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Abstract: People whose jobs involve repetitive motions of the wrist and forearm can suffer from lateral
epicondylitis, which is a significant burden on both the individual and the employer due to treatment
costs, reduced productivity, and work absenteeism. This paper describes an ergonomic intervention
to reduce lateral epicondylitis in the workstation of a textile logistics center. The intervention includes
workplace-based exercise programs, evaluation of risk factors, and movement correction. An injury-
and subject-specific score was calculated from the motion captured with wearable inertial sensors at
the workplace to evaluate the risk factors of 93 workers. Then, a new working movement was adapted
to the workplace, which limited the observed risk factors and took into account the subject-specific
physical abilities. The movement was taught to the workers during personalized sessions. The risk
factors of 27 workers were evaluated again after the intervention to validate the effectiveness of the
movement correction. In addition, active warm-up and stretching programs were introduced as part
of the workday to promote muscle endurance and improve resistance to repetitive stress. The present
strategy offered good results at low cost, without any physical modification of the workplace and
without any detriment to productivity.

Keywords: movement analysis; kinematics; motion capture; wearable sensors; workplace-based
exercise; musculoskeletal disorders; well-being; epicondylitis; ergonomics

1. Introduction

Repetitive motions of the wrist and forearm can lead to lateral epicondylitis (LE), a
painful musculoskeletal disorder (MSD) also known as tennis elbow, caused by inflamma-
tion of the tendons that attach the forearm muscles to the elbow [1]. Rest and conservative
treatments often help relieve the pain, while, in a small percentage, surgery is necessary [2].
People whose jobs involve this type of movement are at risk of this injury [3–7], which
is a significant burden on both the individual and the employer due to treatment costs,
reduced productivity, and work absenteeism [8–10]. In this study, the Occupational Risk
Prevention Department (ORPD) of the logistics center of a textile company reported nu-
merous LE cases (12 workers diagnosed with long-term illness in the three years prior to
this intervention) at a manual workplace in which the worker has to take a determined
number of garments from a cardboard box and place them, one by one, on an automated
distribution line. The ORPD showed concern for the health of the workers and requested
an ergonomic intervention to reduce work-related musculoskeletal disorder (WMSD).

The purpose of ergonomic interventions is to help answer various questions related
to the safety of employees, working conditions, and performance of the system. In the
working environment, their aim is to fit the job to the worker and they are categorized
into three specific factors: physical, organizational, and psychosocial factors, which can be
combined [11,12]. The first one focuses on the biomechanical risk factors such as repetition,
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forceful exertion, awkward postures, manual materials handling, and vibration [13–16].
Organizational factors such as short cycle times, unbalanced task content, insufficient
recovery time, collaboration, and support could also contribute to the development of
WMSDs in workplaces [17,18]. The psychosocial aspects of work such as high job demands,
low job control, poor social support, and inadequate communication at work have been
recognized to increase the risk of MSDs. These factors can lead to increased stress, tension,
and fatigue, which in turn can increase the likelihood of developing MSDs [19]. The
interaction between the task and the people is usually evaluated through multidimensional
methods such as observational-based tools, questionnaires, or direct measurements [20].
Nowadays, technological advances and, in particular, wearable devices offer an objective
assessment of physical factors [21–29].

In the workplace considered in this paper, previous interventions had been carried out
before. An organizational ergonomic intervention limited the time spent in the mentioned
workplace to two hours per day. Then, workers had to switch to another workplace (after a
rest time) which entailed a different movement and effort. At the cognitive level, the task
was simplified: a screen indicates in real time to the worker how many garments must be
placed on the horizontal carousel, so that the task is easy and the work environment is free
of disruptions. However, despite these modifications, LE cases did not decrease, and a
physical ergonomics intervention was not possible for economic and logistical reasons.

For these reasons, the intervention proposed in this study to reduce MSDs at the
workplace was composed of:

• An individual evaluation, using wearable sensors, of the working movement of the
93 workers who occupied the workplace.

• An individual interview to inform each worker on the risk observed according to their
evaluation and to discuss their personal physical limitations through a questionnaire.

• Personalized training sessions with a personal trainer to adopt a less harmful work
movement adapted to the worker.

• A second individual evaluation of the corrected working movement using wearable
sensors to validate the approach with a sample of 27 workers.

