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ABSTRACT 

In this paper, a specialized steady state formulation is 
developed in order to validate the results obtained using 
multibody wheel/rail two-point contact algorithms developed at 
the University of Illinois at Chicago. In the specialized 
formulation, the wheel set is assumed to have three points of 
contact with the rail. The steady state curving behavior of the 
wheel set is examined using this specialized formulation. The 
balanced steady state curving behavior in which the centrifugal 
force is equal to the lateral component of the gravity force can 
be obtained as a special case of the specialized steady state 
formulation developed in this investigation. No derailment 
analysis or scenarios are considered in this paper in order to 
validate the results of both the constraint and elastic contact 
formulations. The results of the simple specialized formulation 
are compared with the results of the multibody inverse and 
forward dynamics approaches. In the inverse dynamics, 
approach it is assumed that the wheel set will maintain three 
points of contact with the rail. The inverse dynamics 
formulation model is conceptually different from the 
specialized steady state formulation since in the inverse 
dynamics all the degrees of freedom are specified. In the 
multibody forward dynamics method, no assumptions are made 
with regard to the existence of the flange contact. 

 
1. INTRODUCTION 

In the railroad vehicles, one of the most important 
scenarios is the curve negotiation. In this scenario the wheels, 
as shown in Fig. 1, can experience two-point contact due to the 
centrifugal forces, and also due to yaw and hunting motion. 
However, the forces acting at the flange of the wheels and the 
gage face of the rails can be much larger than the centrifugal 
forces. The analysis of these forces is important for two main 
reasons: 
1. Existing derailment criteria are functions of the ratio 

between the lateral and the vertical components of the 
contact forces. It is known that if the lateral contact force 
on the flange becomes sufficiently high the wheel climbs 
the rail and the possibility of derailment increases. Nadal 
[1] used a simple equilibrium of forces on the inclined 
plane of contact between wheel and rail to define the ratio 
of the lateral and vertical components of the contact forces. 
This ratio is a function only of the flange angle and the 
flange coefficient of friction. 

2. Tangential forces at the flange contact due to sliding lead 
to an increase in the longitudinal tangential force at the 
tread. This is a consequence of the friction theory provided 
that there is no gross sliding at the tread. The tangential 
forces are source of high energy dissipation and wear of 
the wheels. 
Elkins and Weinstock [2] demonstrated the need for 

including the two-point contact in the analytical study of 
curving behavior. In their investigation, four analytical methods 
were used to study the curving behavior. The analytical results 
were compared with the results obtained from a series of tests 
sponsored by the Urban Mass Transportation Administration 
(UMTA). Elkins and Weinstock concluded that the analytical 
methods that assume single point contact lead to significant 
1 Copyright © 2003 by ASME 

mailto:kzaaza1@uic.edu


errors in predicting curving behavior when two-point contact 
occurs. In an earlier investigation, Boockock [3] developed 
expressions for the creepages for the quasi-static linear case. In 
order to include the effect of wheel-rail cross sectional 
geometry, Elkins and Gostling [4] used a quasi-static curving 
theory to improve the creepage expressions given by Boockock. 
The new expressions account for wheel-rail large contact angle 
that is expected in case of curve negotiations. Garg and 
Dukkitapi [5] presented one model of freight cars based on the 
work of Nagurka et al. [6], and two models for 
locomotive/passenger cars to analyze steady state curving 
behavior. The first model for locomotive/passenger cars 
employed the friction center method, developed by Smith et al. 
[7]. This model, however, does not account for some important 
design and operation parameters. In order to account for 
different suspension designs, the direct formulation [8] was also 
presented in [5]. Dukkitapi and Swamy [9] developed a new 
model to analyze the curving behavior of railway trucks with 
independently rotating wheel sets (IRW). To predict the wheel-
rail forces in curving, non-linear wheel-rail geometry and non-
linear creep-force models (heuristic method [5]) were used. 
Meinke and Blenkle [10] demonstrated numerically and 
experimentally the instabilities that occur during the narrow 
curve negotiation of wheel sets. These instabilities are due to 
self-excited coupled bending/torsion vibrations of the wheel set 
and lead to corrugation of the inner rail.  

Flange
contact

Tread
contact

 
Figure 1. Two-point contact in wheel/rail interaction. 

 
Steady State Curving Behavior Simulation results of the 
motion of a single wheel set on a curved track [11] show that 
the wheel on the outer rail can have two points of contact; and 
in some motion scenarios, the wheel set maintains constant roll 
and yaw angles. Figure 2 shows the roll and yaw angles of a 
wheel set that travels with a velocity of 10 m/s on a track with 5 
deg curvature. The results of this simulation are obtained 
assuming a coefficient of friction equal to 0.5. It can be 
observed that after the flange of the right wheel comes into 
contact with the rail, the roll and yaw angles remain 
approximately constant. In this paper, this scenario is referred 
to as steady state curving behavior [2], although some authors 
consider the steady state curving behavior as the case in which 
the wheel set centrifugal force balances the lateral component 
of the gravity force. This special case of balanced steady state 
curving behavior which can be difficult to precisely achieve in 
practice can be obtained as a special case of the formulations 
developed in this paper. Shabana et al. [11] presented the forces 
that act on the wheel set. It was shown that the contact force on 
the flange of the right wheel is more than ten times larger than 
 

the centrifugal force. This result shows clearly the difference 
between the steady state curving behavior examined in this 
paper and the steady state curving behavior discussed by other 
authors.  
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Figure 2. Roll and yaw angles. 

