simulations -
Mass-orthogonal projections - Trapezoidal rule -
Parallel computing - Long chain simulations

1 Introduction
1.1 Background

Computational efficiency has traditionally been a major
concern of researchers developing algorithms for multi-
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body dynamics simulations. Considerable improve-
ments in computer architectures have taken place dur-
ing the last years, enabling the efficient simulation of
larger and more complex mechanical systems. Also the
expectations about the performance that a multibody
software tool can deliver have grown at the same pace.
Nowadays, there are a large number of industry and
academic applications that require efficient and accu-
rate code execution. Some of these demand real-time
performance, such as Hardware- and Human-in-the-
Loop (HiL) settings, e.g., simulators and test benches
for physical components in the automotive industry.
HiL applications require specialized multibody formu-
lations to decrease the turnaround time associated with
the evaluation of multibody system dynamics. Real-
time multibody simulators are typically connected to
virtual reality environments and motion platforms to
provide realistic feedback to users. Therefore, the effi-
ciency of multibody dynamics algorithms is determi-
nant for the ability of these applications to meet their
performance requirements.

1.2 Related work

The availability of distributed computing environments
and parallel architectures, equipped with inexpensive
multi-core processors and graphical processor units,
has encouraged researchers to develop parallel multi-
body dynamics algorithms [35]. Featherstone’s Divide-
and-Conquer Algorithm (DCA) [16] is among the
most popular ones. Its binary-tree structure allows dis-
tributing the computations among several processing
cores in a scalable and relatively simple way. In open
chains with n bodies, it can achieve O (log (n)) per-
formance if enough processors are available [25]. The
DCA constitutes the building block of dozens of meth-
ods and parallel codes for multibody dynamics [26].
Some of these introduced changes in the way orig-
inally proposed to deal with closed kinematic loops
[34] and other constraints [37]. Others extended the
algorithm to enable the consideration of flexible bod-
ies [25,32], discontinuities in system definition [33],
and contacts [5]. Computational improvements to the
initial algorithm have been published as well such
as techniques to keep constraint drift under control
[24,31] and optimized variants of the algorithm for
computer architectures with reduced computational
resources [10]. The practical applications of the DCA
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are multiple and range from the simulation of simple
linkages and multibody chains to molecular dynamics
[29,38].

The DCA scheme does not specify the way in which
the system of equations of motion must be formu-
lated and several approaches can be followed to do
this. A spatial formulation of the Newton—Euler equa-
tions was used in the initial definition of the algorithm
and subsequently adopted by many of the formalisms
that were derived from it, e.g., [10,34]. However, other
expressions of the dynamics equations can be used as
well. The Articulated Body Algorithm (ABA) [15] was
combined with the DCA in [6] to deliver significant
speedups in computation times. Hamilton’s canonical
equations were used in [7,8] and showed good proper-
ties regarding the satisfaction of kinematic constraints.
Augmented Lagrangian methods with configuration-
and velocity-level mass-orthogonal projections have
also been employed [28]; the resulting algorithm has
been proven to behave robustly during the simula-
tion of mechanical systems with redundant constraints
and singular configurations. It should be noted how-
ever that there are alternative, non-DCA, ways to for-
mulate the equations of motion for parallel comput-
ing environments. The first logarithmic order algo-
rithm (called Constraint Force Algorithm) for compu-
tation of the dynamics of multibody chain systems was
proposed in [18,19]. In [17], the authors investigated
and expanded the CFA algorithm to deal with arbi-
trary joint types. It was found that the CFA could be
written in terms of articulated body inertias [15]. It
was also found that recursive calculation of articulated
body inertias for short branches off the main chain can
be calculated efficiently. Recent developments in this
context can be found in [27], where a modified ver-
sion of the CFA algorithm is presented for the simula-
tion of flexible multibody systems in arbitrary topolo-
gies.

Augmented Lagrangian methods are common in
multibody literature. Many of them were derived from
the penalty formulation in [3], in which the constraint
reactions were made proportional to the violation of
kinematic constraints at the configuration, velocity, and
acceleration levels. An augmented Lagrangian algo-
rithm was also proposed in [3] that complemented the
penalty formulation with a set of modified Lagrange
multipliers, evaluated iteratively, to satisfy more accu-
rately the kinematic constraints and obtain stable and
precise simulations for wider ranges of penalty fac-
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tors. Mass-orthogonal projections were introduced in
[4] to ensure the satisfaction of the constraints down
to machine-precision levels. An index-3 algorithm, in
which the dynamics equations were combined with
the Newmark integration formulas to produce an iter-
ative method in Newton—Raphson form was described
in [4] as well. Such method was later improved to
deliver real-time performance in [11,12], and to han-
dle nonholonomic constraints in [13]. This index-3
augmented Lagrangian algorithm with projections of
velocities and accelerations (ALi3p) has shown very
good efficiency and robustness in the simulation of
multibody systems in real-time industrial applications,
e.g., [14]. The ALi3p and the DCA were first com-
bined for the simulation of open-loop chains in [30].
This work greatly extends the early work by delivering
a generalized formulation for multi-rigid body system
dynamics.

1.3 Contribution

In this paper, we propose anovel and generalized index-
3 divide and conquer formulation for multi-rigid body
dynamics that elegantly handles redundant constraints
and potential singular configurations that may appear in
such simulations. Unlike the methods reported in e.g.,
[26,28] that follow an index-1 approach, here we delib-
erately make use of an index-3 augmented Lagrangian
formulation. Instead of formulating the system dynam-
ics at the acceleration level, here, the system coordi-
nates are the primary variables of the problem. Accord-
ingly, the projected quantities are the system gen-
eralized velocities and accelerations, instead of the
generalized coordinates and velocities. The proposed
algorithm exploits a redundant set of absolute coordi-
nates and leads to three broad and highly paralleliz-
able computational sub-procedures: Newton—Raphson
phase for the solution of nonlinear discretized equa-
tions of motion and two stages of mass-orthogonal
projections for improving the quality of the solutions.
Various numerical test cases are presented in the text
to indicate the properties of the formulation. Small-
scale open- and closed-loop systems are investigated
and analyzed, and the results are verified against an
external solver. Long-chain dynamics is investigated
in order to report the accuracy and stability of the
formulation for large-scale systems. The stability of
the algorithm is demonstrated for a chain composed

of 128 links at step size At = 0.01s. Sequential
and parallel performance results are presented in the
text to illustrate the ability of the proposed algo-
rithm to reduce the turnaround time of the simula-
tions. This work also includes the analysis of scalability
of the proposed parallel algorithm and reports signif-
icant speedups captured on a parallel shared memory
computer with eight cores. The successful combina-
tion of index-3 formulation and recursive divide-and-
conquer algorithm may be essential in performing effi-
cient or real-time simulations of complex multibody
systems.