• A workplace-based exercise intervention composed of daily warm-up and stretch-
ing exercises.

Workplace-based exercises resulted in improvements in work ability and allowed the
workers to meet the demands of the work considering their health, personal resources,
and work environment [30,31]. They were compatible with the constraints imposed by the
company (physical and economic) and complemented the intervention well. The strategy
offered good results at low cost, without a physical modification of the workplace and
without any detriment to productivity.

2. Material and Methods
2.1. Participants, Workplace, and Task Description

93 workers who occupied the workplace (with no exclusion criteria) were recruited
for this study; their characteristics are reported below:

• A total of 61 males and 32 females;
• Age: 40 ± 18 years;
• A total of 85 right-handers and 6 left-handers.

The work shift of the logistics center was defined in such a way that workers were as-
signed to this workplace for two hours throughout their workday and to other workplaces
during the rest of the time. As illustrated in Figure 1, the task consisted of taking the gar-
ments from the boxes, which were continuously and automatically supplied to each worker
of the chain, and placing the garments, one by one, into an empty basket (40 cm × 50 cm)
of the horizontal carousel passing at a constant velocity of 1 m/s. A screen situated in front
of the worker indicated, in real time, the number of garments that the worker had to put
on the carousel from the corresponding box. Until this intervention, workers were free
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to choose how to execute the task, although most employees were observed to follow the
same procedure: pick up some items, carry them with their nondominant arm and the
elbow flexed, and throw them onto the carousel with their dominant hand. Finally, it must
be added that the type, number, size, and weight of the garments were random, had great
variability, and influenced the execution of the task.
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During the three years prior to the intervention, a total of 12 workers were diagnosed
with LE and had to be absent for long periods of time due to long-term illness.

2.2. Intervention

As illustrated in Figure 2, the intervention proposed in this study to reduce MSDs at
the workplace was composed of:
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Figure 2. Working movement correction intervention.

• An individual evaluation, using wearable sensors, of the working movement of the
93 workers who occupied the workplace.

• An individual interview to inform each worker on the risk observed according to their
evaluation, and to discuss their personal physical limitations through a questionnaire.

• Personalized training sessions with a personal trainer to adopt a less harmful work
movement adapted to the worker.
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• A second individual evaluation of the corrected working movement using wearable
sensors to validate the approach with a sample of 27 workers.

The mentioned steps were complemented with a workplace-based exercise inter-
vention, composed of daily warm-up and stretching exercises, which are described in
detail below.

2.2.1. Experimental Data Collection

Individual measurements of the 93 workers were conducted in multiple sessions on
different work shifts and days at the same workplace. In order to disturb the company’s
activity as little as possible and work under real working conditions, the measurements
were made in the logistics chain during a normal working day. The workers were individu-
ally equipped with a motion-tracking jacket (typically used for optical motion capture and
available in four different sizes) and 7 inertial measurement units (IMUs) (NGIMU, X-io
Technologies Limited, Bristol, United Kingdom [32]) sampling at 100 Hz, placed at trunk,
arms, lower arms, and hands, to measure upper limb movements (Figure 3). Orientations
from IMUs and joint kinematics were computed by commercial software iSen 2019.0 (STT
Systems, San Sebastian, Spain) [33]. A trial session was carried out at the workplace to
ensure that measurements from IMUs would not be affected by ferromagnetic materials
present in the environment [23,34]. Velcro straps were added over the sensors positioned
on the jacket to reduce motion artifacts. Before commencing the motion capture, the sub-
jects performed a static pose for the calibration of the sensors and carried out a series of
movements to ensure that the sensors attached to their bodies did not hinder performance
and did not show motion artifacts. Then, the workers were asked to carry out their daily
tasks as usual during two series of loading and unloading of garments (between 10 and
30 repetitions depending on the worker and the sizes of the items) with two different types
of garments. Because the type, number, size, and weight of the garments were random and
had great variability, it was impossible to use the same item to guarantee objective compar-
isons between subjects. However, products which require a totally different movement and
which are rarely encountered (e.g., coats) were not considered in this study. All subjects
gave written informed consent for their participation.
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2.2.2. Work-Related Evaluation of Risk Factors

While the use of wearable devices for motion capture offers objective measurements
of the worker, occupational physicians need to interpret these data to evaluate the worker’s
exposure risk factor. Risk factors are related to the workstation, the task, and the worker
behavior, but overall to the pathology. Because the aim of this ergonomics intervention
was to reduce LE cases at the particular workplace, it was necessary to first have a good
understanding of this MSD.