 
Organization and Scope of this Study The objective of 
this paper is to present a new technique for validating a 
multibody wheel/rail contact algorithm. This technique is based 
on a detailed study of the problem of the two-point contact in 
railroad vehicle dynamics during curve negotiation. To this 
end, the steady state equilibrium configurations, the inverse 
dynamic and forward dynamic analysis of the steady state 
curving behavior of the wheel sets are examined.  Specifically, 
the following three different methods are used in this 
investigation: 
1.  Steady State Equilibrium Analysis. A dynamic problem of 

a wheel set negotiating a curved track is formulated using 
an analytical approach. In the model used, it is assumed 
that the wheel set has three points of contact with the rails 
(tread and flange contacts for the right wheel, and tread 
contact for the left wheel). By specifying the forward 
velocity of the wheel set and assuming that the yaw angle 
and the wheel set angular velocity about its axis are 
constant, a dynamic problem can be formulated using a set 
of algebraic equations. The resulting dynamic equilibrium 
problem, that does not require the use of the methods of 
numerical integration, is solved for the position and 
orientation of the wheel set, the wheel set angular velocity 
and the contact and driving forces as function of the wheel 
set forward velocity, the track curvature and the track 
superelevation. In this approach kinematic constraints are 
used for all contacts. 

2. Inverse Dynamic Solution Using Multibody System 
Algorithms. An inverse dynamic problem is solved using 
general-purpose multibody system algorithms. However, in 
this method, the yaw angle and angular velocity of the 
wheel set are constrained, using the values obtained from 
the results of the previous method. All contacts are 
modeled using kinematic constraints [15,16]. The 
technique of Lagrange multipliers is used to predict the 
normal contact forces. In this method, the forward velocity, 
yaw angle and wheel set angular velocity are specified. 
These three constraints with the assumption of three 
contacts eliminate all degrees of freedom of the wheel set. 

3. Dynamic Analysis Using General Multibody Algorithms. In 
the third method used in this investigation, the yaw angle 
2 Copyright © 2003 by ASME 



and wheel set angular velocity are not constrained. This 
forward dynamic problem requires the use of numerical 
integration to obtain the solution of the equations of 
motion. The wheel set model is analyzed in this 
investigation using general-purpose multibody system 
algorithms that can employ Lagrange multipliers or an 
elastic contact force model to determine the normal contact 
forces [11]. 
The numerical results using these three different methods 

are compared. The effect of the flange contact on the forces at 
the tread contact is also demonstrated. The analysis and results 
presented in this paper demonstrate the feasibility of using 
general-purpose multibody computer programs to predict the 
dynamics of railroad vehicles during curve negotiations. 

This paper is organized as follows. Section 2 explains the 
coordinates and frames of reference used in the kinematic 
description of the wheels and rails. Section 3 describes the 
assumptions and details of the specialized analytical 
formulation used in the first method of the steady state 
equilibrium analysis. Section 4 provides a brief review of the 
multibody system formulations employed in the second and 
third methods for the simulation of the two-point contact 
problem. Section 5 provides the solution of the steady state 
equilibrium analysis. In Section 6, a comparison of the results 
obtained using different method is presented. In Section 7, 
summary and conclusions drawn from this study is presented. 
 
2. GEOMETRY AND KINEMATIC DESCRIPTION 

In the general formulation of the contact between a rigid 
wheel and a rigid rail, two surface parameters are used to 
describe the geometry of each of the two surfaces in contact. 
The two surface parameters s1

r and s2
r are used to describe the 

geometry of the rail surface, and s1
w and s2

w are the two surface 
parameters used to describe the wheel surface, as shown in Fig. 
3. The position vector of a point on the wheel or the rail 
surfaces can be defined in the respective body coordinate 
system as 

 

),( 21
llll ssuu =             (1)  

 
where  l = w or r, and superscript w and r refer to wheel and 
rail, respectively.  
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Figure 3. Surface parameters. 
 
Track Geometry  Figure 4 shows a curved rail r with an 
arbitrary geometry and surface profile. The surface geometry of 
the rail r can be described in the most general case using the 
 

two surface parameters s1
r and s2

r, where s1
r represents the rail 

arc length and s2
r is the surface parameter that defines the rail 

profile, as shown in Fig. 3. For convenience and simplicity, the 
surface parameter s2

r is defined in a profile coordinate system 
,rprprp ZYX  also shown in Figs. 3 and 4. The location of the 

origin and the orientation of the profile coordinate system, 
defined respectively by the vector Rrp and the transformation 
matrix Arp, can be uniquely determined using the surface 
parameter s1

r [12]. Using this description, the global position 
vector of an arbitrary point on the surface of the rail r can be 
written as follows [11,12]:  
   

       rprprpr uARr +=                           (2) 
 

where rpu is the local position vector that defines the location 
of the arbitrary point on the rail surface with respect to the 
profile coordinate system. Note that due to the above-
mentioned description of the rail geometry, one has 
 

( ) ( ) ( )1 1 2 2, , 0R R   A A    u
T

rp rp r rp rp r rp r r
rs s s f s = = =

 
  (3)  

       
where fr is a function that defines the rail profile. In this 
investigation fr can be defined analytically or using a spline 
function representation. The transformation matrix Arp can be 
expressed in terms of three Euler angles, each of which can be 
expressed uniquely in terms of the surface parameter s1

r [12]. 

XY

Z

X
Z

Y

r

r

rp rp

rp

rp

rp

r

u

R

s1  
 

Figure 4. Track geometry. 
 
Wheel Geometry  Figure 5 shows a wheel set with an arbitrary 
surface profile. The surface geometry of the wheel w can be 
described using the two surface parameters s1

w and s2
w. The 

surface parameters are defined in a wheel set coordinate system 
,www ZYX  also shown in the figure. The surface parameter 

s1
w defines the wheel profile and s2

w represents the angular 
surface parameter, as shown in Fig. 3. The location of the 
origin and the orientation of the wheel set coordinate system 
are defined, respectively, by the vector Rw and the 
transformation matrix Aw. Using this description, the global 
position vector of an arbitrary point on the surface of the wheel 
w can be written as follows: 
 

        wwww uARr +=                           (4) 
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where wu is the local position vector that defines the location 
of the arbitrary point on the wheel surface with respect to the 
wheel set coordinate system. In the case of the right wheel, this 
vector is defined as 
 

( ) ( )[ ] Tww
w

www
w

w ssfsLssf 21121 cossin +−=u    (5) 
                            
where fw is the function that defines the wheel profile, and L is 
the distance between the origin of the wheel set coordinate 
system and point Q of the wheel, as shown in Figs. 3 and 5. In 
this investigation fw can be defined analytically or using a spline 
function representation. 
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Figure 5. Wheel set position. 
 