2 Equations of motion for constrained spatial
systems

Before embarking on the divide-and-conquer formu-
lation, the general form of the equations of motion
for constrained spatial multibody system (MBS) is
recalled. The system dynamics is formulated in terms
of a set of absolute coordinates involving Euler param-
eters. Consider n bodies that form a multibody system
(MBS). The composite set of generalized coordinates
for the system is denoted as q = [qlT qu qg ] T,
where vector q contains the absolute coordinates of all
bodies in the system. For a particular body i the vec-
tor of absolute coordinates can be written as a 7 x 1
quantity q; = [riT,piT]T, i=1,...,n wherer; =
[xi i z; 1% refers to the global Cartesian coordinates
of the body-fixed centroidal coordinate frame (x;y;z;)
T el
and p; = [eo; el e e3i]” = [eoi €] corre-
sponds to a set of four Euler parameters that describe
the orientation of body i with respect to the global ref-
erence frame (xoyozo). Rigid bodies in an MBS system
are interconnected by [ joints. It is assumed that there
are m holonomic (and scleronomic) constraint equa-
tions imposed on the system:

T
o(q =[@]. @).....0]] =0,.. (1)

In the following derivations, there is a necessity to
evaluate first and second time derivatives of constraint
conditions expressed in Eq. (1). The velocity and accel-
eration constraint equations can be expressed as:

®=0,q=0,x1, )
éEquj+¢>qq=¢qﬁ—Y=0mxl, 3
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where ®¢ is the constraint Jacobian matrix of size
m and n. In addition, the Euler parameter normaliza-
tion constraints must hold. For i = 1, ..., n one may
define position, velocity, and acceleration level con-
straint equations:

W, =p'p,—1=0, 4)

) ) I )

U =p/p; = [01x3,p,-T] [pl»] =Viq,q; =0, (5
l

< T ST . _

V;=p; p; +P; p; = Viq,q; —Vvi =0, (6)

where W;q. is the normalization constraint Jacobian
matrix of size 1 x 7 and -v; is that part of the accel-
eration level constraint equation that is dependent on
Euler parameters p; and its time derivatives p;. Let
us define the following (singular) matrix for particular
body i

M, = [mil3x3 0

0 4GiTJ;G,-]’ i=1,...,n, 7

where m; is the mass of body i, J;. is the inertia matrix
expressed with respect to centroidal coordinate frame
(xivizi), and G; = [—ei, —€ + e(),'13><3] is a useful
3 x 4 matrix that involves Euler parameters that fulfills
the relation w; = 2G;p; (w; — angular velocity of
body i expressed in the body-fixed coordinate frame)
and €; is a skew-symmetric matrix. Then, the vector of
generalized forces acting on body i can be expressed
as:

f; :

Q; = |:2Gl-Tn; 3 8(';,-TJ;G,'I'),':| , i=1,...,n. (8

The active forces f; acting on body i are expressed
in the global reference frame (xoypzp), whereas active
torques n; are expressed in the body-fixed centroidal
coordinate frame. Finally, the Euler parameter form of
constrained equations of motion for spatial multibody
system can be expressed as: [23]

T T
M @, ¥, |[4q Q
®q 0 Al=1v|, &)
\I’q u v

where y and v are the stacked vectors defined in
the following way: vy = [ylr ...,YZT]T and v =

[vlT, el v; ]T. Additionally, the following terms are
formed:
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M =diagM;,....,M,), Q=[Q7,....QT]".

(10)

Moreover, the vector of Lagrange multipliers A that
corresponds to constraint reactions at joints and the
vector of Lagrange multipliers p associated with Euler
normalization constraints are given as:

T

T
A:[A{vxga""A]T]lev u:[ulypﬂynwun]nxl-

(1)

Please note that Eq. (9) demonstrates an index-1
form of constrained equations of motion for multi-rigid
body systems. The actual index-3 equations of the algo-
rithm put forward in this paper, which make use of the
expressions and symbols recalled here, are detailed in
Sect. 3.

3 Algorithm formulation
3.1 Two articulated rigid bodies

This subsection will serve as an introduction to the
derivation of the divide-and-conquer-based formula-
tion proposed in this paper. Specifically, consider two
representative bodies A and B demonstrated in Fig. 1a.
The bodies are connected to each other by joint 2 and
form only a part of the whole multibody system. Body
A and body B are also connected to the rest of multi-
body system by joint 1 and joint 3, respectively.

Equations of motion for constrained bodies A and B
can be written similarly as in Eq. (9). For convenience
that will become clear later in this section, the equations
of motion for body A and B are exressed in the form
of two functions g4 and gp:

g4 =Maiiy +Fy +F3 + Wi, 1a—Q,u =0,
(12)

g5 =Mpii + F4 +Fp + Vg up —Qp =0,
(13)

where FL, Fi are constraint loads at joints 1 and 2,
which are acting on body A, whereas the vectors F2, F3B
correspond to constraint forces at joint 2 and 3 that are
acting on body B. Moreover, the following conditions
are hold
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Fig.1 Two articulated
bodies and generalization in
the form of compound
bodies. a Two articulated
bodies, b compound bodies

Fly =&/ A\, F, =o',
F% = <I>2T)\2, F} = <1>3T>\3 (14)

Let us also note that the equivalent mass matrices
My, Mp of size 7 x 7 in Eqgs. (12) and (13) are sin-
gular. This issue is particularly inconvenient for the
developement of the divide-and-conquer algorithm. In
this form, one cannot calculate absolute accelerations
from the equations of motion. Later in this section, this
problem will be alleviated by two-stage use of the aug-
mented Lagrangian method. In this work, a single-step
trapezoidal rule is employed to integrate the equations
of motion for constrained multibody system. Although
there are many single-step integrators used in multi-
body applications, the employed trapezoidal scheme
proved to be a reasonable choice to keep a balance
between computational requirements, accuracy, and
stability of numerical calculations. The raised issues
may be especially important in real-time applications
[11,12,14]. The difference equations at the velocity and
acceleration level can be written as

1= q+§ where § (2‘+*) (15)
=— , where q=—(— ,
a=4a+4 q LA+

. 4 2 S 4 _ 4. .
4=_79+4. where q=—<mq+zq+q)-
(16)

Please note that subscripts indicating time instants
have been intentionally omitted due to simplicity rea-
sons. It is assumed that q;; = q (next time-instant)
and q; = q (current time-instant), where k is the index
associated with arbitrary kth time-instant. Now, let us
introduce Eqgs. (15), (16) into Eqgs. (12) and (13) at the
k + 1 (next) time instant. After scaling the resulting

equations by , we get

At?
Mugqy + —

(Fl + P2+ Wl w4 — Qu+Mydiy ) =0,
a7

A, .
Mzqp + — - (FB +Fp + Wi up — Qg +MBQB) =0.
(18)

The algebraic relations (17) and (18) constitute a
discretized form of equations of motion (12) and (13)
expressed at the next time-instant. The relations form
a system of nonlinear equations with positions qy4, qp
and Lagrange multipliers as unknowns. The discretized
equations may be solved through use of the Newton—
Raphson procedure and by taking predicted positions,
velocities, accelerations, and Lagrange multipliers as
initial guesses for the next time-instant. The linearized
form of Egs. (17) and (18) can be written as:

2

Y At 1 2 T
M, Aqy+ = (AF) + AF% + Wi Apy)
Ar?
=Tt 19)
. Ar?
MBAqB+T(AF +AF, + W Apg)
Ar?
=Tt 0)
Y At D 29
where M, = M, — 41534 — AC 504 M, = M —
% ‘;g—g - AT’ %25 are non-invertible 7 x 7 matrices and
the terms %3, %2 represent contribution of elastic and

damping forces, respectively, provided that they exist.
The quantities Aqy, = q4 — q, Aqp = qp — q,
denote increments in positions. In turn, the vectors
AN = A1 = AL AN = A — A, AN = A3 — A4
are used to define the increments in constraint loads
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at joints AFy = @gTAN|, AF; = &7 AM,, and
AF% = Qég ANy, AF3B = ggg AA3. Moreover, the
quantities Apg = pa — pa, App = [ — pp rep-
resent the increments in Lagrange multipliers associ-
ated with normalization constraints. Let us note that the
Newton—Raphson scheme is an iterative procedure, that
is why we have used the underlined symbols to indicate
the quantities from previous iteration within the same
time-instant.