LE is the result of the overuse of the wrist extensor muscles, leading to inflammation
or irritation of the tendon insertion [1,5,35]. The sum of posture, force, and repetitiveness
configures the fatigue cycle ending up in repetitive trauma, which causes insufficient
vascular circulation in the soft tissues, inflammation in the tendons due to excessive friction
in the anatomical corridors, compression of the nerves as a consequence of the inflammation
of the muscles, ligaments, and tendons, and instability of the joints due to forced postures,
injuries, or breaks of the soft tissues [36]. Repeated microtraumas cause severe pain at
the attachment sites of the extensor tendons on the lateral side of the elbow joint [35].
Manual labor with dominant-side involvement, grasping of objects, repetitive bending and
straightening of the elbow, repetitive bending of the wrist, high percentage of time spent
in hand supination or pronation of more than 45◦, and high wrist angular velocity were
reported as specific exposures to LE [3–7].

Ergonomic risk scores allow a simplified data interpretation, but they are often associ-
ated with a workstation, with postures instead of motions, and ignore the variability among
operators [28]. In this study, we decided to create a specific ergonomic risk evaluation
associated with LE to evaluate all the workers individually, but above all, to allow them a
better understanding of the measures in order to offer them personal recommendations.
Based on LE’s risk factors previously reported, a risk score was specifically designed, for
which 40 points were distributed as follows:

(1) 15 points for the hand and forearm that throw the garment (arm 1).

(a) % of time spent with hand supination or pronation of more than 45◦: 5 points.
(b) Wrist extension amplitude: 5 points.
(c) Wrist extension angular velocity: 5 points.

(2) 10 points for the elbow of the arm 1.

(a) Elbow 1 extension amplitude: 5 points.
(b) Elbow 1 extension angular velocity: 5 points.

(3) 10 points for the rest of the joints. % of time spent out of the recommended comfort
angles [36].

(a) Shoulder 1: 3 points (1 point for each angle).
(b) Shoulder 2: 3 points (1 point for each angle).
(c) Elbow 2: 1 point.
(d) Wrist 2: 3 points (1 point for each angle).

(4) 5 points for the task frequency.

The time periods that corresponded to garment throws were manually identified and
used for the evaluation because the intervention focused on the specific activity. Special
attention was paid at the wrist and elbow level of the most active hand, although the rest
of the joints were also considered in the study. For the “% of time” evaluations in the list
above, the maximum score was assigned to 50%. For (1b), the maximum score was assigned
to a mean angle of 45◦. For (2a), the maximum score was assigned to a mean angle of 30◦.
For (1c) and (2b), the maximum score was assigned to maximum throwing velocities of
200◦/s. In all cases, the scores were linearly scaled for lower values of the inputs. Moreover,
to gather the difference between the loaded and unloaded condition of the second arm, the
scores for the second arm were divided by 2 if the worker did not load it. Finally, because
the company records the workers’ activity, it was preferred to use this information to more



Sensors 2023, 23, 5116 6 of 16

objectively determine the task frequency along the work shift: the score was linearly scaled
between 10 and 25 repetitions per minute [37].

2.2.3. Movement Correction

After the evaluation of individual risk factors, an interview was organized with each
worker to inform the participant on the risk observed according to their way of executing
the task and to discuss their personal physical limitations through a questionnaire (previous
pathologies, specific pain during the task, etc.), in order to adapt the movement to the
participant. Although in activity ergonomics, researchers are not in favor of postural
corrections and prefer to carry out physical ergonomics interventions, it must be recognized
that a certain task may present different levels of risk depending on the person who executes
it and the posture adopted (such as the manual handling of loads) [23].

