Filtro de Kalman para captura de movimiento con estimación de esfuerzos motores y reacciones en tiempo real

> Manuel Pérez Soto Septiembre 2022

Motivación

- Existen varios métodos para la reconstrucción del movimiento humano en tiempo real
 - Nos permite determinar en el momento si una captura ha sido válida
- Sin embargo, no se dispone de una metodología de estimación de esfuerzos en tiempo real
 - Nos permitiría la implementación de aplicaciones *biofeedback* en tiempo real en las cuales la entrada sea el movimiento capturado
 - Deportes
 - Videojuegos
 - Rehabilitación

Objetivos

- Desarrollar y validar algoritmos capaces de estimar los esfuerzos motores y reacciones externas del movimiento humano en tiempo real, utilizando captura óptica y placas de fuerza
 - Incorporar la resolución de la dinámica inversa a un filtro de Kalman ya existente para captura en tiempo real basado en un modelo cinemático
 - Desarrollar e implementar un filtro de Kalman basado en un modelo dinámico del sistema, en el cual se incorporen los esfuerzos como estados
 - Pruebas de eficiencia, precisión y robustez
 - Implementación de ambos filtros en un modelo del cuerpo humano
 - Adaptación del filtro para su implementación en lenguaje compilado

- 1. Introducción y estado del arte
- **2.** Fundamentos teóricos
- **3.** Observadores de estado en biomecánica
- 4. Prueba de concepto: péndulo doble
- 5. Captura de movimiento de cuerpo completo
- 6. Conclusiones y trabajo futuro

Laboratorio de Ingeniería Mecánica Universidad de La Coruña

Laboratorio de Ingeniería Mecánica Universidad de La Coruña

Laboratorio de Ingeniería Mecánica Universidad de La Coruña

Laboratorio de Ingeniería Mecánica Universidad de La Coruña

Observadores de estado en biomecánica

- Lo más común es encontrar Filtros de Kalman
- Generalmente de estimación cinemática
 - Sistemas inerciales
 - Sistemas ópticos
- Existen filtros de estimación de reacciones en el suelo
 - Marcha humana
 - Práctica deportiva

* S. Skals, M.K. Jung, M. Damsgaard, and M.S. Andersen. *Prediction of ground reaction forces and moments during sports-related movements. Multibody System Dynamics*, 39(3):175–195, 2017.

Filtros de Kalman

Basados en DSM

- DSM implica ecuaciones no lineales \rightarrow EKF, UKF
- Los estados deben ser independientes → ecuaciones del movimiento en forma de ODE
- La estabilidad del filtro es inversamente proporcional al orden de la derivada medida por los sensores → sensorización a nivel de posiciones

Estimación de esfuerzos

- Filtros de dos etapas cinemático-dinámico
- ErrorEKF → los estados del filtro son los errores de estimación en posiciones, velocidades y aceleraciones

- **1.** Introducción y estado del arte
- 2. <u>Fundamentos teóricos</u>
- **3.** Observadores de estado en biomecánica
- 4. Prueba de concepto: péndulo doble
- 5. Captura de movimiento de cuerpo completo
- 6. Conclusiones y trabajo futuro

Dinámica de sistemas multicuerpo

- La dinámica de sistemas multicuerpo es el estudio de mecanismos formados por sólidos, que están unidos entre sí mediante pares cinemáticos que restringen el movimiento relativo entre ellos.
 - Dinámica directa
 - Dinámica inversa

Dinámica de sistemas multicuerpo

Partiendo de las ecuaciones de DSM para coordenadas dependientes:

$$ar{\mathbf{M}}\ddot{\mathbf{q}} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \, \mathbf{\lambda} = \ ar{\mathbf{Q}} \ \mathbf{\Phi} = \mathbf{0}$$

$$\overline{\mathbf{M}}_{i} = \begin{bmatrix} m_{i}\mathbf{I}_{3\mathbf{x}3} & -m_{i}\widetilde{\mathbf{g}}_{i} \\ \widetilde{\mathbf{g}}_{i} & \overline{\mathbb{I}}_{G_{i}} - m_{i}\widetilde{\mathbf{g}}_{i}\widetilde{\mathbf{g}}_{i} \end{bmatrix}$$

$$\overline{\mathbf{Q}}_{i} = \begin{bmatrix} \mathbf{f}_{i} - \mathbf{\omega}_{i} \times (\mathbf{\omega}_{i} \times m_{i}\mathbf{g}_{i}) \\ \overline{\mathbf{n}}_{i} - \overline{\mathbf{\omega}}_{i} \times \overline{\mathbb{I}}_{G_{i}}\overline{\mathbf{\omega}}_{i} + \mathbf{g}_{i} \times [\mathbf{f}_{i} - \mathbf{\omega}_{i} \times (\mathbf{\omega}_{i} \times m_{i}\mathbf{g}_{i})] \end{bmatrix}$$

Dinámica de sistemas multicuerpo

Partiendo de las ecuaciones de DSM para coordenadas dependientes:

$$\overline{\mathbf{M}}\ddot{\mathbf{q}} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \,\mathbf{\lambda} = \,\overline{\mathbf{Q}} \ \mathbf{\Phi} = \mathbf{0}$$

Si se deriva el vector de restricciones respecto al tiempo (y suponiendo que no hay restricciones reónomas)

 $M\ddot{z} = Q$

Donde:

 $\mathbf{M} = \mathbf{R}^{\mathrm{T}} \overline{\mathbf{M}} \mathbf{R}$

 $\mathbf{Q} = \mathbf{R}^{\mathrm{T}} (\overline{\mathbf{Q}} - \overline{\mathbf{M}} \dot{\mathbf{R}} \dot{\mathbf{z}})$

$$\Phi_q \dot{q} = 0 \xrightarrow{\text{sustituyendo}} \Phi_q R \dot{z} = 0 \xrightarrow{\dot{z} \neq 0} \Phi_q R = 0$$

Se define un set de coordenadas independientes
z y se deriva respecto al tiempo de forma que:

$$\dot{q} = R\dot{z}$$

 $\ddot{q} = \dot{R}\dot{z} + R\ddot{z}$
 \downarrow
Sustituyendo y premultiplicando por la
traspuesta de R
 $R^T \overline{M}R\ddot{z} + (\Phi_q R)^T \lambda = R^T (\overline{Q} - \overline{M}\dot{R}\dot{z})$

Sistema de ecuaciones de Lagrange en coordenadas independientes z a partir de unas dependientes q

Captura óptica

Colocación de marcadores ópticos en puntos anatómicos relevantes, para, mediante cámaras obtener la posición de cada uno de ellos y poder reconstruir el movimiento en el espacio virtual

- Cámaras con iluminación y filtro de infrarrojos
- Para obtener la ubicación de un marcador en el espacio, este debe ser captado por al menos dos cámaras
- Se hace necesaria la reconstrucción del movimiento

Captura óptica

Colocación de marcadores ópticos en puntos anatómicos relevantes, para, mediante cámaras obtener la posición de cada uno de ellos y poder reconstruir el movimiento en el espacio virtual

- Cámaras con iluminación y filtro de infrarrojos
- Para obtener la ubicación de un marcador en el espacio, este debe ser captado por al menos dos cámaras
- Se hace necesaria la reconstrucción del movimiento

- Seleccionar 3 puntos no alineados para cada segmento a estimar
- 2. Crear un sistema de referencia ortogonal (*uvw*) basado en dichos marcadores
- 3. Usar ecuaciones antropométricas para estimar la posición y orientación del segmento

Filtro de Kalman

- Estimador de estados que aproxima los estados mediante una relación matemática entre ellos y una serie de sensores e inputs del sistema
 - Matriz propagación de estados
 - Matriz de covarianza del ruido de planta
 - Matriz de covarianza del ruido de sensores

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \widetilde{\mathbf{w}}, \mathbf{t})$ $\mathbf{y} = \mathbf{h}(\mathbf{x}, \widetilde{\mathbf{v}}, \mathbf{t})$ $\begin{array}{l} \mathbf{x} \rightarrow \text{vector de estados} \\ \mathbf{u} \rightarrow \text{inputs del sistema} \\ \mathbf{y} \rightarrow \text{outputs del sistema (sensores)} \\ \mathbf{\tilde{v}} \rightarrow \text{ruido blanco asociado a los sensores} \\ \mathbf{\tilde{w}} \rightarrow \text{ruido blanco asociado a planta} \end{array}$

- Kalman Filter:
 - Sistemas lineales
 - Primer modelo planteado
 - Asunción ruido blanco

- Extended Kalman Filter:
 - Sistemas no lineales
 - Puede ser discreto o continuo
 - Buena relación precisión/eficiencia

- Unscented Kalman Filter:
 - Sistemas no lineales
 - Puede ser discreto o continuo
 - Más preciso
 - Coste computacional muy elevado

Filtro de Kalman Extendido

Matrices de covarianza calculadas mediante la linealización de las ecuaciones del sistema.