Now, let us turn our attention to the increments A4
and Aup. The augmented Lagrangian method allows
one to formulate the following relations

App = aWa(qy) = (W, + Wy, Aqy),

1)
Aup = aWp(qp) # a(¥p + ¥, Aqp),

where « is a large penalty factor (usually of the order
of 10% — 10%) that affects convergence rate. The equa-
tions expressed in (21) may be directly introduced into
Egs. (19) and (20), respectively, to obtain an almost
final algebraic form of discretized and linearized equa-
tions of motion:

Y Ar? 1 >
My Agy + = (aF, +aF})
At? T
= _T(EA _EA(]A(XEA)’ (22)
v A (o 3
MyAqy + —— (AFB + AFB)
At? r
= —T(gB —EBqBOCEB)v (23)
M v 2 M
where My = M, + &-Wh oW, and My =

Y A\ T ..
M; + TVEBC‘VB W pg.- Please note that this time the

matrices M A M p are symmetric and positive definite,
thus invertible. Therefore, one can write the following
form of discretized equations of motion for body A and
B:

Aqy = SAAFL + 85AF, + 64, i=1,2, (24
Aqp = 8B AFS +8BAFS + 85, i=1,2, (25

where the following vector-matrix coefficients are
defined:

@ Springer

s Ar? 1 T
bj3 = _TMA (8, — Yaq, ¥ 4):
2 v —
88 — _ AN l( —wl o aw,) (27)
3= T4 B 8p — ¥pq, X¥p

fori = 1, 2. The subscripti in Eqs. (24) and (25) means
that the equations are valid for handle 1 or handle 2.
Handle is a point on the physical or compound body
where it has a force interaction with other bodies in the
system or with the inertially invariant spatial environ-
ment through the presence of constraint loads arising
from holonomic constraints. When a single, physical
body, say A, is considered, handle 1 and 2 are located
at the same point, i.e., at the center of mass of that body.
In this case the subscript i could be suppressed, because
Eq. (24)fori = 1 andi = 2 conveys the same informa-
tion. Nevertheless, the subscripts are redundantly kept
in this form to make the algorithm more consistent with
its version for compound bodies. Additionally, please
note that in general SIAI * 61‘-42 and SiBl * 8,-32 for com-
pound bodies considered later in this work. The equal-
ity relations expressed in Egs. (26) and (27) are valid
only for physical bodies when the assembly process is
about to start.

3.2 Generalized formulation

Now, let us use equations (24) and (25) as a basis for
further development. Specifically, let us consider a sys-
tem of compound bodies A and B as depicted in Fig. 1b.
Note that there are three Lagrange multipliers indicated
in the figure. The vectors A1 and A, correspond to the
forces of interaction between body C and the rest of
the multibody system, whereas constraint loads A rep-
resent the forces of interaction between body A and B.
Two physical bodies marked by the numbers 1 and 2
have been distinguished for each compound body A and
B. The discretized and linearized form of equations of
motion for the representative compound bodies A and
B can be written in the form:

Aql = 8§ AFY + 8 AF + 8%, (28)
AQ] = 85 AFY + 855 AF + 85, (29)
Aql = 85 AFL + 8% AF3 + 65, (30)
Aqy = 85 AFy + 85, AF% + 8%;. (31)
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The objective of the first phase of the divide-and-
conquer algorithm, called assembly phase, is to obtain
the discretized form of equations of motion for the com-
pound body C in the form:

Aql = 8§, AFL + 8, AFZ + 6, (32)
Aq: = 85, AFL + 65, AFZ + 65;. (33)

The Lagrange multipliers A associated with con-
straint equations ® = 0 between body A and B can
be found by using the augmented Lagrangian method:

A =A—A=oad~ oc(g+ginqﬁ +Qq};Aq}9).
(34)
Then, substituting Eqgs. (29) and (30) into Eq. (34) with

the addition of Eq. (14) the following relation for incre-
ments in Lagrange multipliers is obtained

AN = C®p 85 AF) + COp8,AF; +CB,  (35)

~1
1 A B

where C = (al -~ 550l - gq%zs“ggg)

and 3 = gqﬁ 8% + L 8% + @. Please note that the

inversion of matrix C exists, even in the case when con-

straint Jacobian matrices become rank deficient. Equa-

tion (35) is substituted back to Egs. (28) and (31) to

obtain the relations (32) and (33). The unknown matrix
coefficients are recursively obtained as

C _ <A A &T A
811 = 871 + 81,2, C2 2 53, (36)
85 = (85)" = 81,8, C&,1 57, 37)
C _ B B ;T B
dp =8+ 5212q}3C2qL512, (38)

55 =875 + 5'1422:%(337 85 = 8% + Sglgz;gcﬁ-
(39)

The divide-and-conquer algorithm developed here is
composed of two computational stages: assembly and
disassembly phase. Each phase is associated with the
binary tree, which is connected to the topology of the
mechanism (see [6,16,28,33]). The first phase starts
with the evaluation of matrix coefficients for individ-
ual bodies as in Egs. (26) and (27). Then, the multibody
system is assembled. The coefficients in Egs. (36)—(39)
form recursive formulae for coupling two physical or
compound bodies A and B into one subassembly C
by eliminating the constraint force between them. The
process may be repeated and applied for all bodies that

are included in the specified subset of bodies up to the
moment when the whole MBS is constructed. Finally,
a single assembly is obtained. This entity constitutes
a representation of the entire multibody system mod-
eled as a single assembly. The first phase finishes at
this stage. Taking into account the boundary conditions,
e.g., a connection of a chain to a fixed base body and a
free floating terminal body, the second phase is started.
At this stage, all constraint force increments AA and
bodies’ positions Aq can be calculated by traversing
the binary tree from root node up to leaves.

The Newton—Raphson method used here requires
the evaluation of a tangent matrix and its inversion.
Rather than computing the inverse of the tangent
matrix, one solve the system of linear equations in
which the increments Aq and AA are unknowns. One
should note that the algorithm proposed in this paper
does not really formulate an explicit tangent matrix and
its inversion. In fact, the quantities are implicitly stored
in a recursively generated sequence of coefficients élcl ,
61C2, 62Cl, 652 expressed in Eqgs. (36)—(39). If a regular
Newton—Raphson method is used, the coefficients are
updated in subsequent iterations. In this paper, we use a
modified Newton—Raphson method, in which the tan-
gent matrix (and its inverse) is held constant for a fixed
number of iterations. This implies that the coefficients
8¢,,6%,, 65, 85, are constant and need not to be recom-
puted at every iteration. Such treatment significantly
reduces the overall computational cost of the method,
but it may slow down the convergence rate of the algo-
rithm, especially, when an initial guess is improperly
chosen. To be sufficiently close to the solution, we par-
tially circumvent this effect by delivering the follow-
ing initial approximations: q = q + ﬁAt + %ﬁAtz,
A = A that are computed by reusing the results that are
already available. There may be unfortunate cases in
which Newton—Raphson method can give highly inac-
curate results or may be divergent. This situation is
associated with ill-conditioning of the tangent matrix,
which, in turn, indicates a pathological situation going
on in a multibody system such as lock-up configuration
or bifurcation point.

The iterations of the Newton—Raphson scheme pre-
sented here are continued up to the moment of con-
vergence of the algorithm. Various stop criteria may
be used. In this work, it is assumed that the conver-
gence criterion is defined as ||Aq|| < €, where ||.||
is the Euclidean norm and e is a user specified toler-
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ance. Usually 2-3 iterations are required to calculate
a reasonable and stable solution for not very stringent
requirements imposed on accuracy. It is worth notic-
ing that at each iteration one has to update positions
q = q + Aq and Lagrange multipliers A = A + AA,
u = _p + Ap. Moreover velocities and accelerations
are ke_pt updated according to the difference equations
(15), (16). Ultimately, the divide-and-conquer algo-
rithm demonstrated here yields a set of positions q at
the next time-instant that satisfy both dynamic equi-
librium conditions as well as position level constraint
equations.