The risk factors can be reduced by decreasing the joint angles, range of motion,
frequency, and velocities. Therefore, some tips were taught by a specialist in sport and
physical activity to the workers during 30-minute personalized training sessions (two per
week over five weeks) at their own workplace. The general recommendations were: (a) take
each pile of garments from the box with both hands; (b) use the structure of the carousel
(Figure 3 in grey) to put the pile of garments on it (with the body facing the carousel and
the back in the neutral position); (c) use one hand to keep the pile of garments on the
structure and use the second hand to put each garment on the carousel; (d) avoid taking
and throwing the product with hand pronation or supination; (e) use the full arm to throw
the item (shoulder, elbow, and wrist) and not only the wrist; (f) alternate the hands’ task
every 10 minutes (Figure 4). The latter was the most difficult for the workers to learn
because the dominant hand is stronger, faster, and, above all, more dexterous, but it is
the only way to reduce the frequency of movements without detriment to productivity.
Because the task was relatively easy, after a few sessions, the workers were able to execute
the task at almost the same speed that with their dominant hand.
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Figure 4. Corrected task illustration.

One month after the training, a sample group of 27 workers (among the 93 workers)
was selected to check whether they had reduced their risk factors. For an objective compari-
son, the same garments were used. In order to reflect that workers were using the structure
of the workstation to support the piles of garments instead of holding them in their second
arm, the scores of the second arm were divided by 2.

2.2.4. Data Analysis

Histories of upper-extremity joint angles were computed using the commercial soft-
ware iSen (STT Systems, San Sebastian, Spain) [33], based on the IMU measurements.



Sensors 2023, 23, 5116 7 of 16

Measurements associated with the previously reported evaluation of risk factors (see
Section 2.2.2) were processed and assessed for all the subjects, using a custom-made Mat-
lab program.

In this study, statistical analysis was employed to analyze gender differences and
intervention improvements. To compare gender differences, a two-sample t-test was
applied since it involved comparing two different groups on the same measure. However,
to analyze intervention improvements, the paired t-test was chosen because it involved
rating the same participants on the same measure at two different time points (before and
after the intervention) [38]. The statistical analysis was performed using a custom-made
Matlab program that implemented the mentioned methods [38].

2.2.5. Workplace-Based Exercises

The early goal of a therapeutic exercise program is to promote muscle endurance and
improve resistance to repetitive stress injuries. In addition, specific exercises to stretch
and strengthen the muscles attached to the injured tendon will help with the healing
process [39,40]. For this reason, a room for carrying out basic gym exercises was set into
the logistics center so that the training sessions could be part of the working day. First of
all, the employees received a talk to raise awareness about the usefulness and necessity
of these exercises for their well-being. Then, over eight weeks, a gym trainer gave short
(5 min) group training sessions at the beginning and end of each work shift. The training
sessions were recorded and projected on the TV present in the room (TV image shown in
Figure 5) to help the workers follow the program.
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The session before the task was devoted to an active full-body warm-up, which
serves to increase soft tissue temperature and enhance muscle performance prior to an
activity [41]. The exercises are simple, easy to understand for all people, and do not require
any specific tools:

- Four neck internal and external rotations.
- Four neck tilts (for each direction).
- Ten chest expansions.
- Ten wrist circles with clasped hands (for each direction).
- Four standing toe touching with feet shoulder width apart (left foot, center, and

right foot).
- Five torso rotations (for each direction).
- Five standing single leg hip rotations (each leg).
- Five bodyweight deep squats hold.
- Five bodyweight standing calf raises.
- Five bodyweight standing toe raises.
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The session after the task is composed of static stretching exercises, that are recom-
mended for improving recovery of strength and range of motion, and also, for reducing
delayed onset muscular soreness after physical exertion [42]. Again, the exercises are
simple, easy to understand, for all people, and do not require any specific tools:

- three standing toe touch stretches with feet shoulder width apart (holding 3 s for
each foot).

- One standing quadriceps stretch (holding 8 secs for each leg).
- One standing knee to chest stretch (holding 8 secs for each leg).
- Two standing arms backward chest stretch (holding 2 s).
- Two standing side bend stretches (for each direction).
- Three standing wrist prayer stretches.
- Three open-hand finger stretches (holding 2 s).
- Three wrist extensor stretches (holding 2 s for each hand, Figure 5).
- Two wrist flexor stretches (holding 2 s for each hand).
- Three neck flexion stretches (holding 2 s).

3. Results
3.1. Pre-Intervention

The mean scores of the 93 operators (two recordings per worker were taken before
the intervention) are reported in Table 1, showing a mean total score of 22.81 out of
40. Based on these values, it can be said that major risks come from wrist extension,
elbow extension, and highly repetitive tasks. The standard deviation was calculated and
reflects the high inter-subject variability for these parameters. Mean values of the different
evaluated risk factors are reported in Table 2. Again, the standard deviation shows a high
variability corresponding to the subject-specific motion. As for the task frequency, it was
set at 25 repetitions per minute for all the subjects based on company records (mean of
1500–1700 garments per hour and per worker).