- Se puede linealizar su propagación ٠
- Seguimos teniendo un sistema no lineal, se linealiza alrededor de un estado de referencia mediante una expansión en serie de Taylor:

no es lineal?

Matriz de propagación de estados

 Para pasar de modelo continuo a modelo discreto hay que integrar las ecuaciones a lo largo de un intervalo de tiempo. En el caso de no tener inputs ni ruido se tiene:

$$\mathbf{x}_{k+1}^{H} = \mathbf{x}_{k} + \int_{\mathbf{t}_{k}}^{\mathbf{t}_{k+1}} \mathbf{f}(\mathbf{x}, \mathbf{0}, \mathbf{0}, \tau) d\tau$$

La matriz de propagación de estados es aquella tal que:

Sistemas lineales
$$\mathbf{x}_{k+1}^{H} = \mathbf{\Phi}_k \mathbf{x}_k$$
Sistemas no lineales $\delta \mathbf{x}_{k+1}^{H} = \mathbf{\Phi}_k \delta \mathbf{x}_k$

 Si la matriz de sensibilidad F no es constante, debe calcularse mediante la diferenciación numérica de la integral de la función en cada intervalo de tiempo, teniendo en cuenta que: 2--H

$$\mathbf{\Phi}_{k} = \frac{\partial \mathbf{x}_{k+1}^{n}}{\partial \mathbf{x}_{k}}$$

En el caso que sea constante (sistemas time invariant), para un paso de tiempo ∆t:

$$\mathbf{\Phi}_{k} = e^{\mathbf{F}\Delta t} = \mathbf{I} + \sum_{n=1}^{\infty} \frac{(\mathbf{F}\Delta t)^{n}}{n!}$$

Matrices de covarianza del ruido de planta y sensores

 Se supone w̃ como ruido blanco, por lo que este se puede caracterizar por una PSD (Power Spectral Density) denominada Σ^P:

 $\mathbf{E}[\widetilde{\mathbf{w}}(t)\widetilde{\mathbf{w}}(\tau)^{\mathrm{T}}] = \mathbf{\Sigma}^{\mathrm{P}}\delta(t-\tau)$

Donde $\delta(t - \tau)$ es la función de Dirac que define una función impulso tal que $\delta(t) = 0$ y $\delta(\tau) = \infty$.

Discretización $\widetilde{\boldsymbol{w}} \rightarrow \boldsymbol{w}_k$ $\boldsymbol{\Sigma}^P \rightarrow \boldsymbol{\Sigma}^P_k$

Siendo:

$$\boldsymbol{\Sigma}_{k}^{P}(t_{k+1}, t_{k}) = \int_{t_{k}}^{t_{k+1}} \boldsymbol{\Phi}(t_{k+1}, \tau) \boldsymbol{G}(\tau) \boldsymbol{\Sigma}^{P} \boldsymbol{G}^{T}(\tau) \boldsymbol{\Phi}(t_{k+1}, \tau)^{T} d\tau \longrightarrow \begin{array}{l} \text{en composition} \\ \text{con la d} \\ \text{con la d} \end{array}$$

- $\pmb{\Sigma}_k^P$ es una integral compleja dependiente de $\pmb{\Phi}$
- Computacionalmente imposibilita real-time

Normalmente, si los sensores son independientes: $\Sigma^{S} = diag(PSD_{i})$

Matrices de covarianza del ruido de planta y sensores

Se supone \widetilde{w} como ruido blanco, por lo que este se puede caracterizar por una PSD (Power Spectral Density) denominada Σ^{P} :

 $\mathbf{E}[\widetilde{\mathbf{w}}(t)\widetilde{\mathbf{w}}(\tau)^{\mathrm{T}}] = \mathbf{\Sigma}^{\mathrm{P}}\delta(t-\tau)$

Donde $\delta(t - \tau)$ es la función de Dirac que define una función impulso tal que $\delta(t) = 0$ y $\delta(\tau) = \infty$.

Siendo:

$$\boldsymbol{\Sigma}_{k}^{P}(t_{k+1}, t_{k}) = \int_{t_{k}}^{t_{k+1}} \boldsymbol{\Phi}(t_{k+1}, \tau) \boldsymbol{G}(\tau) \boldsymbol{\Sigma}^{P} \boldsymbol{G}^{T}(\tau) \boldsymbol{\Phi}(t_{k+1}, \tau)^{T} d\tau \longrightarrow \begin{array}{l} \text{en compara-}\\ \text{con la dinánova d$$

- $\pmb{\Sigma}_k^P$ es una integral compleja dependiente de $\pmb{\Phi}$
- Computacionalmente imposibilita real-time

• Aproximación por serie de Taylor • $\Sigma_{x}^{P} = G\Sigma^{P}G^{T}$ • $\Sigma_{k}^{P} \approx \Sigma_{x}^{P}\Delta t + (F\Sigma_{x}^{P} + \Sigma_{x}^{P}F^{T})\frac{\Delta t^{2}}{2} + F\Sigma_{x}^{P}F^{T}\frac{\Delta t^{3}}{3}$ Si Δt es pequeña en comparación con la dinámica del sistema

Normalmente, si los sensores son independientes: $\Sigma^{S} = diag(PSD_{i})$

Estimación de estados a priori

 $\hat{\mathbf{x}}_{k+1}^{-} = \hat{\mathbf{x}}_{k} + \int_{\mathbf{t}_{k}}^{\mathbf{t}_{k+1}} \mathbf{f}(\mathbf{x}, \mathbf{0}, \mathbf{0}, \tau) d\tau$

 Propagación covarianza del error de estimación

$$\mathbf{P}_{k+1}^{-} = \mathbf{\Phi}_{k} \mathbf{P}_{k} \mathbf{\Phi}_{k}^{\mathrm{T}} + \mathbf{\Sigma}_{k}^{\mathrm{P}}$$

ETAPA PREDICCIÓN

Cálculo innovación $\tilde{\mathbf{y}}_k = \mathbf{y}_{k+1} - \mathbf{h}(\hat{\mathbf{x}}_{k+1}^-)$

• Cálculo covarianza de sensores $C_{k+1} = H_{k+1}P_{k+1}^{-}H_{k+1}^{T} + \Sigma_{k+1}^{S}$

- **Cálculo ganancia del sistema** $\mathbf{K}_{k+1} = \mathbf{P}_{k+1}^{-} \mathbf{H}_{k+1}^{T} \mathbf{C}_{k+1}^{-1}$
- Corrección y obtención estados a posteriori

 $\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_{k+1}^- + \mathbf{K}_{k+1}\tilde{\mathbf{y}}_{k+1}$

Actualización covarianza del error

 $\mathbf{P}_{k+1} = (\mathbf{I} - \mathbf{K}_{k+1}\mathbf{H}_{k+1})\mathbf{P}_{k+1}^{-}$