Checking only the convergence of the positions is
a common practice in multibody dynamics algorithms.
Because the constraints are assumed to be holonomic
(nonholonomic constraints would require a different
treatment), a convergence in the positions would ensure
the convergence of the Lagrange multipliers, especially
if the system is not subjected to redundant constraints.
Formally, the norm of the whole vector of increments
[Aq" ANT ]T could be used to provide a more reli-
able termination criterion instead of using the norm of
Aq itself. The rate of convergence appears to be dif-
ferent for Aq and AA. The experience of the authors
showed that when the Newton—Raphson scheme is con-
vergent, the scaled norm of constraint forces || AA||- AT[Z
is approximately of the same order as the norm || Aq]|.
Two consequences arise. Firstly, the convergence rate
of the Lagrange multipliers is at least AT’Z worse than the
rate observed at the position level. Secondly, the smaller
At is, the greater the relative difference between || AA||
and ||Aq]] is.

3.3 Mass-orthogonal projections at the velocity level

In Sects. 3.1 and 3.2, constraint equations were imposed
only at the position level. Velocities and accelerations
were obtained as secondary variables through use of
the difference equations (15), (16). So far no informa-
tion is provided about first and second derivatives of
constraint equations. It is expected that the constraint
equations (2), (3) may be violated during the simula-
tion. To circumvent this effect, mass-orthogonal projec-
tions at the velocity and acceleration level are employed
[4,11]. Usually this procedure is numerically expen-
sive due to the iterative scheme involved in the calcu-
lations. For real-time applications, one needs a deter-
ministic response. The mass-orthogonal projections are
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performed only once per integration step, just after the
convergence of the Newton—Raphson procedure.

Fortunately, the calculations associated with projec-
tions can be organized in the same divide-and-conquer
manner that is presented in Sects. 3.1 and 3.2. More-
over, there is a place for many computational savings.
At this phase, there is no need to update the matrices
811, 812, 621, and 87y as defined in Egs. (36)—(38).
The qualitative and quantitative difference between
mass-orthogonal projections scheme and the divide-
and-conquer-based Newton—Raphson procedure lies in
the definitions of bias terms (cf. 813, and 8;3) and the
involved Lagrange multipliers.

Let us assume that the values q* represent per-
turbed quantities for which constraint equations @
are not completely satisfied after the convergence of
the Newton—Raphson scheme. Mass-orthogonal pro-
jections [11,12] for a two body example depicted in
Fig. 1a can be written as:

Ar?
4
= Madq, (40)
At?
4
= Mpds, (41)

Mad, + A

17 27 T N
<<I>q o+ ‘I’qAUZ"“I’AqAGA)

M3dg + 5 5

(<I>§T o) + <I>(3]T o3+ \Ilqu 0'%)

where o and oV denote Lagrange multipliers that
enforce velocity-level joint and normalization con-
straint equations, respectively. Please notice that there
is a structural similarity between the relations (40), (41)
and the expressions (19) (20) derived in the Newton—
Raphson scheme. Now, let us approximate the values
of the multipliers O‘X , (rg through use of the penalty

method:

0% ~aly = aWaq,qa,
o ~ oWy = aWpq,dp. (42)

Upon substitution of Eq. (42) into Egs. (40) and (41),
we get

au =S4T, + 6415 +04, i=1,2, (43)
ap = 6513 + 8513 + 05, i=1,2, (44)
where the quantities 8;41, 6?2, SiBl, and 6,-32 fori =

1,2 are exactly the same as in Eq. (26) and pseudo-
constraint forces at the velocity level are read as



Index-3 divide-and-conquer algorithm

735

1 _ @lT 2 _ 2T 2 _ 2T
TA = (I)qA(ﬁ, TA = q)qAO‘Q, and TB = QqBGQ,
TS = <I>(31£ 3. The bias terms 07, 05 are calculated
as:

vl vl
04 =M, Maq’y, 05 =My Mpd},

1

i=12,
(45)

whereMA = MA+AT’2
A \I-’qu aWpq,.

Now, one can use the expressions (43), (44) derived
for physical bodies in order to find analogous expres-
sions for compound bodies. Such treatment will employ
the divide-and-conquer methodology exposed in this
paper. The mass-orthogonal projections for compound
bodies A and B illustrated in Fig. 1b can be written as:

\Ilqu aWaq, andMB = MB+

ay = SHTY + 85T + g, (46)
45 = 85 T + 65515 + 025, (47)
ay = 65T, + 6515 + 0%, (48)
ap = 85Ty + 85Ty + 6%, (49)

The purpose of the assembly phase is to obtain the
expressions for compound body C in the form:

at = 85 TL + 65T + 05, (50)
4% = 85, TL + 865,TZ + 05, (51)

Again, Lagrange multipliers o that enforce velocity
level constraint equations ¢ = 0 between compound
body A and B are found by using the penalty method:

o~ ad = oc(<I>qi('ﬁ\ + <1>ng};). (52)
After insertion of the approximation (52) into Egs.

(47) and (48), we get

oc=Co 2621TA+C<I> 36 TB+C[3M, (53)

where 3,,; = <I>qi 923 + <I>q2913. The last step of the

assembly phase is to insert Eq. (53) into the expressions

(46), (49) such that the following recursive formulae are
generated for the bias terms ©:

e13 - e +5 ¢T Cﬁvel’

0%, = 0% + 621¢qgcﬁvel' (54)

Obviously, the process presented here maintains the
same assembly—disassembly structure as in the case

of the Newton—Raphson scheme. Most of the matrix
quantities need not be updated. Only the bias terms (54)
have to be recursively calculated in order to get a clean
set of velocities q that fulfill velocity-level constraint
equations.

3.4 Mass-orthogonal projections at the acceleration
level

The same divide-and-conquer procedure may be for-
mulated for mass-orthogonal projections at the accel-
eration level. Let us denote ¢* as a vector of perturbed
values of absolute accelerations. For a two body exam-
ple presented in Fig. 1a, one can write the following
expressions [11,12]:

MAqA + — (¢1TK1 + <I> LK+ \I’Aq KX)

4

= M}, (55)
ro NS 3T
MBqB+T(<I> K2+ @3 k3 + Why k)

= M3ij}, (56)

where k and k" denote Lagrange multipliers that

enforce joint and normalization constraint equations at

the acceleration level, respectively. The multipliers K% ,

Kg are approximated by the use of the penalty method:

N

K ~ oWy = a(Waq, s —Va),
Ky ~ oalp = a(Vpq,dp — Va). (57)

Letusinsert Eq. (57) into Eq. (55) and (56), to obtain

4y =8 KL + 64K + &4, i=1,2, (58)
g =83K; + 85K, + &5, i=1.2 (59)

where the pseudo-constraint forces at the acceleration
1 _ &lT 2 _ &2T

le\zlel are glgﬁned e;s K ;TCPqA ki, K4 = <I>qA K2, and

Ky = <I>qB K2, Ky = <I>qB K3, Whereas the bias terms

g4, &8 are evaluated as:

A2
2 ‘-IJAquwA> i=1,2
2 (60)

1 \IquBom/B> i=1,2

v 71
5’13 = A (MAqA +

5,133 = MB (MBqB +
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Again, one can exploit the basic expressions (58),
(59) in order to perform mass-orthogonal projections
for compound bodies in the system (cf. Fig. 1b). One
can write the following generalized expressions for the
representative bodies A and B:

iy = 1K) + 8HKG + &Y, 61)
i = 85,K) + 65K3 + £, (62)
ip = 871 Kj + SHKG + &7, (63)
iy = 65 Kp + 85K3, + €5, (64)