3. STEADY STATE EQUILIBRIUM ANALYSIS 

In this section, a special case study of a wheel set traveling 
on a curved track is defined. The objective of introducing this 
problem is to have a better understanding of the nature of the 
contact forces when the wheel set moves on a curved track. The 
formulation of this dynamic equilibrium problem leads to a 
system of nonlinear algebraic equations that can be solved for 
the contact forces, driving forces and wheel set yaw angle and 
angular velocity as functions of the forward velocity, curvature 
and superelevation of the rails. The results obtained using the 
closed form equations of the resulting dynamic equilibrium 
problem are compared in section 6 with the results obtained 
using a general-purpose multibody computer code. 

In addition to the coordinate systems previously defined, a 
track coordinate system X t Y t Z t shown in Fig. 5 is also used. 
The origin of the track coordinate system is located at the track 
center curve and is assumed to follow the forward motion of the 
wheel set. Axes X t and Y t are tangent and normal to the track 
curve, respectively. Figure 6 shows the position of the track 
coordinate system for a track with a constant curvature and no 
superelevation. In case of superelevation, the assumed 
orientation of the track coordinate system is shown in Fig. 7. 
The steady state equilibrium analysis of the motion of a wheel 
set traveling on a track with a constant curvature is based, in 
this paper, on the following assumptions: 
- The wheel set center of gravity moves with a constant 

prescribed forward velocity along the tangent to the track 
centerline. 

- The wheel set has one point of contact on the wheel that 
travels on the inner rail (left) and two points of contact on 
the wheel that travels on the outer rail (right). 
 

- The wheel set has unknown constant roll and yaw angles. 
That is, while the roll and yaw angles are to be determined, 
their derivatives with respect to time are assumed to be 
zero. 

- The wheel set angular velocity about its axis is constant. 
- Friction forces (creep forces) are assumed to be functions 

of the relative velocities of the points of contact, normal 
contact forces, local geometry of wheel and rail at the 
contact points and material elastic properties (Kalker’s 
nonlinear creep theory [13]. 
Note that because of these assumptions, all the 

accelerations are equal to zero with respect to the track 
coordinate system, and the resulting dynamic problem, which is 
not an inverse dynamic problem, leads to a set of algebraic 
equations that can be solved for the unknown coordinates and 
forces as discussed in the following sections. 
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Figure 6. Track coordinate system. 
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Figure 7. Orientation of the track coordinate in case of 

superelevation. 
 
3.1.  Wheel Set Position Analysis 
At any contact point P between the wheel set and the rail, the 
position vector of the contact point can be written in terms of 
the following vector of surface parameters:  
 

     [ ] ,2121
T

P
w

P
w

P
r

P
r

P ssss=s                 (6) 
 

and the following five nonlinear constraint equations must be 
fulfilled [16]: 
 

                 ,0C =P                               (7) 
where 
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4 5, ,

r r , 

n t    n t

T w r
P P P P P

T Tw wr r
P P l P P tP P

C C C

C C

  = −  

= = 

         (8) 

 

where r
Pn  is the normal to the rail at the contact point, w

Plt  is 

the longitudinal (in the P
ws2  direction) tangent to the wheel at 

the contact point, and w
Ptt  is the transverse (in the P

ws1  
direction) tangent to the wheel at the contact point. The first 
three constraints in Eq. 8 are the contact point constrains that 
guarantee that a point on the surface of the wheel (point of 
contact on the wheel) has the same global position as a point on 
the surface of the rail (point of contact on the rail). The last two 
constraints in Eq. 8 are the orientation constrains, that 
guarantee that the tangent plane at the contact point on the 
wheel is parallel to the tangent plane at the contact point on the 
rail. In what follows, subscript L refers to the contact point on 
the tread of left wheel, subscript R refers to the contact point on 
the tread of the right wheel, and subscript F refers to the contact 
point on the flange of the right wheel. The generalized and non-
generalized coordinates of the wheel set with three points of 
contact are: 
 

                     [ ] ,
T

T
F

T
R

T
L

TwTw sssθRq =             (9) 
 
and the following system of 15 contact constraint equations 
must be satisfied: 
 

                        [ ] .0CCCC == TT
F

T
R

T
L                    (10) 

 
Therefore, there are 18 coordinates and 15 constraint equations, 
leading to a three-degree of freedom wheel set system. Out of 
the three degrees of freedom, two degrees of freedom do not 
affect the solution of the problem discussed in this section. 
Recall that an assumption is made that all the wheel set 
accelerations are equal to zero with respect to the track 
coordinate system X t Y t Z t and all forces and moments that act 
on the wheel set are constant in this track frame. The relative 
position of the wheel set with respect to the rails is independent 
of the longitudinal position along the track. Hence, in what 
follows, the position and orientation of the wheel set is 
analyzed at X w = 0. In this position, the origin of the global 
coordinate system and the origin of the track coordinate system 
coincide. Since the wheel set is a solid of revolution, the 
rotation of the wheel about its axis does not affect the position 
analysis. In other words, if the surface parameters 

F
w

R
w

L
w sss 222  , ,  (angular orientation of the contact points on 

the wheel set) belong to a solution q of the system of 
constraints of Eq. 10, then the set 2 2 2, ,    w w w