ETAPA CORRECCIÓN

- **1.** Introducción y estado del arte
- **2.** Fundamentos teóricos
- 3. Observadores de estado en biomecánica
- 4. Prueba de concepto: péndulo doble
- 5. Captura de movimiento de cuerpo completo
- 6. Conclusiones y trabajo futuro

Observadores de estado en biomecánica

Objetivo: estimar los esfuerzos motores y las reacciones externas del movimiento humano en tiempo real, utilizando captura óptica y placas de fuerza

Kalman cinemático de segundo orden

- Filtro tradicional del laboratorio
- Planteamiento discreto
- Estados: Posiciones y velocidades
- Obtención aceleraciones mediante postproceso por diferencias finitas
- Obtención de esfuerzos articulares mediante postproceso por dinámica inversa

Kalman cinemático de tercer orden

- Planteamiento discreto
- Estados: Posiciones, velocidades y aceleraciones
- Obtención de esfuerzos articulares mediante postproceso por dinámica inversa

Kalman dinámico

- Discretización de modelo continuo
- Estados: Posiciones, velocidades y esfuerzos articulares
- Esfuerzos proporcionados por el estimador

Modelo multicuerpo

- Sistema multicuerpo tridimensional formado
 Para reducir el número de marcadores por 18 segmentos anatómicos
 necesarios:
- Pares esféricos como articulaciones
- Sistema con 57 grados de libertad
- Sistema referencia:
 - Eje X \rightarrow Eje antero-posterior
 - Eje Y \rightarrow Eje medio-lateral
 - Eje Z \rightarrow Dirección vertical

- Unión Torso-Cuello \rightarrow Par Cardan
- Unión Falange-Metatarso \rightarrow Par revolución

Nuevo modelo de 52 grados de libertad

- Traslación sólido base (3 componentes)
- Rotación relativa asociada a los pares de revolución de los pies (2 componentes)
- Rotación relativa asociada al par universal en la base del cuello (2 componentes)
- Ángulos de Euler asociado a la orientación global del resto de sólidos (45 componentes)

Definición filtros cinemáticos

Filtro cin	emático o	de seg	gundo
orden			

Discrete White noise acceleration (DWNA)

Filtro cinemático de tercer orden

 Discrete Wiener process acceleration (DWPA)

$\hat{\mathbf{x}}_{\mathrm{k}}^{-} = \mathbf{\Phi} \hat{\mathbf{x}}_{\mathrm{k}} + \mathbf{\Gamma} \mathbf{w}_{\mathrm{k}}$			
$\begin{bmatrix} \mathbf{z}_{k+1} \\ \dot{\mathbf{z}}_{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{I}\Delta t \\ 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{k} \\ \dot{\mathbf{z}}_{k} \end{bmatrix} + \begin{bmatrix} \frac{1}{2}\mathbf{I}\Delta t^{2} \\ \mathbf{I}\Delta t \end{bmatrix} \mathbf{w}_{k}$	PROPAGACIÓN PLANTA	$ \begin{bmatrix} \mathbf{z}_{k+1} \\ \dot{\mathbf{z}}_{k+1} \\ \ddot{\mathbf{z}}_{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{I}\Delta t & \frac{1}{2}\mathbf{I}\Delta t^2 \\ 0 & \mathbf{I} & \mathbf{I}\Delta t \\ 0 & 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{z}_k \\ \dot{\mathbf{z}}_k \\ \ddot{\mathbf{z}}_k \end{bmatrix} + \begin{bmatrix} \frac{1}{2}\mathbf{I}\Delta t^2 \\ \mathbf{I}\Delta t \\ \mathbf{I} \end{bmatrix} \mathbf{w}_k $	
$\boldsymbol{\Sigma}_{i}^{P} = \boldsymbol{\Gamma} \boldsymbol{\sigma}_{ai}^{2} \boldsymbol{\Gamma}^{T} = \begin{bmatrix} \frac{1}{4} \Delta t^{4} & \frac{1}{2} \Delta t^{3} \\ \frac{1}{2} \Delta t^{3} & \Delta t^{2} \end{bmatrix} \boldsymbol{\sigma}_{ai}^{2}$	MATRIZ COVARIANZA DE RUIDO DE PLANTA	$\boldsymbol{\Sigma}_{i}^{P} = \boldsymbol{\Gamma}\boldsymbol{\sigma}_{\Delta a i}^{2}\boldsymbol{\Gamma}^{T} = \begin{bmatrix} \frac{1}{4}\Delta t^{4} & \frac{1}{2}\Delta t^{3} & \frac{1}{2}\Delta t^{2} \\ \frac{1}{2}\Delta t^{3} & \Delta t^{2} & \Delta t \\ \frac{1}{2}\Delta t^{2} & \Delta t & 1 \end{bmatrix} \boldsymbol{\sigma}_{\Delta a i}^{2}$	

Modelo de observación

Sensores \rightarrow Marcadores ópticos

Los marcadores estarán afectados por un ruido v_k :

- Ruido blanco asociado a las cámaras
- Desplazamiento de los marcadores respecto al esqueleto

Si se asume que el ruido producido por el desplazamiento de los marcadores es ruido blanco, los sensores son independientes y que todos los marcadores se ven influidos de la misma manera por el ruido:

$$\Sigma^{s} = diag(\sigma_{s}^{2})$$

$$\label{eq:mission} \begin{split} & \frac{Función \, de \, observación}{m_i = r_b + A_b \overline{m}_i} \\ & r_b = r_{b-1} + A_{b-1} \, \overline{r}_b \end{split}$$

Donde:

- $A \rightarrow$ matriz de rotación
- • $\overline{\mathbf{m}} \rightarrow$ posición local del marcador en ejes locales
 - * $\mathbf{r}
 ightarrow$ posición global de la articulación
 - $\overline{\mathbf{r}}
 ightarrow \mathsf{posición}$ de la articulación distal en ejes locales

 A_{b-1}

 \mathbf{r}_{b-1}

Modelo dinámico

Escalado del modelo

Objetivo: obtener un escalado del esqueleto de referencia para minimizar el error cometido por los marcadores

 $\min_{\mathbf{x},\mathbf{k}_i} f(\mathbf{x},\mathbf{k}_i) = |\mathbf{h}(\mathbf{x},\mathbf{k}_i) - \mathbf{m}|$

Sólidos con un factor de escala uniforme \rightarrow huesos largos

Sólidos con dos factores de escala independientes \rightarrow dos escalas principales y una tercera que será la media de las otras dos

Sólidos con tres factores de escala independientes \rightarrow tres escalas independientes entre sí

Problema: Escalado depende mucho de la precisión del posicionamiento de los marcadores

Ajustar la posición local de los marcadores para cada sesión captura

Sólido	Segmento	k _x	k _y	k _z
3	Cuello	5	5	5
4	Cabeza	5	5	5
5	Brazo derecho	6	6	6
6	Antebrazo derecho	7	7	7
7	Mano derecha	7	7	7
8	Brazo izquierdo	8	8	8
9	Antebrazo izquierdo	9	9	9
10	Mano izquierda	9	9	9
11	Fémur derecho	10	10	10
12	Tibia derecha	11	11	11
14	Fémur izquierdo	14	14	14
15	Tibia izquierda	15	15	15

Escalado del modelo

Objetivo: obtener un escalado del esqueleto de referencia para minimizar el error cometido por los marcadores

 $\min f(\mathbf{x}, \mathbf{k}_i) = |\mathbf{h}(\mathbf{x}, \mathbf{k}_i) - \mathbf{m}|$ \mathbf{x}, \mathbf{k}_i

Sólidos con un factor de escala uniforme \rightarrow huesos largos

Sólidos con dos factores de escala independientes \rightarrow dos escalas principales y una tercera que será la media de las otras dos