The Lagrange multipliers k hold for acceleration
level constraints ® = 0 that indicate a joint between
compound body A and B. The multipliers can be
approximated through use of the penalty method :

K%aé=MQﬂﬁ+¢%%—Y) (65)
Let us apply an analogous procedure to that demon-

strated in Sect. 3.3 and let us insert Egs. (62), (63) into

Eq. (65). The following expression for Lagrange mul-

tipliers k can be obtained:

k=C®p 85 K)) + C® s 51KE + Chyces  (66)

where B,.. = q"lﬁ 6?3 + Qq}; E,f}S — 7. One can finally
arrive at the expressions for compound body C by sub-
stituting Eq. (66) into the relations (61), (64), to get

i = 85 KL + 865K + &5, (67)
e = 85 K¢ + 85,Ke + £5;, (68)

Ultimately, the bias terms & are evaluated from the
following recursive relations:

£'1C3 = E'??a + 6{‘2¢£%Cﬁaccv

£33 = &35 + 85180, Chuce: (69)

Again, the procedure formulated here keeps the
assembly-disassembly pattern with the main computa-
tional load imposed on the evaluation of the bias terms
(69) and calculation of a clean set of accelerations ¢
that satisfy acceleration level constraint equations.

3.5 Flowchart of the algorithm
Figure 2 presents a flowchart of the algorithm. The

most computationally intensive parts of the formula-
tion are marked as orange boxes. These procedures
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may be parallelized by using the divide-and-conquer
approach proposed in the paper. The main simulation
loop is repeated until the end of simulation time. The
inner loop is created to implement Newton—Raphson
scheme. This loop is continued up to the conver-
gence of the iterative procedure. Please note that in
real-time applications, fixed number of iterations is
assumed to guarantee deterministic execution time irre-
spective of the convergence achieved. Two last paral-
lelizable steps involve a process of projecting the solu-
tions onto the constraint hypersurface at the velocity
and acceleration level, respectively. One should note
that the projections may be performed independently
of each other providing a coarse-grained task paral-
lelism.

An extensive pseudo-code of the algorithm is also
provided in the listing below. It demonstrates the algo-
rithmic steps required to implement the scheme with
references to appropriate equations presented in the
text.

1. Initialization. Initial time r = 7y. Let q, q will be
given. Calculate q and A (e.g., see parallelizable
version of the augmented Lagrangian method [28])

2. Start main simulation loop. Time r = 1y 4+ Ar.

3. Start Newton-Raphson iteration.

(a) In the first Newton iteration (within each time
step), predict positions for the next time-instant
from Taylor series expansion: q = q + f]At +
%ﬁAtz and assume that Lagrange multipliers
are taken as A = A, u = m. For each next
Newton iteration assume thatq = q+ Aq, A =
A+ AN and p=pu+ Ap. B

(b) Predict velocities q_’k and accelerations ¢* from
(15) and (16), respectively.

(c) Update kinematic dependent quantities, calcu-
late mass matrices for physical bodies, forces
acting on them, and constraint equations.

(d) Find the matrix coefficients for individual bod-
ies (26), (27).

(e) Perform assembly process according to the rela-
tions (36)—(39) until the whole system is repre-
sented as a single entity.

(f) Use boundary conditions (e.g., connection to
the fixed base body) in order to calculate con-
straint loads at the boundaries of a compound
body.
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Fig. 2 Flowchart of the
algorithm. The orange boxes

START
indicate the possibility to @

parallelize the computations \

according to the binary tree Tnitial
associated with topology of m' 1_a
a multibody system conditions

ewton-Raphson

stop criteria

(g) Performdisassembly phase and recursively find
constraint load increments AA from Eq. (34).

(h) For each body in the system, calculate position
increments Aq from Eq. (24) and (25) and eval-
uate increments A from (21).

(1) If stop criterion (e.g., ||Aq|| < €) is fulfilled,

then exit Newton-Raphson iteration; otherwise,
go to 3(a) and repeat.

— End Newton-Raphson iteration (repeated until
convergence).

4. Mass-orthogonal projections at the velocity level.

(a) Find the vector quantities evaluated for individ-
ual bodies (45).

(b) Proceed with assembly phase and use relations
(54) to represent a multibody system as a single
compound body.

(c) Use boundary conditions in order to calculate
pseudo-constraint loads T at the boundaries of
compound body.

(d) Perform disassembly phase and calculate
Lagrange multipliers o from Eq. (53).

(e) For each body in the system calculate corrected
velocities ¢ from Eq. (43) and (44) and calculate
the values of o from (42).

5. Mass-orthogonal projections at the acceleration
level.

(a) Find the vector quantities computed for indi-
vidual bodies (60).

(b) Proceed with assembly phase and use relations
(69) to represent a mechanical system as a sin-
gle compound body.

(c) Use boundary conditions in order to calculate
pseudo-constraint loads K at the boundaries of
compound body.

(d) Perform disassembly phase and calculate
Lagrange multipliers k from Eq. (66).

(e) For each body in the system calculate a clean
set of accelerations ¢ from Eq. (58) and (59)
and calculate the multipliers KV from (57).

— End main simulation loop (repeated until end of
simulation time).
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4 Numerical test cases
4.1 Introduction

This section presents the results of numerical simula-
tions for several test cases. The sample mechanisms are
chosen intentionally to demonstrate the performance of
the formulation in case of modeling of multibody sys-
tems possessing various topologies and configurations.
All bodies are modeled as rigid moving either in three
dimensional space as in the case of the first example
or in the plane as in the case of other examples. The
length of each body in the systems is 1 m, mass 1 kg
and inertia matrix equals to J' = diag(1.0) kgm? with
respect to the axes of appropriate centroidal coordinate
frames unless otherwise stated. Long-time simulations
are carried out in order to investigate the properties of
the algorithm in the case of open-, closed-loop systems
(four-bar mechanism). The four-bar linkage, moreover,
showcases the ability of the algorithm to deal with sys-
tems that feature both redundant constraints and singu-
lar configurations. Moreover, the algorithm proposed
in this paper is designed to handle systems with holo-
nomic constraints. For these reasons, the test problems
proposed can be considered to be representative of a
wide range of practical applications and confirm the
validity of the algorithm.

4.2 Spatial double pendulum

Let us consider an open-loop multibody system as
shown in Fig. 3a. The system is composed of two bodies
A and B. The bodies are interconnected by spherical
joints 1 and 2. The gravity force acts in the negative
direction of yq axis. Initially, body A is located along
Xo axis, whereas body B is situated in the x(zo plane and
it is pointing at the zo direction. Moreover, the axes of
centroidal coordinate frames (x4 yaz4) and (xpypzp)
are coincident with the axes of global reference frame
(x0y0z0). As mentioned before the state of the sys-
tem is described by a set of absolute coordinates. At
initial time-instant Cartesian position of body A and
B in the global reference frame (xoypzo) are given
asry = [05 0.0 00", rg = [LO 0.0 0.5],
respectively. Linear and angular velocities of the bodies
are set to zero. The penalty coefficient for the proposed
approach is chosen as o« = 10°. The maximum num-
ber of iterations in the Newton—Raphson procedure is

@ Springer

N

SR

(b)

Fig. 3 Sample test cases. a Spatial double pendulum; joints 1
and 2 are spherical, b Planar four-bar mechanism; joints 1-4 are
revolute

limited to three, whereas the stop criterion for the pro-
cedure is selected to be || Aq|| < € = 1072, The time
step for the trapezoidal integration rule is constant and
equals to At = 0.01 s, while the simulation time is set
to be 10 s.