L R Fs s sδ δ δ+ + + , 
where δ is an arbitrary angle, also belong to a solution q* that 
only differs from q by a rotation δ of the wheel set about its 
axis. For this reason, in the position analysis performed in this 
study and without any loss of generality, the angular parameter 
of the left wheel L

ws2  is assumed to be specified, thereby 
eliminating the freedom of the wheel rotation about its axis. By 
 

specifying X w and L
ws2  the number of degrees of freedom of 

the wheel set reduces to one. 
In principle, the system of nonlinear constraints of Eq. 10 

can be solved using as independent coordinate the yaw angle φ 
of the wheel set which will be determined in later sections 
using the force balance algebraic equations. Nonetheless, the 
algebraic kinematic equations obtained in this section can be 
solved for a wide range of values of the yaw angle, which has 
been varied using small increments, as shown in Fig. 8. The 
small yaw angle can be defined using the x component of the jw 
unit vector of the wheel set (aligned with the wheel axle) as 
shown in Fig. 8. In the numerical study presented in this 
section, the wheels are assumed to be profiled with 
approximate conicity of 1/40, while the rail profile is assumed 
to be of the AREA type. Geometrical properties of the wheel 
set and rails are provided in Fig. 9. It is important to point out 
that the value of the yaw angle φ is restricted by a certain wheel 
set configuration in which a second point of contact also occurs 
at the left wheel. In this position, the wheel set has four points 
of contact with the rails. Notice that in this extreme position the 
wheel set is in an anti-symmetric position with respect to the 
normal to the track (Y t). Therefore, the wheel set has to be 
centered, this is the case in which w

yR  = 0.  
When the yaw angle is zero, the first and second points of 

contact on the right wheel are contained in one plane 
perpendicular to the rail, that is, the two points of contact have 
the same s1

r and s2
w parameters. However, when the yaw angle 

increases, the difference between these parameters that 
correspond to the two points of contact increases. This is 
known as the lead (negative yaw) and lag (positive yaw) 
contact. Elkins and Weinstock [2] provide an expression to 
evaluate these differences (this expression was obtained by 
Bödecker [14]), as follows: 

 
       ( ) tanarctan     ,tan 211 δφδφ ==∆ wr ∆srs           (11) 
 
where r1 is the radius of the wheel at the first point of contact, δ 
is the angle of attack at the flange contact, and φ is the yaw 
angle. Figure 10 shows the results of the solution of Eq. 10 
compared with the expressions given by Eq. 11. An excellent 
agreement can be observed. Notice that for small values of the 
yaw angle, the increase in the surface parameters is 
approximately linear. 
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Figure 8. Yaw rotation. 
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Figure 9. Geometry of wheel set and rails. 
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Figure 10. Relative position of second point of contact on the 

right wheel. 
 
3.2.  Wheel Set Velocity Analysis 
As previously pointed out, the wheel set center of gravity is 
assumed to move with constant forward velocity V along the 
track. The wheel set lateral motion is not constrained, however, 
the existence of three points of contact and the fact that the yaw 
remains constant prevent any lateral velocity of the wheel set. 
Therefore, the wheel set translational velocity is given by 
 

[ ] ,00 Ttw VAR =�                         (12) 
 

where At is the rotation matrix that defines the orientation of 
the track coordinate system with respect to the global 
coordinate system.  

A systematic procedure for the velocity analysis is to 
evaluate the derivatives of the constraints of Eq. 10. Once the 
position analysis is completed, differentiation of the constraints 
of Eq. 10 leads to a system of algebraic equations that is linear 
in the velocities. While as previously explained, the parameter 

L
ws2  has no effect on the solution of the position equations, the 

angular velocity 2
w

Ls�  of the wheel set about its own axis is not 
zero and its value will be determined in a later section using the 
algebraic force balance equations. Based on the assumptions 
made in steady state equilibrium analysis, the time derivatives 
of the surface parameters are directly determined using the 
following equations: 

 

 

 
1 2 2

1

, 0, 0,

0 ,      

r r wP
P P P

t
w

P

Rs V s s
R

s P L,R,FΩ

= = = 

= = = 

� � �

�

          (13) 

 
where RP is the distance in the plane XY from the contact point 
to the center of curvature of the track, Rt is the radius of 
curvature of the track , and Ω is the magnitude of the angular 
velocity of the wheel set about its axis. If the angular velocity 
of the wheel set Ω is known, Eqs. 12 and 13 can be used to 
define FRL

w sssR ����  and  , , . 
The absolute angular velocity of the wheel set used in the 

model discussed in this investigation can be divided into two 
components. One is due to the rotation of the wheel set about 
the Z axis, and the other is due to the rotation of the wheel set 
about its own axis. Therefore, the absolute angular velocity can 
be written as: 

 

                             0 0ω j
T

w w

t

V
R

Ω
 

= + 
 

                       (14) 

 
where Ω can assume an arbitrary value that will be determined 
using the procedure described later in this paper.  

It can be shown that the velocities defined by Eqs. 12-14 
satisfy the constraints of Eq. 8 at the velocity level. The 
constraints at the velocity level can be used to show that the 
absolute velocities of the three contact points lie in planes 
tangent to the surfaces of the wheel and the rail at the contact 
points, that is, the component of the velocity along the normal 
to the contact surface is always equal to zero. This result is 
easily understood from the derivative of the first three 
constraints of Eqs. 8, which leads to 

 
                                      w r

P P− =r r 0� �                                    (15) 
 
which can be written as 
 
       1 2 2 1

w w w w r r r r w w w w
P l t l ts s s s= + = + − −v R A u t t t t�� � � � �        (16) 

 
where w

Pv  is the apparent velocity of the contact point on the 
wheel, and tl

r, tt
r, tl

w, and tt
w are not assumed to be unit vectors. 