Table 1. Mean scores and standard deviations of the 93 workers prior to the intervention.

Risk Factors Mean Scores SD Maximum

Active arm

Wrist

Supination/pronation >45◦ (%time) 0.17 0.48 5

Extension amplitude (◦) 2.83 1.04 5

Extension velocity angle (◦/s) 4.19 1.05 5

Elbow
Extension amplitude (◦) 3.46 1.36 5

Extension velocity angle (◦/s) 4.00 1.30 5

Shoulder

Comfort angle flexion/extension (%time) 0.46 0.40 1

Comfort angle lateral elevation (%time) 0.41 0.41 1

Comfort angle internal rotation (%time) 0.05 0.13 1

Second arm

Wrist

Comfort angle flexion/extension (%time) 0.07 0.19 1

Comfort angle deviation (%time) 0.62 0.39 1

Comfort angle pronation/supination (%time) 0.14 0.27 1

Elbow Comfort angle flexion/extension (%time) 0.00 0.02 1

Shoulder

Comfort angle flexion/extension (%time) 0.07 0.22 1

Comfort angle lateral elevation (%time) 0.82 0.60 1

Comfort angle internal rotation (%time) 0.52 0.87 1

Task frequency (rep/min) 5.00 / 5

Total 22.81 4.35 40
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Table 2. Mean values and standard deviations of the 93 workers prior to the intervention.

Risk Factors Mean Values SD

Active arm

Wrist

Supination/pronation >45◦ (%time) 1.73 4.83

Extension amplitude (◦) 25.57 9.53

Extension velocity angle (◦/s) 187.49 64.43

Elbow
Extension amplitude (◦) 71.55 15.62

Extension velocity angle (◦/s) 186.00 81.21

Shoulder

Comfort angle flexion/extension (%time) 29.36 30.68

Comfort angle lateral elevation (%time) 27.53 32.52

Comfort angle internal rotation (%time) 2.67 7.66

Second arm

Wrist

Comfort angle flexion/extension (%time) 3.58 10.40

Comfort angle deviation (%time) 41.15 32.31

Comfort angle pronation/supination (%time) 8.16 18.41

Elbow Comfort angle flexion/extension (%time) 0.12 1.23

Shoulder

Comfort angle flexion/extension (%time) 4.98 17.85

Comfort angle lateral elevation (%time) 41.04 29.90

Comfort angle internal rotation (%time) 13.05 21.67

Task frequency (rep/min) 25.00 /

Because several studies highlighted that LE is more common in women [3,4,43], special
attention was paid to gender differences. The results of the questionnaire revealed that 18%
of men suffered from pathologies in wrist or elbow before the intervention, compared to
40% of women (Figure 6).
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(a) men; (b) women.

Table 3 shows that the mean scores of the 61 men and the 32 women were 21.70 and
24.93 out of 40, respectively, indicating higher risk factors associated with wrist and elbow
extension for women. A two-sample t-test was applied to compare the differences between
the two genders, which demonstrated that women had significantly higher scores for elbow
and global risk factors than men, with a confidence level higher than 99.9%.
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Table 3. Mean scores and standard deviations of men and women prior to the intervention (p < 0.05
in red).