Sólidos con tres factores de escala independientes \rightarrow tres escalas independientes entre sí

Problema: Escalado depende mucho de la precisión del posicionamiento de los marcadores

> Ajustar la posición local de los marcadores para cada sesión captura

Sólido	Segmento	$\mathbf{k}_{\mathbf{x}}$	k _y	k _z
13	Pie derecho	12	13	-
16	Pie izquierdo	16	17	-
17	Dedos pie derecho	12	13	-
18	Dedos pie izquierdo	16	17	-
Sólido	Segmento	$\mathbf{k}_{\mathbf{x}}$	k _y	k _z
1	Pelvis	1	2	3

http://lim.ii.udc.es

Torso

Т

2

1

3

Corrección posición local marcadores

Ajuste en 3 etapas

1. Optimizador para estimación inicial de escala

 $\min_{\mathbf{x},\mathbf{k}_i} f(\mathbf{x},\mathbf{k}_i) = |\mathbf{h}(\mathbf{x},\mathbf{k}_i) - \mathbf{m}|$

2. Ajustar la posición local de los marcadores para la captura con \boldsymbol{k}_i

 $\mathbf{m}_{i} = \mathbf{r}_{b} + \mathbf{A}_{b}\overline{\mathbf{m}}_{i} \rightarrow \overline{\mathbf{m}}_{i} = \mathbf{A}_{b}^{T}(\mathbf{m}_{i} - \mathbf{r}_{b})$

3. Optimización de escala con nuevos valores locales de marcadores

Escalado	RMS error estimación
Inicial (${f k}_{i}$)	15~20 mm
Final (k)	4~8 mm

Dinámica inversa

Partiendo de las ecuaciones de DSM:

$$\mathbf{M}\ddot{\mathbf{z}} = \mathbf{Q}$$

$$\mathbf{M}\ddot{\mathbf{z}} = \mathbf{Q}_{g} + \mathbf{Q}_{g}$$

Donde:

• $Q_g \rightarrow$ Fuerzas gravitatorias e inerciales

 $\mathbf{Q}_{\mathrm{e}} \rightarrow$ Fuerzas sobre las coordenadas independientes

z de los pares articulares y esfuerzos externos

- Pares articulares en ejes locales del sólido proximal
- Reacciones externas en los pies
- Fuerza residual en la pelvis
- Momento residual en la pelvis

PROBLEMA: Interpretar los esfuerzos externos asociados a las coordenadas independientes del sistema es complejo

$$\mathbf{Q}_{e} = \mathbf{B}^{T}\mathbf{T}_{e} = \begin{bmatrix} \mathbf{B}_{d}^{T} & \mathbf{B}_{p}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{T}_{d} \\ \mathbf{p} \end{bmatrix}$$

Dónde B es la matriz de transformación de velocidades que transforma las velocidades en coordenadas independientes en un set de coordenadas s tal que por potencias virtuales:

Siendo:
$$\mathbf{Q}_e^T \dot{\mathbf{z}}^* = \mathbf{T}_e^T \mathbf{s}^*$$

 $\mathbf{s} = \mathbf{B} \dot{\mathbf{z}}$ $\mathbf{M} \ddot{\mathbf{z}} = \mathbf{Q}_g + \mathbf{B}^T \mathbf{T}_e$

$$\mathbf{B}_{d}^{\mathrm{T}}\mathbf{T}_{d} = \mathbf{M}\ddot{\mathbf{z}} - \mathbf{Q}_{\mathrm{g}} - \mathbf{B}_{\mathrm{p}}^{\mathrm{T}}\mathbf{p}$$

- B_d , $T_d \rightarrow$ residuo y pares articulares
- $B_p \rightarrow placas$
- $p \rightarrow$ fuerzas de placas

Filtro dinámico

• Diseño de un filtro de Kalman en el cual esté implementada la dinámica del sistema, capaz de hacer una estimación de esfuerzos articulares y reacciones en el suelo en tiempo real

•
$$\dot{\mathbf{q}}_{i} = \begin{bmatrix} \dot{\mathbf{r}}_{G_{i}} \\ \overline{\mathbf{\omega}} \end{bmatrix}$$

• $\overline{\mathbf{M}}_{i} = \begin{bmatrix} m_{i}\mathbf{I}_{3\times3} & \mathbf{0} \\ \mathbf{0} & \overline{\mathbb{I}}_{G_{i}} \end{bmatrix}$
• $\overline{\mathbf{Q}}_{i} = \begin{bmatrix} \mathbf{f}_{i} \\ \overline{\mathbf{n}}_{i} - \overline{\mathbf{\omega}}_{i} \times \overline{\mathbb{I}}_{G_{i}}\overline{\mathbf{\omega}}_{i} \end{bmatrix}$

•
$$\dot{\mathbf{z}} = [\dot{\mathbf{r}}_0^T \quad \dot{\mathbf{\theta}}_1^T \quad \dot{\mathbf{\theta}}_2^T \quad \cdots \quad \dot{\mathbf{\theta}}_n^T]^T$$

• $\mathbf{M} = \mathbf{R}^T \overline{\mathbf{M}} \mathbf{R}$
• $\mathbf{Q} = \mathbf{R}^T (\overline{\mathbf{Q}} - \overline{\mathbf{M}} \dot{\mathbf{R}} \dot{\mathbf{z}})$
• $\mathbf{X} = \mathbf{R}^T (\mathbf{Q} - \mathbf{M} \dot{\mathbf{R}} \dot{\mathbf{z}})$

Matriz R

- Formada por submatrices ensambladas por bloques
- Definición sistemática
- Derivabilidad abordable

Matriz G

$$\dot{\mathbf{r}}_{G_{i}} = \dot{\mathbf{r}}_{i} + \dot{\mathbf{A}}_{i}\dot{\mathbf{r}}_{G_{i}} \longrightarrow \dot{\mathbf{A}}_{i}\overline{\mathbf{r}}_{G_{i}} = \mathbf{G}_{i}\dot{\mathbf{\theta}}_{i}$$
$$\mathbf{G}_{i} = [\mathbf{A}_{\alpha_{i}}\overline{\mathbf{r}}_{G_{i}} \quad \mathbf{A}_{\beta_{i}}\overline{\mathbf{r}}_{G_{i}} \quad \mathbf{A}_{\gamma_{i}}\overline{\mathbf{r}}_{G_{i}}]$$

Filtro dinámico

 Diseño de un filtro de Kalman en el cual esté implementada la dinámica del sistema, capaz de hacer una estimación de esfuerzos articulares y reacciones en el suelo en tiempo real

Coordenadas independientes

$$\dot{\mathbf{z}} = \begin{bmatrix} \dot{\mathbf{r}}_0^T & \dot{\mathbf{\theta}}_1^T & \dot{\mathbf{\theta}}_2^T & \cdots & \dot{\mathbf{\theta}}_n^T \end{bmatrix}^T$$
$$\mathbf{M} = \mathbf{R}^T \overline{\mathbf{M}} \mathbf{R}$$
$$\mathbf{Q} = \mathbf{R}^T (\overline{\mathbf{Q}} - \overline{\mathbf{M}} \dot{\mathbf{R}} \dot{\mathbf{z}})$$
$$\mathbf{M} = \mathbf{R}^T (\mathbf{Q} - \mathbf{M} \dot{\mathbf{R}} \dot{\mathbf{z}})$$

Matriz R

- Formada por submatrices ensambladas por bloques
- Definición sistemática
- Derivabilidad abordable

Matriz J

$$\dot{\mathbf{r}}_{j} = \dot{\mathbf{r}}_{i} + \dot{\mathbf{A}}_{i} \overline{\mathbf{r}}_{j} \longrightarrow \dot{\mathbf{A}}_{i} \overline{\mathbf{r}}_{j} = \mathbf{J}_{i}^{j} \dot{\boldsymbol{\Theta}}_{i}$$
$$\mathbf{J}_{i}^{j} = \begin{bmatrix} \mathbf{A}_{\alpha_{i}} \overline{\mathbf{r}}_{j} & \mathbf{A}_{\beta_{i}} \overline{\mathbf{r}}_{j} & \mathbf{A}_{\gamma_{i}} \overline{\mathbf{r}}_{j} \end{bmatrix}$$