Note that the second and fourth terms on the right hand side of 
Eq. 16 are identically zero in this particular problem. If the 
wheel set does not rotate about its own axis, the wheel set has 
to follow a circular path along the center of curvature of the 
track in order to maintain the three points of contact. Therefore, 
the first component of the angular velocity given in Eq.14 is 
necessary in order to satisfy Eq. 16. Furthermore, the angular 
velocity of the wheel about its axis leads to non-zero velocity 
components for the points on the wheel surface in the direction 
of the vector w

lt  only. Therefore, these velocities also satisfy 
Eq. 16. 

Note that in the position analysis discussed in the 
preceding section and the velocity analysis discussed in this 
section, the following sequence was used: 
6 Copyright © 2003 by ASME 



- The position equations of the wheel set were expressed in 
terms of one degree of freedom. The yaw angle can be 
conveniently selected as the independent parameter. Once 
the value of the yaw angle is determined as described in 
Section 3.3, the position of the three contact points in the 
wheel set coordinate system, the vertical and transverse 
displacements, and the orientation of the wheel set (except 
for the rotation of the wheel set about its axis) can be 
determined.  

- Once the position coordinates of the wheel set are 
determined, the velocities of the wheel set can be 
determined as functions of the wheel set angular velocity Ω 
about its axis. Once the angular velocity Ω is determined as 
described in Section 3.3 and using the results of the 
position analysis (knowledge of the rotation of the wheel 
set about its axis is not required), the reference velocities 
of the wheel set as well as the time derivatives of the 
surface parameters and the velocity of the contact points 
can be determined. 
It is important to point out at this point that the selected 

independent kinematic parameters, the yaw angle φ and the 
wheel set angular velocity Ω, are assumed to be constant but 
they are not constrained. Therefore, the problem discussed in 
this section is not an inverse dynamics problem. The dynamic 
force balance, discussed later, will be used to determine the 
angular velocity and the yaw angle of the wheel set when it 
negotiates curved tracks under the assumed conditions. 
 
3.3. Wheel Set Forces 
Since the dynamic force balance of a rigid body provides six 
independent algebraic equations, six independent unknowns 
can be determined. The constraint contact forces and the force 
associated with the constraint of the wheel set prescribed 
forward velocity are included in these unknowns. As discussed 
in previous publications [15], there is only one independent 
constraint force associated with the five constraints of each 
contact. Therefore, four unknown scalar forces determine the 
contact constraints and the constraint on the wheel set forward 
velocity. The dynamic force balance provides two additional 
equations that are used to obtain the yaw angle φ and the 
angular velocity Ω. In the following, the forces and moments 
that act on the system are expressed as a function of the system 
coordinates and velocities. 
Creep Forces and Moments Among the unknowns of 
the wheel set problem considered in this investigation are the 
three scalar values of the normal contact force at the points of 
contact. The vector of normal contact forces is given by 
 

     [ ] T
nFnRnLn FFF=F                      (17) 

 
The forces in the planes tangent to the contact surfaces and the 
spin moments that have the direction of the normal to the 
surfaces can be determined using Kalker’s nonlinear creep 
theory [13]. These forces and moments are functions of the 
normal contact forces, local surface geometry properties (semi 
axis of the contact ellipses, principal radius of curvature), 
material properties, relative velocity at the contact points 
(creepages), and coefficient of friction. In order to evaluate the 
local surface geometry properties that depend on the surface 
 

parameters, the step of the position analysis must be 
considered; and in order to evaluate the creepages, the velocity 
components must be determined. That is, all the position 
variables must be expressed in terms of the yaw angle φ, and all 
the velocities must be expressed in terms of φ and the angular 
velocity Ω. The creep forces and moments are obtained as: 
 

                  
0 ,

0 0 , , ,

F A

M A      

TP
cP xP yP

TP
cP cP

F F

M P L R F

 =   


  = =  

     (18) 

 
where FxP and FyP are the tangential creep force components, 
McP is the spin moment, and AP is the rotation matrix that 
defines the orientation of the surface coordinate system at the 
contact point with respect to the global coordinate system. The 
X-axis of the surface coordinate system is the tangent to the rail 
in the longitudinal direction, the Y-axis is the tangent to the rail 
in the lateral direction, and as Z-axis is in the direction of the 
normal to the rail surface at the contact point. 
Inertia Forces and Moments The inertia forces due to the 
centrifugal force are simply given by 
 

                  [ ]
2

0 cos sinF A Tt
i

t

mV
R

β β
 

= − − 
 

             (19) 

 
where At is the transformation matrix that defines the 
orientation of the track coordinate system as previously 
defined, and β is the angle of superelevation, shown in Fig. 7. 
The inertia moments can be evaluated as the derivative of the 
angular momentum. The angular velocity of the wheel set 
defined by Eq. 14 is constant in the track coordinate system 
(because the wheel set coordinate system has a fixed orientation 
with respect to the track coordinate system). Therefore, the 
angular momentum vector, which is also constant in the track 
coordinate system, is given by 
 
             ( ) ( )L A L A A JA A ω A A JA ωT T Tt t t tw tw t w t tw w w

w w= = =     (20) 

 
where Lw is the angular momentum defined in the global 
coordinate system, Lw

t is the angular momentum defined in the 

track coordinate system, wTttw AAA =  is the rotation matrix 
from the wheel set to the track coordinate systems (assumed 
constant), J is the inertia tensor in the wheel set coordinate 
system (assumed diagonal and constant), and wω  is the 
angular velocity vector of the wheel set given by Eq. 14. All 
terms given between brackets in Eq. 20 are constant. Therefore, 
the inertia moments are obtained as 
 

                     ( ) wTwtwt
wi dt

d ωJAAALM �−=−=        (21) 

 
The time derivative tA�  is a linear function of the derivative of 
the angle α shown in Fig. 6. By the virtue of the forward 
velocity constraint, one has 
 