Risk Factors
Men Women

p-Value
Mean Scores SD Mean Scores SD

Active arm

Wrist

Supination/pronation
>45◦ (%time) 0.19 0.52 0.14 0.40 0.31

Extension amplitude (◦) 2.75 1.04 2.99 1.03 0.14

Extension velocity angle
(◦/s) 4.12 1.12 4.33 0.91 0.18

Elbow
Extension amplitude (◦) 3.04 1.38 4.25 0.86 0.00

Extension velocity angle
(◦/s) 3.60 1.40 4.75 0.57 0.00

Shoulder

Comfort angle
flexion/extension (%time) 0.37 0.38 0.64 0.38 0.00

Comfort angle lateral
elevation (%time) 0.35 0.40 0.52 0.43 0.04

Comfort angle internal
rotation (%time) 0.04 0.12 0.08 0.14 0.09

Second arm

Wrist

Comfort angle
flexion/extension (%time) 0.06 0.19 0.08 0.21 0.37

Comfort angle deviation
(%time) 0.53 0.40 0.78 0.30 0.00

Comfort angle
pronation/supination

(%time)
0.09 0.22 0.22 0.34 0.03

Elbow Comfort angle
flexion/extension (%time) 0.00 0.03 0.00 0.00 0.20

Shoulder

Comfort angle
flexion/extension (%time) 0.09 0.26 0.04 0.11 0.09

Comfort angle lateral
elevation (%time) 0.93 0.62 0.61 0.50 0.01

Comfort angle internal
rotation (%time) 0.53 0.90 0.50 0.80 0.44

Task frequency (rep/min) 5.00 0.00 5.00 0.00 /

Total 21.70 4.56 24.93 2.95 0.00

3.2. Post-Intervention

The comparison of the average scores achieved by the 27 workers measured before and
after the intervention is reported in Table 4. The mean total score moved from 23.87 to 14.96,
which corresponds to a reduction of more than 37%. All the risk factors were significantly
improved, and paired sample t-tests demonstrated that the total and main risk factors
were statistically reduced (p < 0.06). The mean values of the corresponding scores are
reported in Table 5. All the values for the risk factors were improved except the percentage
of time spent out of the recommended comfort angles for the elbow of the second arm.
However, the score for the latter was reduced as workers no longer carried the pile of
garments with this arm. The calculated p-values demonstrated that the main risk factors
related to wrist and elbow extension were statistically improved, with p-values greater
than 0.15 and 0.001, respectively. By using both hands to perform the task, task frequency
was cut in half without affecting the company’s production, and the corresponding score
was significantly reduced.
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Table 4. Mean scores and standard deviations of the 27 workers prior and posterior to the intervention
(p < 0.05 in red).

Risk Factors
Pre Post

p-Value
Mean Scores SD Mean Scores SD

Active arm

Wrist

Supination/pronation >45◦

(%time) 0.31 0.58 0.25 0.49 0.18

Extension amplitude (◦) 2.98 0.81 2.56 1.12 0.06

Extension velocity angle
(◦/s) 4.39 0.77 3.96 1.02 0.03

Elbow
Extension amplitude (◦) 3.62 1.13 2.63 1.18 0.00

Extension velocity angle
(◦/s) 4.32 0.98 3.27 1.09 0.00

Shoulder

Comfort angle
flexion/extension (%time) 0.45 0.39 0.30 0.30 0.01

Comfort angle lateral
elevation (%time) 0.40 0.45 0.13 0.22 0.00

Comfort angle internal
rotation (%time) 0.01 0.03 0.00 0.00 0.09

Second arm

Wrist

Comfort angle
flexion/extension (%time) 0.06 0.16 0.00 0.01 0.04

Comfort angle deviation
(%time) 0.61 0.39 0.25 0.33 0.00

Comfort angle
pronation/supination

(%time)
0.18 0.28 0.01 0.06 0.00

Elbow Comfort angle
flexion/extension (%time) 0.02 0.06 0.01 0.09 0.46

Shoulder

Comfort angle
flexion/extension (%time) 0.00 0.02 0.00 0.01 0.24

Comfort angle lateral
elevation (%time) 0.92 0.60 0.43 0.55 0.00

Comfort angle internal
rotation (%time) 0.60 0.73 0.16 0.65 0.00

Task frequency (rep/min) 5.00 0.00 1.00 0.00 0.00

Total 23.87 3.58 14.96 3.82 0.00

The questionnaire given to the 93 workers at the end of the training revealed 100%
satisfaction. At the physical level, they felt a great difference and they were less tired thanks
to the intervention, particularly because they no longer had to carry the load of the pile of
garments with their second arm. Last, but not least, the ORPD has not reported new cases
of LE in the past year, the intervention having started a year and a half ago.
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Table 5. Mean values and standard deviations of the 27 workers prior and posterior to the intervention
(p < 0.05 in red).