Filtro dinámico

 Diseño de un filtro de Kalman en el cual esté implementada la dinámica del sistema, capaz de hacer una estimación de esfuerzos articulares y reacciones en el suelo en tiempo real

Coordenadas independientes

$$\dot{\mathbf{z}} = \begin{bmatrix} \dot{\mathbf{r}}_0^T & \dot{\mathbf{\theta}}_1^T & \dot{\mathbf{\theta}}_2^T & \cdots & \dot{\mathbf{\theta}}_n^T \end{bmatrix}^T$$
$$\mathbf{M} = \mathbf{R}^T \overline{\mathbf{M}} \mathbf{R}$$
$$\mathbf{Q} = \mathbf{R}^T (\overline{\mathbf{Q}} - \overline{\mathbf{M}} \dot{\mathbf{R}} \dot{\mathbf{z}})$$
$$\mathbf{M} = \mathbf{R}^T (\mathbf{Q} - \mathbf{M} \dot{\mathbf{R}} \dot{\mathbf{z}})$$

Matriz R

- Formada por submatrices ensambladas por bloques
- Definición sistemática
- Derivabilidad abordable

Matriz W

$$\overline{\mathbf{\omega}_{i}} = \overline{\mathbf{W}_{i}} \dot{\mathbf{\theta}}_{i}$$

$$\overline{\mathbf{W}_{i}} = \begin{bmatrix} 1 & 0 & -\sin \beta_{i} \\ 0 & \cos \alpha_{i} & \sin \alpha_{i} \cos \beta_{i} \\ 0 & -\sin \alpha_{i} & \cos \alpha_{i} \cos \beta_{i} \end{bmatrix}$$

Cálculo matriz R filtro dinámico

Objetivo→ **Obtener una ecuación diferencial de la forma:**

$$\delta \dot{\mathbf{x}} = \mathbf{F} \delta \mathbf{x} + \mathbf{B} \delta \mathbf{u} + \mathbf{G} \widetilde{\mathbf{w}}$$

1. Definir el vector de estados:

 $\mathbf{x} = \begin{bmatrix} \mathbf{z} \\ \dot{\mathbf{z}} \\ \mathbf{T}_e \end{bmatrix} \xrightarrow{\text{Donde } \mathbf{T}_e \text{ es el vector equivalente al } \mathbf{T}_d$ presentado para la dinámica inversa y que contiene los esfuerzos motores y el residuo

2. Determinar como las fuerzas de placa actuarán en nuestro sistema

• 12 fuerzas placa

- Estimación de reacciones teniendo en cuenta el ruido de la señal
- Hace el sistema de observación redundante
 - **B** no es cuadrada por lo que a partir de Q_e no se pueden obtener T_e
- Necesito una función que a partir de los estados permita estimar los sensores del sistema
 - Introducir en el vector de estados las reacciones de la placa

A partir de las ecuaciones de MSD:

$$M\ddot{z} = Q_{q} + B^{T}T_{e} \longrightarrow \ddot{z} = M^{-1}(Q_{q} + B^{T}T_{e})$$

$$\frac{dT_{e}}{dt} = \dot{T}_{e} = \widetilde{w} \longrightarrow Wiener$$

$$\downarrow$$

$$\delta \dot{x} = F\delta x + G\widetilde{w}$$

$$F = \frac{\partial f}{\partial x} = \begin{bmatrix} 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$G = \frac{\partial f}{\partial \widetilde{w}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Labora Univer

Laboratorio de Ingeniería Mecánica Universidad de La Coruña

A partir de las ecuaciones de MSD:

$$M\ddot{z} = Q_{q} + B^{T}T_{e} \longrightarrow \ddot{z} = M^{-1}(Q_{q} + B^{T}T_{e})$$

$$\frac{dT_{e}}{dt} = \dot{T}_{e} = \tilde{w} \longrightarrow Wiener$$

$$\downarrow$$

$$Derivada respecto a posiciones$$

$$\ddot{z}_{z} = (M^{-1})_{z} \otimes_{2} (Q_{q} + B^{T}T_{e}) - M^{-1}(K - (B^{T})_{z} \otimes_{2} T_{e})$$

$$Siendo:$$

$$\cdot (M^{-1})_{z} = -M^{-1} \otimes M_{z} \otimes M^{-1}$$

$$\cdot M_{z} = \frac{\partial M}{\partial z} = \frac{\partial (R^{T}\bar{M}R)}{\partial z} = R_{z}^{T} \otimes_{2} \bar{M}R + R^{T}\bar{M}R_{z}$$

$$\cdot K = -\frac{\partial Q_{q}}{\partial z} = -\frac{\partial R^{T}(\bar{Q} - \bar{M}\dot{R}\dot{z})}{\partial z} = -R_{z}^{T} \otimes_{2} (\bar{Q} - \bar{M}\dot{R}\dot{z}) - R^{T} (\bar{Q}_{z} - \bar{M}(\dot{R}\dot{z})_{z})^{G} = \frac{\partial f}{\partial \tilde{w}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

A partir de las ecuaciones de MSD:

$$M\ddot{z} = Q_{q} + B^{T}T_{e} \longrightarrow \ddot{z} = M^{-1}(Q_{q} + B^{T}T_{e})$$

$$\dot{x} = f(x, \widetilde{w}) = \begin{bmatrix} \dot{z} \\ \ddot{z} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} \widetilde{w} = \begin{bmatrix} \dot{z} \\ M^{-1}(Q_{q} + B^{T}T_{e}) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} \widetilde{w}$$

$$\frac{dT_{e}}{dt} = \dot{T}_{e} = \widetilde{w} \longrightarrow Wiener$$

Derivada respecto a velocidades

 $\ddot{\mathbf{z}}_{\dot{\mathbf{z}}} = -\mathbf{M}^{-1}\mathbf{C}$

Siendo:

•
$$\mathbf{C} = -\frac{\partial \mathbf{Q}_{\mathbf{q}}}{\partial \dot{\mathbf{z}}} = -\frac{\partial \mathbf{R}^{\mathrm{T}}(\bar{\mathbf{Q}}-\bar{\mathbf{M}}\dot{\mathbf{R}}\dot{\mathbf{z}})}{\partial \dot{\mathbf{z}}} = -\mathbf{R}^{\mathrm{T}}\left(\bar{\mathbf{Q}}_{\dot{\mathbf{z}}}-\bar{\mathbf{M}}(\dot{\mathbf{R}}\dot{\mathbf{z}})_{\dot{\mathbf{z}}}\right)$$

• $(\dot{\mathbf{R}}\dot{\mathbf{z}})_{\dot{\mathbf{z}}} = \mathbf{R}_{\mathbf{z}} \bigotimes_{2} \dot{\mathbf{z}} + \mathbf{R}_{\mathbf{z}} \bigotimes_{3} \dot{\mathbf{z}}$

Derivada respecto a esfuerzos

•
$$\ddot{\mathbf{z}}_{\mathrm{T}_{\mathrm{e}}} = \mathbf{M}^{-1}\mathbf{B}$$

 $\delta \dot{\mathbf{x}} = \mathbf{F} \delta \mathbf{x} + \mathbf{G} \widetilde{\mathbf{w}}$

$$\mathbf{F} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \ddot{\mathbf{z}}_{\mathbf{z}} & \ddot{\mathbf{z}}_{\dot{\mathbf{z}}} & \ddot{\mathbf{z}}_{\mathrm{T}_{e}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$
$$\mathbf{G} = \frac{\partial \mathbf{f}}{\partial \widetilde{\mathbf{w}}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{I} \end{bmatrix}$$