Figure 4 presents positions of body A and the com-
ponents of the constraint force at joint 1. Continu-
ous lines in the plots indicate the outcome obtained
by the proposed method. Circle marks represent the
results produced by commercial multibody software
(MSC.ADAMS). Dynamic motion of the mechanism
is well reproduced through use of the proposed method
and matches the results obtained by using commercial
multibody solver.

On the other hand, Fig. 5 demonstrates constraint
violation errors and total energy of the system as a
function of simulation time. The time plots can be
regarded as a kind of performance measures for the
proposed approach. The sub-figure on the left shows
Euclidean norm of joint and mathematical constraint
equations. The sub-figure on the right demonstrates
the total mechanical energy of the pendulum as a sum
of kinetic energy and potential energy of the system.
Constraint violation errors are kept under control with
a reasonable accuracy compared to the characteristic
length of each body (L = 1 m). The position constraint
violation errors are fulfilled with the highest accuracy
compared to the errors committed at the velocity or
at the acceleration level. This is an expected outcome
since the absolute positions are primary variables in
the formulation. The total energy of the system is well
conserved, and it is kept approximately constant at the
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Fig.4 Positions of body A and constraint force at joint 1 for the
spatial double pendulum
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Fig.5 Constraint violation errors and total energy conservation
for the spatial double pendulum

zero level. The behavior of the curve for longer simu-
lation scenarios has a slight tendency to energy dissi-
pation due to the reasons explained in [20], namely the
energy loss associated with velocity and acceleration
projections and the dissipative behavior of the New-
mark family of integrators.

4.3 Four-bar mechanism

This test case is more complex than the first example.
The four-bar mechanism is one of the simplest repre-
sentatives of closed-loop systems. The initial system
configuration and topology are presented in Fig. 3b.
The mechanism consists of three bodies A, B, and
C. The bodies are interconnected to each other and
the base body 0 by revolute joints 1-4. Each revo-
lute joint introduces five constraint equations, giving
20 conditions in total. In addition, three Euler parame-
ter normalization constraints yield 23 constraint equa-
tions imposed on the system. If absolute coordinates are
used, there are 21 generalized coordinates for the three
bodies. Since the mechanism possesses one degree of
freedom, there must be three redundant constraints.

Such over-constrained systems represent a challenge
for numerical algorithms. In this situation, one has to
permanently deal with rank-deficient constraint Jaco-
bian matrices. The existence of redundant constraints
might have consequences in non-uniqueness of con-
straint reactions [36,41]. The other issue corresponds
to a singular configuration. It is encountered when a
multibody system reaches a position, in which there is
a sudden change in the number of degrees of freedom.
For instance, a four-bar mechanism shown in Fig. 3b
reaches a singular configuration when the characteris-
tic angle is @ = 90° and the links B and C are over-
lapped. At this particular state, the constraint equations
become dependent and the constraint Jacobian matrix
temporarily loses its rank. At this point, the mecha-
nism can theoretically take two different paths (bifur-
cation point). The behavior of the augmented Lagra-
gian method in the context of multibody systems that
move in the neigborhood of singular configurations is
discussed more thoroughly in [21]. When the mecha-
nism passes through the neighborhood of the singular
configuration, large errors may be introduced into the
solution or the simulation may completely fail. The
exemplary four-bar mechanism may lose the Jacobian
matrix row rank both ways.

Let us assume that initially, the characteristic angle
for the four-bar mechanism is ¢ = 45°. This angle
corresponds to the Cartesian position of the system
shown in Fig. 3a. It is assumed that initial linear and
angular velocities are set to zero. The gravity force
is taken as acting in the negative yo direction. The
simulation time is 30 s with the integrator time step
At = 0.01 s. The simulaton parameters are chosen to
be o« = 10, ||Aq|| < € = 107!2, and the number
of iterations in the Newton—Raphson procedure equals
four. Plots of positions, velocities, accelerations and
constraint loads at joint 1 for the first 10 s of the simu-
lation are shown in Fig. 6. Since the system is conser-
vative, the presented time histories are periodic with a
dose of symmetry in the results. No sudden changes in
the constraint force components are observed. The pro-
posed approach delivers numerical results which match
the outcome achieved by commercial multibody soft-
ware. Circle marks in Fig. 6 represent the results pro-
duces by ADAMS. Figure 7 presents the performance
of the algorithm for the simulation that lasts 30 s. As
in the case of open-loop system, the proposed algo-
rithm gives bounded response in terms of constraint
violation errors as well as in terms of the total energy
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Fig. 6 Numerical results for the fourbar mechanism. Position,
velocity, acceleration of body A, and constraint loads at joint 1

conservation. Constraint errors are kept under control.
Due to the fact that absolute positions are treated as
primary variables, positions constraint equations are
fulfilled to the highest extent compared to the veloc-
ity and acceleration level conditions. The total energy
of the system indicates small oscillatory behavior with
a tendency to marginal energy dissipation. The dissi-
pation is observed partly due to the mass-orthogonal
projections involved in the solution process. It can be
noticed that the proposed formulation handles well the
system with redundant constraints, which may repeat-
edly pass through the neighborhood of singular con-
figuration. The singular configuration corresponds to
the point at which the four links of the mechanism are
aligned on the global y axis. At this moment, the Jaco-
bian matrix of the system constraints instantaneously
loses rank and two possible motions of the theoretically
1 d.o.f. system are simultaneously possible. Details are
provided in Ref. [21]. Long-time simulations were per-
formed, and the same successful behavior was observed
for that system.

4.4 Multilink pendulum

In this subsection, even more complex example is
demonstrated in order to show the properties of the
proposed algorithm for the simulation of large-scale
mechanical systems. A multi-rigid body pendulum
with n = 128 links is presented in Fig. 8 at its ini-
tial configuration. The binary tree associated with the
flow of calculations is also depicted in the figure. This
example may serve as a good starting point for simu-
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Fig.7 Constraint violation errors and total energy conservation
for the four-bar mechanism

lating more complex systems such as cables and ropes
[39]. The bodies are connected to each other by spher-
ical joints and move planarly due to the gravity forces
directed toward negative yq axis. The system is mod-
eled as a spatial one with 7n = 896 absolute coordi-
nates. There are m = 3 - 128 = 384 spherical joint
constraints and n = 128 normalization constraints
imposed on the system. The simulation time is 10 s, and
the system is integrated with time step Ar = 0.01 s.
Again, the number of Newton—Raphson iterations is
limited to three at the most, where the stop criterion is
chosentobe ||Aq|| < € = 10~!2. The penalty parame-
ter is set to be o« = 10°. This choice stems from the fact
that for smaller penalty parameters instabilities in the
simulations occurred. No convergence was achieved
for the penalty parameters « = 10° and o = 107.
Wrong results were recorded for o« = 108.

Figure 9 shows multiple snapshots of the pendulum
taken at different time-instants. Initially, the bodies fall
down and their kinetic energy is rapidly increased. This
behavior is continued up to the moment when the max-
imum value of the energy is observed, which can be
noticed at time ¢t &~ 5.22 s. After that, there is a phase
of loss of kinetic energy. The behavior of the system
could be better understood if we look at Fig. 10. The
leftmost sub-figures illustrate Cartesian positions of the
last body in the chain as well as its linear velocities.
It can be noticed that there is a swinging phase and
a second phase, in which a complex, low-amplitude
and high-frequency motion is observed. The rightmost
top sub-figure demonstrates constraint loads at joint 1,
whereas the rightmost bottom sub-figure presents time
histories of potential, kinetic, and total energy of the
system. Figure 11 presents total constraint violation
errors and how the total energy of the system evolves
as a function of time. Constraint violation errors are
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kept under control and are stabilized for the assumed
simulation time. The total energy drops temporarily to
the value of — 46.84 J attime r ~ 5.22 s and, after that,
it is recovered and stabilized at the level of — 25 J. The
energy loss is due to numerical damping introduced by
numerical integrator and mass-orthogonal projections.
Apart from the mentioned issues, the sudden drop in
the system’s energy takes place because impact-like
forces are exerted on the system when it reaches the
vertical position. Nevertheless, it has a marginal effect
on the simulation results. The total energy drop consti-
tutes only a 0.06% of the maximum kinetic energy of
the system. The approach proposed in the paper cap-
tures correctly dynamical behavior of the long chain,
and the algorithm remains stable for the analyzed test
case and the assumed parameters.