Risk Factors
Pre Post

p-Value
Mean Values SD Mean Values SD

Active arm

Wrist

Supination/pronation >45◦

(%time) 3.09 5.82 2.45 4.89 0.18

Extension amplitude (◦) 26.83 7.31 23.40 10.90 0.09

Extension velocity angle
(◦/s) 196.12 56.30 176.82 72.78 0.15

Elbow
Extension amplitude (◦) 72.44 14.88 51.80 13.56 0.00

Extension velocity angle
(◦/s) 186.80 56.04 135.77 54.45 0.00

Shoulder

Comfort angle
flexion/extension (%time) 28.52 30.67 16.05 17.68 0.01

Comfort angle lateral
elevation (%time) 25.69 32.06 6.27 11.11 0.00

Comfort angle internal
rotation (%time) 0.42 1.57 0.01 0.05 0.09

Second arm

Wrist

Comfort angle
flexion/extension (%time) 2.76 8.14 0.06 0.32 0.04

Comfort angle deviation
(%time) 40.43 32.35 25.24 22.94 0.00

Comfort angle
pronation/supination

(%time)
9.12 14.10 1.16 2.82 0.00

Elbow Comfort angle
flexion/extension (%time) 0.76 3.21 1.37 4.42 0.29

Shoulder

Comfort angle
flexion/extension (%time) 0.23 1.19 0.11 0.50 0.33

Comfort angle lateral
elevation (%time) 46.00 30.08 42.87 27.53 0.32

Comfort angle internal
rotation (%time) 14.99 18.28 8.15 16.26 0.07

Task frequency (rep/min) 25.00 0.00 13.00 0.00 0.00

4. Discussion

This paper presents an ergonomic intervention to reduce LE at a workstation in
the textile industry, composed of workplace-based exercise programs, evaluation of risk
factors, and correction of the working movement. The application of wearable devices and
motion analysis highlighted the possible causes of the injuries at the workplace considered.
Significant angle amplitudes and high angular velocities for wrist and elbow extensions
were observed, which, combined with high task frequencies, can result in LE [3–7]. The
creation of a subject-specific injury score for evaluating risk factors, combined with a
personal interview and personalized training, improves the consideration of the employees
as individuals, which is certainly the main reason of their satisfaction and the reduction in
injuries. Although the task seemed simple, significant variations were found in the way
the task was executed by the workers. The evaluation revealed that significant differences
were observed between men and women, with women presenting higher scores. These
results could explain why more women in the workplace reported previous pathology in
wrist and elbow in the questionnaire and why other studies highlighted that LE is more
common in women [3,4,43]. Despite the differences between workers, all the risk factors
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were statistically reduced by teaching a new way to execute the task. Risk factors remained
significant at the wrist and elbow levels but were difficult to reduce under the workplace
and task constraints. The alternative use of hands to complete the task was found to
be a good strategy to significantly reduce repetitive strain injuries without detriment to
productivity [44]. The reduction in injuries demonstrated the benefit of this intervention,
which included movement correction and a workplace-based exercise program. The
partial effects of the different parts of the ergonomic intervention cannot be dissociated
because all the workers received the full intervention. The effectiveness of resistance and
stretching training programs in the workplace for the prevention of upper extremity MSD
was already reported in previous studies [45–47]. As a general limitation of this study,
because the initial objective was to reduce MSD at work (and not to conduct research),
this intervention was applied to all the workers in this workplace and no control group
was considered, with the effectiveness of this intervention having been demonstrated in
previous studies [30,31]. Finally, we are aware that, in activity ergonomics, researchers are
not in favor of posture corrections and prefer to address physical ergonomics interventions.
However, for economic and logistical reasons, the logistics center of the textile company
was strict and did not allow physical modifications of the workplace. Despite this limitation,
the posture correction coupled with workplace-based exercises offered good results at a low
cost without physical modification of the workplace and without detriment to productivity.

As a future work, the authors would like to apply their recent advances in the real-
time estimation of muscle efforts [48,49] and fatigue [50] using computer simulations, to
evaluate working movements so as to further improve injury prevention and risk evaluation.
Additionally, it is hypothesized that optimal-control-based predictive simulation, which is
used to predict and optimize treatment outcomes [51,52], could be applied to find harmless
working movements within workplace limitations.

5. Conclusions

Analysis and correction of the working movement using wearable inertial sensors
coupled with workplace-based exercise intervention were found to be a good strategy to
reduce LE in the target workplace. The proposed approach could serve as a complement to
physical ergonomics interventions or as an alternative when they are not possible.
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