]

- **1.** Introducción y estado del arte
- **2.** Fundamentos teóricos
- 3. Observadores de estado en biomecánica
- 4. Prueba de concepto: péndulo doble
- 5. Captura de movimiento de cuerpo completo
- 6. Conclusiones y trabajo futuro

Set de coordenadas dependientes

Set de coordenadas independientes

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & Lc\theta_1 & 0 \\ 0 & 1 & Ls\theta_1 & 0 \\ 1 & 0 & Lc\theta_1 & Lc\theta_2 \\ 0 & 1 & Ls\theta_1 & Ls\theta_2 \end{bmatrix}$$

 θ

Х

 au_1

 θ_2

 F_x

 $T_{e} =$

 T_2

 F_y

Ι₂ Lτ₁

$$\ddot{\mathbf{z}} = \mathbf{M}^{-1}(\mathbf{Q}_{q} + \mathbf{B}^{T}\mathbf{T}_{e})$$

Falta definición de matriz B que relacione esfuerzos motores con coordenadas independientes

$$\mathbf{Q}_{e} = \mathbf{B}^{T} \mathbf{T}_{e}$$
$$\mathbf{B}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ Lc\theta_{1} & Ls\theta_{1} & 0 & -1 \\ Lc\theta_{2} & Ls\theta_{2} & 1 & 1 \end{bmatrix}$$

Set de coordenadas independientes

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & Lc\theta_1 & 0 \\ 0 & 1 & Ls\theta_1 & 0 \\ 1 & 0 & Lc\theta_1 & Lc\theta_2 \\ 0 & 1 & Ls\theta_1 & Ls\theta_2 \end{bmatrix}$$

$$F_y^0$$

$$F_x^0$$

$$T_0$$

$$T_0$$

$$T_0$$

$$F_y^0$$

$$F_y^0$$

$$F_y^0$$

$$T_2$$

$$T_2$$

$$F_y^0$$

$$\ddot{\mathbf{z}} = \mathbf{M}^{-1}(\mathbf{Q}_{q} + \mathbf{B}^{T}\mathbf{T}_{e})$$

Falta definición de matriz B que relacione esfuerzos motores con coordenadas independientes

$$\mathbf{Q}_{e} = \mathbf{B}^{T} \mathbf{T}_{e}$$
$$\mathbf{B}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ Lc\theta_{1} & Ls\theta_{1} & 0 & -1 \\ Lc\theta_{2} & Ls\theta_{2} & 1 & 1 \end{bmatrix}$$

¿Y si añado residuo?

$$\mathbf{B}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ \mathrm{Lc}\theta_1 & \mathrm{Ls}\theta_1 & 0 & -1 & 0 & 0 & 1 \\ \mathrm{Lc}\theta_2 & \mathrm{Ls}\theta_2 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Modelo observación

Sensor	Desviación típica
σ^{S}_{M}	$2 \cdot 10^{-5}$
σ_F^S	0,3
σ_{T}^{S}	0,3

Comparación diferentes métodos de estimación esfuerzos

Simulación movimiento ideal

- Obtención movimiento referencia
- Generación de lecturas de sensores virtuales

Adición ruido de sensores

- Ruido blanco asociado a las cámaras
- Ruido de baja frecuencia asociado a los marcadores
- Ruido blanco asociado a sensores de fuerza

Generación ruido blanco discreto Filtro de paso bajo y escalado $f_{\rm S} \approx \omega$ $\sigma \approx 10 \ {\rm mm}$ Comparación eficiencia, precisión y robustez

- Filtros cinemáticos + DI
- Filtro dinámico

- 1. Optimización parámetros de los filtros
- 2. Resultados más exactos posibles para cada uno de los estimadores
- 3. Resultados con errores de modelado
- 4. Resultados con oclusión de marcadores

Optimización parámetros de los filtros

Nomenclatura:	Constantes físicas			
$FC_2 \rightarrow Filtro cinemático de segundo orden$	Masa de la barra 1 (kg)	50		
$FC_3 \rightarrow Filtro cinematico de tercer orden FD_C \rightarrow Filtro dinámico completo$	Masa de la barra 2 (kg)	25		
Regla Trapezoidal	Longitud de cada barra	0,8		
 Propagación planta exponencial ovacta 	Movimiento			
 Matriz de covarianza del ruido 	Tiempo de simulación (s)	3		
Van Loan	Amplitud de movimiento Θ (rad)	0,9		
	Frecuencia de movimiento ω (Hz)	0,5		
	Características del ruido			
-4	Desviación típica del ruido de las cámaras (mm)	0,02		
	Desviación típica del ruido por skin motion artifact (mm)	10		
L) 0	Desviación típica del ruido de sensores de fuerza (N)	0,3		
	Desviación típica del ruido de sensores de par (Nm)	0,3		
Tiempo (s)				

Optimización parámetros de los filtros

Objetivo: Determinar las covarianzas de planta que minimicen el error en la estimación del esfuerzo articular τ_1

http://lim.ii.udc.es

in 20

Resultados cinemáticos del doble péndulo

- Los tres filtros proporcionan resultados muy similares
- FC_3 se asemeja más a FD_C que a FC_2

Velocidades

- FC₃ y FD_C reducen el retraso que se encuentra en FC₂
- FD_C es ligeramente más preciso que FC₃

Referencia: negro; FC₂: Azul; FC₃: Morado; FD_C: Naranja

Estimación del par articular del doble péndulo

 FC_2 (arriba), FC_3 (medio), FD_c (abajo)

- Tras numerosas pruebas, se comprueba que en condiciones ideales el mejor estimador dependerá del ruido aleatorio que se genere para nuestro movimiento
- En este caso particular FC_2 es el que proporciona una mejor estimación de par, seguido de FC_3 y por último FD_c

Resultados eficiencia del doble péndulo

FD_0 (arriba), FD_c (abajo)

El filtro dinámico es computacionalmente más pesado que el cinemático

- FC_2 + DI \rightarrow 200 veces tiempo real
- $FC_3 + DI \rightarrow 180$ veces tiempo real
- $FD_C \rightarrow 20$ veces tiempo real

Se analizan todas las combinaciones posibles con:

- 3 integradores: Forward Euler, Heun y regla trapezoidal (punto fijo y Newton-Raphson)
- 3 formas de propagación de planta: exponencial exacta, aproximación por serie de Taylor de primer y segundo orden
- 2 formas de estimación de matriz de covarianza de ruidos: exacta de Van Loan, aproximación por serie de Taylor

Observador	Integrador	Propagación	Covarianza	RMS z	RMS Ż	RMS \mathbf{F}_{e}	RT/CPU
FD _c	Trapezoidal	Exacta	Van Loan	0,0259	0,1539	14,6780	$\begin{array}{c} PF \rightarrow 19,98 \\ NR \rightarrow 7,88 \end{array}$
FD ₀	FE	SE	СТ	0,0259	0,1590	17,1693	52,82

Resultados eficiencia del doble péndulo

FD_0 (arriba), FD_c (abajo)

El filtro dinámico es computacionalmente más pesado que

- FC_2 + DI \rightarrow 200 veces tiempo real
- $FC_3 + DI \rightarrow 180$ veces tiempo real
- $FD_C \rightarrow 20$ veces tiempo real
 - Integrador: Forward Euler (FE)
 - Propagación planta: Aproximación en serie de Taylor de segundo orden (SE)
 - Matriz de covarianza: Aproximación serie de Taylor (CT)

Observador	Integrador	Propagación	Covarianza	RMS z	RMS Ż	RMS $\mathbf{F}_{\mathbf{e}}$	RT/CPU
FD _c	Trapezoidal	Exacta	Van Loan	0,0259	0,1539	14,6780	$\begin{array}{c} PF \rightarrow 19,98 \\ NR \rightarrow 7,88 \end{array}$
FD ₀	FE	SE	СТ	0,0259	0,1590	17,1693	52,82