Position X (m)

One should comment on the potential source of
numerical instabilities observed here when long multi-
rigid-body chains are being simulated. The conver-
gence issues reported in this paper may be associ-
ated with numerical ill-conditioning of the problem.
This matter is pointed out by many researchers in the
field [1,39]. With a basic penalty formulation, usually
low penalty factors result in a stable (though possibly
inaccurate) solution. In the case of index-3 methods,
low penalty factors can deliver wrong results, because
the Newton—Raphson iteration fails to achieve conver-
gence in a reasonable number of iterations. This issue
is mentioned in Ref. [21] as well.

The algorithm presented here may suffer from
another source of problems. The potential numerical
instability may be laid up in the way the linearized form
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Fig. 10 Numerical results for the multilink pendulum. The fig-
ure depicts position and linear velocity of point C (see Fig. 8),
constraint loads at joint 1, and kinetic (KE), potential (PE), and
total energy (TE) of the system
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Fig.11 Constraint violation errors and total energy conservation
for the spatial multilink pendulum

(19) and (20) is obtained. In fact, the linearization of
the equations of motion (17), (18) reflected in Egs. (19)
and (20) is not exact. The missing terms that are omitted
here (and often neglected in the augmented Lagrangian
based formulations) are associated with partial deriva-
tives of constraint loads. The derivatives take on the
following form: @ A, W u. The symbols ®qq and
W (q indicate third-order tensors. A second-order tensor
(matrix) is obtained upon appropriate multiplication of
the tensors ®4q and ¥ ¢ by the vector of Lagrange mul-
tipliers A and p, respectively. Algorithmically, the men-
tioned higher-order terms may be added to the matrices
M A M g» which are originally defined below Eq. (20).
Then, the updated formulas will take the following form

v v A (o r 21 T
M, =M, + 4 (quqAAl +2qA‘1AA2 +EAQA‘1AEA) ’

Y Y A oor 3T T
MB = MB + T (QQBqBAz +quqHA3 +EBQB‘IBEB) ’
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and the algorithm is continued in the standard way
described in the paper. It should be noted that there
are some parallels between this notion and the results
obtained by the other authors [2,40]. The new terms
added here are similar to the concept of geometric stiff-
ness defined for real-time simulation of complex multi-
body systems. This fiddly modification may improve
numerical stability of the algorithm proposed here by
providing more accurate forms of the tangent matrix.

5 Parallel implementation and performance results
5.1 Parallel implementation

The objectives of this section are to present the details
of parallel implementation of the proposed index-3
divide-and-conquer algorithm as well as to show the
performance results gathered on a shared memory par-
allel computer. First of all, before the simulation is
started, one has to generate a binary, possibly well-
balanced, tree associated with a topology of a multi-
body system. Parallel efficiency is highly dependent
on the shape of that tree. A well-balanced binary tree
creation is a key to gain optimal parallel computational
cost for the simulation of systems with more general
topologies. For an arbitrary multibody system, avail-
able parallel resources can be effectively utilized by
shaping the binary tree to be of low height and of suf-
ficiently large tree-width to obtain optimal turnaround
time for a given parallel resource. Moreover, the height
of an upper part of such tree should be minimized and
the lower part of the tree should be designed in a way
to distribute the computational load as evenly as possi-
ble over the available processing units. Therefore, the
real problem is to design a good assembly-disassembly
tree for a given mechanism so that the tree could be effi-
ciently mapped onto the architecture of a given parallel
resource, either it is a shared memory computer (as in
this paper) or it is a graphics processor unit (as analyzed
in [8]). The specifics of the binary tree creation for vari-
ous multibody system topologies can found in other ref-
erences [6,16,28,33]. At the moment, it is important to
note that nodes represent physical or compound bodies
in the system. The same binary tree is exploited in three
main algorithmic steps of the formulation, i.e., in the
Newton—Raphson iteration and in the phase of mass-
orthogonal projections at the velocity and acceleration
level. If we look again at the exemplary system and
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the associated binary tree in Fig. 8, we see that parallel
calculations may be performed at each level of the tree
starting from the leaf nodes. In the assembly phase, the
procedure traverses the tree from leaf nodes up to the
root node. The root node indicates a compound body
that represents a multibody system as a single entity.
In the disassembly phase, the recursions are performed
in the reverse order, i.e., from the root node to the leaf
nodes. It should be immediately noticed that one could
perform embarrassingly parallel computations at each
level of the binary tree. This kind of correspondence
makes the process dynamic. The computational load
evolves as the procedure walks up and down the binary
tree. The parallelization can be achieved at each level
of the tree by assigning one node to one thread as in the
case of calculations on graphics processor units, where
many threads are available at the disposal of a program-
mer. In the case of shared memory computer, it is nec-
essary to assign several nodes to one thread and exploit
parallel constructs that take nearly the same amount of
work and distribute it over the available cores in the
parallel execution of a loop. The latter strategy is taken
here since OpenMP compiler directives [9] are chosen
to parallelize the computations. Apart from the strat-
egy assumed here that largely parallelize calculations
at each time step, there is a place for many small and
embarrassingly parallel tasks that may improve overall
numerical efficiency. It should be mentioned that for
each body in the system the calculation of the position
and Lagrange multiplier estimates together with pre-
diction of velocities and accelerations from trapezoidal
rule could be easily parallelized.

5.2 Parallel performance

The algorithm proposed in the paper is implemented
in C++ by using template-based library Eigen [22]
that supports fixed-size small matrix-vector operations
and provides linear algebra solvers. The parallel multi-
body code is executed on a Linux-based shared mem-
ory parallel computer, which is equipped with two-
socket motherboard, in which two quad-core proces-
sors are installed. Each processor is a Quad-Core AMD
Opteron Processor 2356 (2.3GHz) with 512kB cache
L2 per core and four 2GB ECC DDR-667 memory
modules are set in the motherboard. The source codes
are compiled with -O3 optimization flag using g++
compiler with the support of OpenMP compiler direc-

tives. In the implementation, we have used the simplest
parallelization strategy that suffices to implement the
algorithm. A #pragma omp for compiler direc-
tive was exploited to divide the work of the for-loop
among the available threads. Moreover, private
clauses were specified in order to assign which vari-
ables are local to a thread in parallel loop. The pri-
vate scope has been mainly defined for the variables
that store indices associated with a binary tree. Our
current software implements a simulation framework
for open-loop mechanical system depicted in Fig. 8,
which is described in detail in Sect. 4.4. The sequen-
tial and parallel performance of the code is investi-
gated by varying the problem size in terms of the num-
ber of bodies, which may take on the following val-
ues np = 2,4,8, 16,32, 64, 128,256,512, 1024. It is
also possible to change the number of threads used for
calculations from 1 to 8. The total simulation time is
set 10 s with the constant time step At = 0.01 s. In
real-time applications, it is a common practice to per-
form a fixed number of iterations, even though conver-
gence may have been achieved already, to ensure pre-
dictability in execution time. The number of Newton—
Raphson iterations has been limited to three. More-
over, the accuracy € = 10~ !2 is purposefully assumed
to be extremely tight to enforce that three iterations
are always taken irrespective of the fulfillment of the
condition ||Aq|| < €. A check has been performed
beforehand in order to verify value of the norm || Aq]|
after three Newton—Raphson iterations, which is being
kept below 107 for n, = 2 bodies in the system, and
below 1073 for n, = 1024 bodies in the pendulum.
The maximum value of the norm ||Aq]| for other sim-
ulation scenarios are found to be in between the men-
tioned values. In this sense, we guarantee a minimum
accuracy.