7 Copyright © 2003 by ASME 



                                    
tt R

Vt
R
V == αα �    ,                        (22) 

 
Driving Constraint and Gravity Force The forward 
velocity constraint has an associated driving force Ff that 
balances all other longitudinal forces, leading to a zero 
longitudinal acceleration. This force can be determined and 
defined in the track coordinate system using the following 
transformation: 
 

                            0 0
Tt

f fF =  F A                         (23) 

 
The gravity force is given by the vector 
 

[ ] Tmg−= 00W                           (24) 
 

Force Balance The force and moment balances are defined 
by the following two equations: 
 
        ( ) 0WFFFn =++++∑

=
fi

FRLP
cPPnPF
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            (25)  

    
( ) ( )( ) 0MMFnRr =+++×−∑

=
i

FRLP
cPcPPnP

ww
P F

,,

 

                                                                                              ( 26) 
        
The unknowns in these six nonlinear algebraic equations are the 
yaw angle φ, the angular velocity Ω, the driving constraint 
force Ff, and the three normal contact forces FnL, FnR, and FnF. 

To this end, the solution of Eqs. 10 together with the 
dynamic Eqs. 25 and 26. provides the position and orientation 
of the wheel set as well as the forces involved in the steady 
state curving behavior. Instead of eliminating some variables, 
as another alternative, a large system of nonlinear equations can 
be considered. The unknowns in this system of equations are 

fnFRL
ww F,,,,,,, FsssθR Ω . These unknowns can be 

determined by solving the following system of nonlinear 
algebraic equations:             
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where Fj  and Mj represent, respectively, all forces and 
moments acting on the system. The dynamic equilibrium 
problem has 23 unknowns and 23 non-linear algebraic 
equations. However, as an alternative, the dimension of the 
problem can be reduced in order to efficiently obtain the 
numerical solution. As previously demonstrated, the position 
analysis can practically be completed using one degree of 
freedom, the yaw angle φ. It is important to point out that 
among the results that can be obtained from the solution of Eqs. 
27 are position coordinates, which are not necessarily unique. 
Furthermore, the equilibrium positions found could be stable or 
 

unstable in response to disturbances. However, as it is known 
unsuspended wheel sets have stability problems that have been 
the subject of investigations in the literature. 
 
4. MULTIBODY DYNAMIC FORMULATIONS 

In multibody dynamics there are two common methods to 
analyze the contact between rigid bodies. These are the elastic 
method and the constraint method. These two methods are 
briefly described in this section.  
Elastic Method  In the elastic method [11], the rigid bodies 
are allowed to interpenetrate in the neighborhood of the contact 
point. The contact points, where the contact forces are applied, 
are found through a search process. The resulting contact force 
can be evaluated as a function of the indentation of the bodies 
(elastic component) and the velocity of indentation (damping 
component). In the multibody dynamic formulation used in this 
investigation, the following expression for the contact force is 
used: 
                    δδδ �CKFFF hdh −−=+= 23               (28) 
 
where δ is the indentation, Fh is the Herzian (elastic) contact 
force, Fd is the damping force, Kh is the Hertzian constant that 
depends on the surface curvatures and the elastic properties, 
and C is a damping constant. Creepage forces are included 
using Kalker’s non-linear creep theory [13]. Creepage forces 
are functions of the relative velocity of the points of contact, 
normal contact force, the local geometry of wheel and rail at 
the contact points and material elastic properties  

When using the elastic method, the augmented form of the 
equations of motion can be written as follows [16]: 
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                      (29) 

 
where M is the system mass matrix, Cq is the Jacobian matrix 
of the kinematic constraints, q is the vector of the system 
generalized coordinates, λλλλ is the vector of Lagrange multipliers, 
Q is a vector that includes external, applied contact, creep, and 
centrifugal and Coriolis forces, and Qd is the vector that results 
from the differentiation of the constraint equations twice with 
respect to time, that is 
 

d=qC q Q��                                  (30) 
 

The vector of kinematic constraint equations C (q, t) = 0 
describes mechanical joints as well as specified motion 
trajectories that include driving constraints. Such driving 
constraints include the specified forward velocity of the wheel 
sets. 

In this investigation, the elastic force model is not used in 
the case of the inverse dynamic analysis. In the inverse 
dynamic analysis, all contacts including the flange contact are 
modeled using the constraint method. However, the elastic 
method is used in this investigation in the case of the forward 
dynamics, allowing for wheel/rail separation.  
Constraint Method  In the constraint method [15,16], the 
contact between the bodies is described using non-linear 
kinematic constraint equations that are expressed in terms of 
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the wheel set coordinates as well as the surface parameters at 
the contact points. Five kinematic constraint equations, as 
defined in Eq. 8, are used to describe the general contact 
between two rigid bodies [15,16]. Three of these five 
constraints (CP1, CP2 and CP3), called contact point constraints, 
impose the conditions that two points on the two bodies 
coincide during the dynamic motion while avoiding penetration 
and separation. The remaining two constraints (CP4 and CP5), 
called orientation constraints, impose the condition that the 
normals to the surfaces at the contact point are parallel. Since 
four new surface parameters are introduced, the preceding 
independent five contact constraint equations can be used to 
eliminate only one generalized degree of freedom. Therefore, in 
this formulation, a wheel has five degrees of freedom with 
respect to the rail in the case of a single contact point.  