Resultados con errores de modelado

 FC_2 (arriba), FC_3 (medio), FD_c (abajo)

Uno de los problemas más comunes en biomecánica es la estimación de parámetros inerciales, por lo que se propone comparar estimadores bajo una situación de mala distribución de masa.

$$m_1 = 50$$
 $m_1 = 60$
 $m_2 = 25$ $m_2 = 15$

 FD_c es el filtro con mejor estimación con una mala distribución de masas, FC₃ es el segundo y el menos preciso es FC₂

Resultados con errores de modelado

 FD_{C} con residuo libre (arriba), FD_{c} con residuo restringido (abajo)

Uno de los problemas más comunes en biomecánica es la estimación de parámetros inerciales, por lo que se propone comparar estimadores bajo una situación de mala distribución de masa.

$$m_1 = 50$$
 $m_1 = 60$
 $m_2 = 25$ $m_2 = 15$

- FD_c es el filtro con mejor estimación con una mala distribución de masas, FC_3 es el segundo y el menos preciso es FC_2
- Se obtienen mejores estimaciones limitando el residuo a valores próximos a 0

Resultados con errores de modelado

Uno de los problemas más comunes en biomecánica es la estimación de parámetros inerciales, por lo que se propone comparar estimadores bajo una situación de mala distribución de masa.

$$m_1 = 50$$
 $m_1 = 60$
 $m_2 = 25$ $m_2 = 15$

- FD_c es el filtro con mejor estimación con una mala distribución de masas, FC_3 es el segundo y el menos preciso es FC_2
- Se obtienen mejores estimaciones limitando el residuo a valores próximos a 0
- FD_0 es menos preciso que FD_c , sin embargo mejora la estimación de FC_2
- La mejor estimación entre FD_0 y FC_3 depende del ruido generado

Resultados con pérdida de marcadores

FC₂ (azul), FC₃ (morado), FD_c (naranja)

```
Pérdida de marcadores: m_1(x) y m_2(x)
```

Posiciones:

- FD_c es notablemente más robusto frente a la pérdida de marcadores en condiciones ideales
- Ambos filtros cinemáticos, especialmente el de segundo orden, continúan con la propagación de velocidades previa a la pérdida

Velocidades:

FD_c es notablemente más robusto a la pérdida de marcadores en condiciones ideales

Resultados con pérdida de marcadores

FC₂ (azul), FC₃ (morado), FD_c (naranja)

Pérdida de marcadores: $m_1(x) y m_2(x)$

Posiciones:

- FD_c es notablemente más robusto frente a la pérdida de marcadores en condiciones ideales
- Ambos filtros cinemáticos, especialmente el de segundo orden, continúan con la propagación de velocidades previa a la pérdida

Velocidades:

 FD_c es notablemente más robusto a la pérdida de marcadores en condiciones ideales

Par articular:

- FD_c y FC₃ son notablemente más robustos a la pérdida de marcadores en condiciones ideales que FC₂
- FC₃ mejora notablemente las prestaciones de FC₂
- FD_c presenta mayor retraso que los filtros cinemáticos

- **1.** Introducción y estado del arte
- **2.** Fundamentos teóricos
- **3.** Observadores de estado en biomecánica
- 4. Prueba de concepto: péndulo doble
- 5. <u>Captura de movimiento de cuerpo completo</u>
- 6. Conclusiones y trabajo futuro

ARRANQUE DEL FILTRO

Hay que asegurar la correcta asociación de marcadores para cada instante de tiempo

Primera asignación marcadores, a partir de una pose de referencia

Se realiza la misma optimización que en el escalado pero con el modelo escalado y con la incógnita de la posición del sistema \mathbf{z}_0

FUNCIONAMIENTO DEL FILTRO

Algoritmo capaz de pasar del valor proporcionado por las cámaras m^*_{k+1} a un vector apto para el observador m_{k+1}

Una vez se tiene la estimación a priori de los marcadores ($\widehat{\mathbf{m}}_{k+1}$) se define una matriz de distancias al cuadrado:

$$\mathbf{D}_{ij} = \left(\widehat{\mathbf{m}}_{i} - \mathbf{m}_{j}^{*}\right)^{\mathrm{T}} \left(\widehat{\mathbf{m}}_{i} - \mathbf{m}_{j}^{*}\right)$$

Se asignan marcadores medidos a los estimados más cercanos, de menor a mayor distancia

Definición del filtro

Se parte del mismo vector de estados definido en el doble péndulo:

 $\mathbf{x} = \begin{bmatrix} \mathbf{z} \\ \dot{\mathbf{z}} \\ \mathbf{T}_{e} \end{bmatrix}$

Donde **x** es un vector de con 168 estados:

- 52 posiciones
- 52 velocidades
- 6 fuerzas residuo
- 46 esfuerzos articulares
- 12 fuerzas placa

Los sólidos más ligeros (los dedos de los pies) generan frecuencias elevadas en la dinámica, introduciendo inestabilidades en el integrador Se elimina la dinámica de los dedos del filtro. Se
utiliza una propagación cinemática de segundo orden (DWNA) para la aceleración de los dedos

$$\mathbf{x} = \begin{bmatrix} \mathbf{z} \\ \dot{\mathbf{z}} \\ \mathbf{T}_{e} \end{bmatrix}$$

Donde **x** es un vector de con 166 estados:

- 52 posiciones
- 52 velocidades
- 6 fuerzas residuo
- 44 esfuerzos articulares
- 12 fuerzas placa

Reacciones en el suelo

- Fuerzas de placa como estado \rightarrow T_p
 - Fuerza en ejes globales
 - Momento en ejes locales (centro de pie)
- Fuerzas de placa como sensor $ightarrow \mathbf{p}$
 - Fuerza en ejes globales
 - Momento en ejes globales (centro placa)

Los sensores que se utilizarán son:

- 36 marcadores ópticos (m)
- Fuerzas de placa (p)

$$\hat{\mathbf{y}} = \begin{bmatrix} \mathbf{h}(\hat{\mathbf{x}}) \\ \hat{\mathbf{p}} \end{bmatrix}$$

Para poder obtener la innovación, hay que pasar la fuerza de placa estimada $\widehat{\mathbf{T}}_p$ a las coordenadas globales. La estimación ($\widehat{\mathbf{p}}_p$) la placa (p) que irá asociada al pie (f) será:

Esta ecuación genera una dependencia de **p** con respecto a la posición, por lo que hay que tener en cuenta este término en el cálculo de la sensibilidad de la función de sensores

$$\mathbf{H} = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{m}}{\partial \mathbf{z}} & \frac{\partial \mathbf{m}}{\partial \dot{\mathbf{z}}} & \frac{\partial \mathbf{m}}{\partial \mathbf{T}_{\mathrm{d}}} & \frac{\partial \mathbf{m}}{\partial \mathbf{T}_{\mathrm{p}}} \\ \frac{\partial \mathbf{p}}{\partial \mathbf{z}} & \frac{\partial \mathbf{p}}{\partial \dot{\mathbf{z}}} & \frac{\partial \mathbf{p}}{\partial \mathbf{T}_{\mathrm{d}}} & \frac{\partial \mathbf{p}}{\partial \mathbf{T}_{\mathrm{p}}} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{\mathbf{z}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\mathbf{z}}\mathbf{T}_{\mathrm{p}} & \mathbf{0} & \mathbf{0} & \mathbf{D} \end{bmatrix}$$