In order to explore the performance of the algo-
rithm, the aggregate wall-clock time required by the
Newton—Raphson scheme, mass-orthogonal projec-
tions at the velocity and at the acceleration level,
is measured by using OpenMP built-in procedure

omp_get_wtime (). A sequential version of the
algorithm is evaluated in terms of its total execution
time, expressed as a function of the problem size. Fig-
ure 12a demonstrates the timing results for sequential
implementation of the algorithm as a function of the
problem size. Firstly, let us observe that the total com-
putational cost scales linearly with the number of bod-
ies in the chain. This is not a surprising result as the
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recursive algorithm presented here is built on top of
the divide-and-conquer algorithm [16], which exhibits
linear computational complexity for sequential calcula-
tions. Secondly, the time spent in three iterations of the
Newton—Raphson scheme is evaluated and observed
in the same Fig. 12a. It can be concluded that this step
gives major computational contribution and constitutes
about 81% of the total execution time on average. The
rest of the time is spent on two mass-orthogonal projec-
tions and about 9.5% is taken by each of the corrective
procedures.

On the other hand, Fig. 12b presents the time mea-
surements for parallel implementation. The wall-clock
time is demonstrated as a function of the number of
cores used for calculations while varying the problem
size. Let us point out that adding more processing ele-
ments gives a substantial decrease in the turnaround
time, which is especially observed in the case of sys-
tems possessing more than 64 bodies. It is also worth
noticing that the proposed index-3 algorithm enables
one to perform real-time calculations by employing
additional cores. This trend is clearly seen for the chain
possessing np = 128 bodies, for which the real-time
barrier is broken for four cores used for calculations.

There are many measures of parallel performance.
It is important to study the benefits from parallelism. A
number of metrics have been used based on the desired
outcome of performance analysis. Speedup is a mea-
sure that captures the relative benefit of solving a prob-
lem in parallel. It is defined as the ratio of the time taken
to solve a problem on a single core to the time spent
to solve the same problem on a parallel computer with
identical multi-core processors. Parallel efficiency is a
measure of the fraction of time for which a processing
element is usefully employed. Parallel efficiency is the
ratio of speedup to the number of cores. In an ideal case,

@ Springer

(b)

speedup is equal to the number of cores and efficiency
is equal to one. Practically, this result is unachievable
and speedup is usually less than the number of cores
and efficiency is between zero and one. Figures 13a, b
and 14a, b demonstrate speedup and parallel efficiency
versus the problem size and the number of processing
elements. Figure 13a, b illustrate that the speedup has
a tendency to saturate. Larger problems yield higher
speedup and parallel efficiency as it is also observed
in Fig. 14a for the same number of cores. We can also
see in Fig. 14a that parallel efficiency is an increas-
ing function of the problem size, which is a desirable
property with respect to utilizing parallel processors
effectively and determines the degree of scalability of
the software. Figure 14b demonstrates a natural ten-
dency of the algorithm to decrease overall efficiency
of the parallel program as we increase the number of
cores used for calculations. One should also emphasize
that the parallel performance results are promising not
only for large-scale systems with hundreds of degrees
of freedom but also for multibody systems possessing
small number of bodies, as it may be clearly observed
in Figs. 13b and 14b. This qualitative result extends
the possibilities of application of the proposed index-
3 divide-and-conquer algorithm to a broader range of
systems.

6 Summary and conclusions

In this work, the equations of motion are formulated
in terms of absolute coordinates. A unified form of
the algorithm is presented at the position, velocity and
acceleration level. The unification manifests itself in
the computational savings, because the leading matri-
ces at the mentioned levels are evaluated only once per
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integration step. Also, the employed Euler parameter
form of the equations of motion is particularly useful
in deriving the divide and conquer algorithm presented
in this paper. The associated mass matrix is invertible
and the derived divide-and-conquer formulae are sim-
pler. The equations of motion for the spatial multi-
rigid body system dynamics are discretized by using
a single-step trapezoidal rule as an integration scheme.
The employed framework leads to the set of nonlin-
ear algebraic equations for the bodies’ positions and
for the Lagrange multipliers associated with constraint
equations. These equations are solved by the Newton—
Raphson procedure with the addition of the second-
order predictor. It is assumed that the constraint equa-
tions for multibody systems are imposed at the position
level. In consequence, one may expect the accumula-
tion of constraint errors for velocities and accelerations.
To correct the constraint violation errors, the resulting
classical index-3 formulation is supplemented by the
two mass-orthogonal projections.

The robustness of the formulation manifests itself
in the ability of the algorithm to analyze multibody
systems with redundant constraints, and the systems
that may occasionally enter into singular configura-

tions. The problems associated with such systems are
reflected in numerical difficulties, and in some situa-
tions, inability of the algorithm to continue the sim-
ulation as reported. The proposed algorithm circum-
vents the problems by introducing the approximations
of Lagrange multipliers. The key matrices in the for-
mulation remain nonsingular, and simultaneously, the
constraint equations are fulfilled within the reasonable
accuracy dependent on the tolerance imposed in the cal-
culations. Due to the necessity of the solution of non-
linear equations of motion, the proposed formulation
is inherently iterative. The largest computational load
is associated with iterations performed by the Newton—
Raphson algorithm, where the increments in positions
and Lagrange multipliers are evaluated to predict the
state of the system in the next time-instant. The com-
putational burden can be reduced each next iteration
by assuming that the tangent matrix in the Newton—
Raphson procedure is constant. On the other hand, the
error corrections at the velocity and acceleration level
are performed only once per integration step. The mass-
orthogonal projections based procedures make use of
the tangent matrix evaluated in the Newton—Raphson
procedure. As indicated in the text, the numerical cost
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associated with the projections is only a small part of
the burden required in the first iteration of the Newton—
Raphson scheme.

The properties of the algorithm are also demon-
strated for the simulation of large-scale multi-rigid-
body systems. The behavior of the multilink pendulum
with n = 128 bodies is analyzed in order to investi-
gate accuracy and stability of the formulation for long
chains. It is reported in the numerical results that the
proposed approach handles well such simulation sce-
narios by providing negligible energy drift for con-
servative systems. Constraint violation errors are kept
under control even for high-amplitude accelerations
observed during the simulation. Stable numerical sim-
ulations are performed at time step Ar = 0.01 s. The
rich chain dynamics behavior is properly captured by
guaranteeing reasonable accuracy for long-time simu-
lations.

Finally, the divide-and-conquer scheme is employed
on top of the index-3 formulation with mass-orthogonal
projections. The trapezoidal rule is embedded into the
solution process without the deterioration of the binary-
tree structure of the algorithm. The proposed approach
enables one to parallelize the involved computations
at the position, velocity, and acceleration level. The
details of parallel implementation on shared memory
computer with eight cores are presented. Significant
efficiency gains are captured for the simulation of small
and medium multibody systems. Substantial decrease
in turnaround time is obtained for large multibody sys-
tems (np = 256, 512, 1024 bodies). Highly paralleliz-
able structure of the algorithm together with the abil-
ity of the formulation to take large integration time
steps by simultaneously delivering physically mean-
ingful results with reasonable accuracy make the pro-
posed algorithm a good general purpose approach for
highly efficient or real-time multibody dynamics sim-
ulations.
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