In general, the kinematic constraint equations, including 
the contact constraints, imposed on the motion of a multibody 
system can be expressed in the following vector form: 

 
                                        0sqC =),,( t                                (31) 
 
where C is the vector of constraint functions, q is the vector of 
the system generalized coordinates, s is the vector of the system 
non-generalized surface parameters, and t is time. 
Differentiating the preceding equation twice with respect to 
time and combining the resulting acceleration equations with 
the Lagrangian form of the equations of motion expressed in 
terms of Lagrange multipliers, one obtains the following 
augmented form of the equations of motion of the multibody 
system subject to contact constraints [15,16]: 
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where M is the system mass matrix, λλλλ is the vector of Lagrange 
multipliers, Q is a vector that includes external, creep, and 
centrifugal and Coriolis forces, and Qd is a quadratic velocity 
vector that results from differentiating the kinematic constraints 
twice with respect to time [16]. Note that the preceding 
augmented form of the equations of motion is expressed in 
terms of the generalized coordinates q as well as the non-
generalized surface parameters s and their time derivatives. 
Two-Point Contact In this section, two conceptually 
different methods, the elastic and the constraint methods, are 
discussed for the analysis of the wheel/rail interaction [11] 
These two methods can be used as the basis for three different 
procedures to study the two-point contact problem. In the first 
procedure, the elastic force model that allows six degrees of 
freedom for the wheel with respect to the rail is used. This 
method also allows for the wheel lift. As mentioned in this 
section, a search is made in order to determine the contact 
points. Therefore, the elastic force model can be directly used 
to study the two-point contact by limiting the number of contact 
points for each wheel to two. The forces at the two contact 
points can be calculated as previously described in this paper. 

The second procedure that can be used in the analysis of 
the two-point contact is to model all the contacts using the 
 

constraint method. This procedure, that employs a multibody 
system formulation, allows using the same assumptions used in 
the simple model described in the preceding section. This 
method will be used in the inverse dynamic multibody solution 
presented in the second part of this paper. Note that in the 
multibody simulation algorithm, no variables are eliminated 
and Lagrange multipliers are used to determine the normal 
contact forces, which is not the case when the formulation 
presented in the preceding sections is used. 
A third procedure that can be used in the analysis of the two-
point contact is a hybrid method. In this hybrid method, which 
allows only five degrees of freedom for the wheel with respect 
to the rail, the first point of contact is predicted using the 
contact constraint approach, while the second point of contact 
is determined using the elastic approach. The second point of 
contact is obtained by numerically searching for a point of 
contact different from the first point that is determined using 
the kinematic contact constraints. In the hybrid method, the 
normal force at the first point of contact is determined using 
Lagrange multipliers, while the normal force at the second 
point of contact is determined using the elastic approach 
described in this paper [11]. 
 
5. SOLUTION OF THE STEADY STATE 
EQUILIBRIUM ANALYSIS  

The curving behavior of a wheel set is analyzed in this 
section using the specialized method of the steady state 
equilibrium analysis. The wheel set has the same geometric 
properties as the model used in the first part of this paper. The 
wheel set mass is assumed to be 1568 Kg and the mass 
moments of inertia are assumed to be Iyy = 168 Kg⋅m2, Ixx = Izz = 
656 Kg⋅m2. The coefficient of friction between the wheel and 
the rail is assumed to be 0.5. Both the wheel set and the rail are 
assumed to be made of steel with Young’s modulus E = 
2.1×1011 N/m2 and Poisson’s ratio ν = 0.3.  
Effect of the Forward Velocity Three sets of solutions have 
been obtained using constant track curvatures of 3, 5 and 7 deg 
(100’-chord definition) and zero superelevation. The system of 
Eqs. 27 has been solved for a wide range of the forward 
velocities. The yaw angle obtained as one of the solutions of 
this system of equations is shown in Fig. 11 as function of the 
forward velocity. It can be observed from the results presented 
in this figure that the yaw angle increases  as the forward 
velocity increases. The rate of change of the yaw angle 
increases as the curvature increases. For low forward velocities, 
the yaw angle is negative. Note that the yaw angle becomes 
positive at forward velocities of 36.2 m/s and 42.5 m/s and 46.8 
m/s, in the case of track curvatures 7 deg, 5 deg and 3 deg, 
respectively.  
Figure 12 shows the normal contact forces at the treads. The 
forces on the right wheel increase and the forces on the left 
wheel decreases as the forward velocity increases. The rate of 
change of these forces increases as the track curvature 
increases. Figure 13 shows the normal force at the flange 
contact as a function of the forward velocity. The force 
increases as the forward velocity increases, and the rate of 
change increases as the curvature increases.  
9 Copyright © 2003 by ASME 
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Figure 11. Yaw angle as function of the forward velocity. 
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Figure 12. Normal contact forces at the treads as functions of 

the forward velocity. 

0 10 20 30 40 50
0

3

6

9

12

C
on

ta
ct

 F
or

ce
 (K

N
)

Forward velocity (m/s)

 3 deg
 5 deg
 7 deg

 

Figure 13. Normal contact forces at the right flange as functions 
of the forward velocity. 

The change of yaw angle from negative at low forward 
velocity to positive at high forward velocity is now analyzed in 
detail. Figure 14 shows the change in direction of the sliding 
velocity of the contact points for negative and positive yaw 
angles. In this analysis, the absolute velocity of the contact 
point is uωRv ×+= ww

s
� , where wR� is the absolute 

velocity vector of the wheel set center of mass, wω  is the 
absolute angular velocity vector of the wheel set, and u is the 
location of the contact point with respect to the wheel set center 
of mass. In this case, vs = sv , vf = wR� , and uω ×= w

rv . 
 

Since the creep forces have opposite direction to the sliding 
velocity of the contact points, a negative yaw creates negative 
lateral creep forces and a positive yaw creates positive lateral 
creep forces. 

 

vf

vf

vr
vr

vs
vs

 (a)  Low velocity
(negative yaw)

 (b) High velocity
(positive yaw)  

 
Figure 14. Sliding velocity of tread contact points. 