Simplificación del filtro

La matriz de sensibilidad del sistema **F** depende de las derivadas de la aceleración con respecto a los estados, lo cual hace el filtro muy pesado

$$\mathbf{F} = \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \ddot{\mathbf{z}}_{\mathbf{z}} & \ddot{\mathbf{z}}_{\dot{\mathbf{z}}} & \ddot{\mathbf{z}}_{T_{e}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Se tratará de simplificar la matriz de sensibilidad manteniendo la observabilidad (\mathcal{O}) del sistema. Un sistema será observable si, a partir de los sensores existentes, es posible determinar por completo el estado del sistema en un tiempo finito

LHFⁿ⁻¹

 $\mathcal{O} =$ $\stackrel{\mathbf{HF}}{\mathbf{HF}}$ Si el rango de \mathcal{O} es igual al
número de estados (n) el
sistema será observable

Si hacemos este cálculo, el único término que no se puede simplificar es: $\ddot{\mathbf{z}}_{T_a}$

$$\begin{split} \mathbf{F} &\approx \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddot{\mathbf{z}}_{T_e} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \\ \mathbf{\Phi}_k &\approx \begin{bmatrix} \mathbf{I} & \mathbf{I}\Delta t & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \ddot{\mathbf{z}}_{T_e}\Delta t \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}_k \quad (\text{dos términos de } e^{F\Delta t}) \\ \mathbf{\Phi}_k &\approx \begin{bmatrix} \mathbf{I} & \mathbf{I}\Delta t & \ddot{\mathbf{z}}_{T_e}\frac{\Delta t^2}{2} \\ \mathbf{0} & \mathbf{I} & \ddot{\mathbf{z}}_{T_e}\Delta t \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}_k \quad (\text{tres términos de } e^{F\Delta t}) \end{split}$$

Observador	RMS z	RMS Ż	RMS \mathbf{F}_{e}	RT/CPU
FD _C	0,0259	0,1539	14,6780	19,88
FD ₀	0,0259	0,1590	17,1693	52,82
FD _S	0,0259	0,1590	17,1693	53,22

Metodología

Dos movimientos a analizar, uno para comprobar la robustez del filtro a cambios en el COP e impactos en placa (movimiento general) y otro enfocado a analizar el comportamiento del filtro ante pérdida de información de marcadores y ante grandes desplazamientos relativos piel-hueso (sentadilla)

- 8 sujetos (4 hombres y 4 mujeres)
- 26,0 \pm 6 años de edad
- 64,4 ± 17,6 kg

Para generalizar el filtro todo lo posible \rightarrow desviaciones típicas asociadas a la masa

$$\sigma_i = \sigma_i^0 \frac{m}{100}$$

Metodología

Dos movimientos a analizar, uno para comprobar la robustez del filtro a cambios en el COP e impactos en placa (movimiento general) y otro enfocado a analizar el comportamiento del filtro ante pérdida de información de marcadores y ante grandes desplazamientos relativos piel-hueso (sentadilla)

- 8 sujetos (4 hombres y 4 mujeres)
- 26,0 \pm 6 años de edad
- $64,4 \pm 17,6 \text{ kg}$

Para generalizar el filtro todo lo posible \rightarrow desviaciones típicas asociadas a la masa

$$\sigma_i = \sigma_i^0 \frac{m}{100}$$

Parámetros de los sensores

Ruido de los marcadores (mm)	20
Ruido de las fuerzas de placa (N)	20
Ruido de los momentos de placa (Nm)	20

Parámetros de planta

Ruido fuerzas residuales (kN/s)		
Ruido momentos residuales (kNm/s)	0,5	
Ruido momentos tren superior (kNm/s)	0,5	
Ruido momentos tren inferior (kNm/s)	5	
Ruido fuerzas horizontales pies (kN/s)	50	
Ruido fuerzas verticales pies (kN/s)	300	
Ruido momentos pies (kNm/s)	1	
Ruido aceleración dedos (rad/s ²)	10 ³	

Movimiento general

<u>Sujeto 1</u>

- Hombre
- 32 años
- 78,2 kg

Posiciones y velocidades:

• Fémur derecho Esfuerzos articulares:

• Tobillo, rodilla y cadera izquierda

Movimiento general

<u>Sujeto 1</u>

- Hombre
- 32 años
- 78,2 kg

Posiciones y velocidades:

• Fémur derecho Esfuerzos articulares:

• Tobillo, rodilla y cadera izquierda

Sentadilla

<u>Sujeto 2</u>

- Mujer
- 21 años
- 49,75 kg

Posiciones y velocidades:

• Rodilla derecha Esfuerzos articulares:

 Tobillo, rodilla y cadera derecha

Velocidades

Sentadilla

Sujeto 2

- Mujer
- 21 años
- 49,75 kg

Posiciones y velocidades:

- Rodilla derecha Esfuerzos articulares:
- Tobillo, rodilla y cadera derecha

Esfuerzos articulares

Residuo

Oclusión de marcadores

Sujeto 2

•

<u>Oclusión</u>

- Marcadores: 4 y 5
- 100 *frames*
- 49,75 kg

Mujer

21 años

Salto

<u>Sujeto 3</u>

- Hombre
- 30 años
- 85,8 kg

Posiciones y velocidades:

• Tobillo derecho Esfuerzos articulares:

• Tobillo derecho

Salto

<u>Sujeto 3</u>

- Hombre
- 30 años
- 85,8 kg

Posiciones y velocidades:

• Tobillo derecho Esfuerzos articulares:

• Tobillo derecho

Comparación FC₂ y FD_s

Laboratorio de Ingeniería Mecánica Universidad de La Coruña

Implementación lenguaje compilado

Implementación en lenguaje compilado a partir de lenguaje interpretado (Matlab Coder)

- AMD Ryzen 7 3700X
- 16 GB de memoria RAM

Filtro	Interpretado	Compilado
FC ₂	1,99	3,29
FD _s	1,51	2,41

FC₂ mejora más de un 65% su relación de tiempos

FD_{S} mejora entorno a un 60% su relación de tiempos

- **1.** Introducción y estado del arte
- **2.** Fundamentos teóricos
- **3.** Observadores de estado en biomecánica
- 4. Prueba de concepto: péndulo doble
- 5. Captura de movimiento de cuerpo completo
- 6. <u>Conclusiones y trabajo futuro</u>

Conclusiones

- Se han diseñado tres algoritmos para la reconstrucción del movimiento con estimación de reacciones y pares motores en tiempo real
- Se ha comprobado el comportamiento de los tres planteamientos bajo diferentes condiciones de trabajo mediante un *benchmark*:
 - A nivel de posiciones, el comportamiento de los planteamientos es muy parecido
 - La estimación de fuerzas es prácticamente idéntica, sin embargo, el estimador dinámico es más robusto ante pérdidas de marcadores
 - En situaciones con errores de modelado, el filtro dinámico obtiene mejores estimaciones
 - El filtro dinámico reduce el retraso en la estimación de velocidades a pesar de poder agregar ruido si no están ajustadas las covarianzas

Conclusiones

- Se ha añadido una corrección de la posición de referencia de los marcadores tras el escalado que facilita la identificación de marcadores durante el funcionamiento del filtro
- Se ha reajustado el procedimiento de estimación de parámetros inerciales del modelo utilizado en el laboratorio
- Se comparan los resultados obtenidos con los diferentes observadores en el modelo de cuerpo completo, extrayendo una serie de interpretaciones lógicas de los resultados, pero no categóricas, ya que no hay una solución de referencia como en el *benchmark*
- El filtro dinámico, a pesar de su mayor complejidad, puede resultar ventajoso en ciertos aspectos respecto al filtro cinemático

Trabajo futuro

- Adición de sensores de velocidad o aceleración
- Estimación de fuerzas musculares en tiempo real
- Optimización de la formulación multicuerpo mediante planteamientos recursivos o semirrecursivos
- Modificación del modelo multicuerpo para aumentar el detalle
 - Nuevo modelo de hombro
 - Modificación del modelo de la columna vertebral

Gracias por su atención

Laboratorio de Ingeniería Mecánica Universidad de La Coruña

http://lim.ii.udc.es