 
The change in the sense of the yaw angle at low and high 

velocities can be explained considering the balance of the 
moments about the X axis of the track coordinate system.  
Low Velocity. At low velocity the centrifugal force and 
gyroscopic moment are small. Each of the vertical contact 
forces on the left and right wheels (including flange and tread 
vertical contact forces) are approximately half the weight of the 
wheel set. In the case of zero yaw angle, the sliding component 
of the tread contact points in the lateral direction vanishes (FxL 
= FxR = 0 and as a consequence the moments in Fig. 15 are 
identically zero). In this case, there is clearly an unbalanced 
positive roll moment. Therefore, the case of zero yaw angle 
should not occur at low velocities, instead a negative yaw angle 
occurs in order to create the necessary forces (FxL and FxR) that 
produce the moments that counterbalance the roll moment (see 
Figure 15) and maintains equilibrium.  
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Figure 15. Roll moments of tread lateral forces. 

 
High Velocity. At high velocity the centrifugal force and 
gyroscopic moment are large. The vertical contact force on the 
right wheel is larger that the vertical contact force on the left 
wheel. In this case, if the yaw is zero (tread contact points do 
not slide in the lateral direction) there is an unbalance negative 
roll moment. Therefore, the wheel set must have a positive yaw 
angle that creates the necessary forces (FxL and FxR) that 
produce the moments that counterbalance the roll moment (see 
Fig. 15) in order to maintain equilibrium. 
Effect of the Track Curvature Assuming forward 
velocities of 10, 15 and 20 m/s another set of results was 
10 Copyright © 2003 by ASME 



obtained for a wide range of curvatures. Figure 16 shows the 
yaw angle as a function of the track curvature. As can be 
observed, the absolute value of the yaw angle decreases as the 
forward velocity increases. The three curves show the same 
behavior, initially the absolute value of the yaw increases when 
increasing the curvature up to a certain maximum value (0.0024 
rad at 15 m/s, 0.0018 rad at 9m/s and 0.00145 rad at 6.5 m/s for 
forward velocities 10, 15 and 20 m/s, respectively). After 
reaching the maximum value, the absolute value of the yaw 
angle starts to decrease as the curvature increases. 

Figure 17 shows the normal contact forces at the treads as 
function of the curvature of the track. The forces on the left 
wheel decrease with a constant slope as the curvature increases, 
and the rate of change increases as the forward velocity 
increases. Forces on the right wheel show an interesting 
behavior: initially the force decreases as the curvature increases 
up to a value of approximately 3.5 deg. After that point, there is 
a change in the slope of the curves, and the force decreases for 
forward velocity of 10 and increases for 15 and 20 m/s. All 
forces seem to converge to 7.7 KN (half weight of the wheel 
set) for an extrapolated curvature of 1 deg, which corresponds 
to a configuration with two points of contact (no flange 
contact). Figure 18 shows the normal force at the flange contact 
versus the track curvature. The force increases at a high rate up 
to 3.5 deg, at that point the slope of the curves decreases, and 
the force increases at a constant rate. Note that the rate of 
change increases as the forward velocity increases. The forces 
seem to converge to zero for an extrapolated curvature of 1 deg, 
which corresponds to a configuration with two points of contact 
(no flange contact).  
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Figure 16. Yaw angle as function of the track curvature. 
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Figure 17. Normal contact forces as functions of the track 

curvature. 
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Figure 18. Flange force as function of the track curvature. 

Effect of Superelevation A third set of results was obtained 
for different superelevations with forward velocities of 10, 15 
and 20 m/s and track curvature of 5 deg. The superelevation is 
expressed in terms of percentage of balanced superelevation, 
which is evaluated by equating the centrifugal force with the 
transverse component of the weight, as follows: 

( )
t

balanced gR
V 2

tan =α                                                 (33) 

( )balancedbalanced Gh αsin=                                             (34) 
where α balanced is the angle of balanced superelevation, V is the 
forward velocity, g is the gravity constant, Rt is the radius of 
curvature of the track, hbalanced is the height of balanced 
superelevation, and G is the gage distance. For the model data 
used, forward velocities of 10, 15 and 20 m/s and curvature of 5 
degrees, the balanced superelevations are 42, 94 and 163 mm, 
respectively. 

Figure 19 shows that the absolute value of the yaw angle 
increases as the superelevation increases. For low 
superelevation, the change rate is constant, and it is larger for 
higher velocities. Figure 20 shows the normal contact forces at 
the treads. The force on the left tread increases as the 
superelevation increases, whereas the force on the right tread 
decreases. The slope of the curves increases as the velocity 
increases. Figures 21 shows the normal contact force at the 
flange. The flange forces decreases as the superelevation 
increase and the rate of change increases as the forward 
velocity increases.  
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Figure 19. Yaw angle as function of the superelevation. 
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Figure 20. Normal contact forces at the treads as functions of 

the superelevation. 
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Figure 21. Normal contact forces at the flange as functions of 
the superelevation. 

6. COMPARISON WITH MULTIBODY FORMULATIONS 
In this section, the results of the specialized steady state 

wheel set formulation are compared with the results of the 
inverse dynamics multibody solution and the results of the 
forward dynamic solution.  

A wheel set moving on a 5 deg track has been analyzed 
with forward velocities of 10, 20, 30 and 40 m/s. Figure 22 
shows the normal contact forces obtained using the inverse 
dynamics analysis for different forward velocities. The results 
are compared with the contact forces obtained in the specialized 
steady state formulation. Excellent agreement has been found 
without noticeable discrepancies.  
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Figure 22. Normal contact forces in inverse dynamics 

analysis 
 

In the case of the forward dynamics, a wheel set with the 
same properties used in the specialized steady state dynamic 
equilibrium analysis is assumed to travel on a track that 
consists of three segments. The first is a tangent segment with 
zero superelevation, the second is a spiral-entry segment (linear 
variation of curvature and superelevation along the longitudinal 
coordinate), and the third is a constant curvature segment with 
curvature and superelevation that will be specified later. The 
first two segments are used to make the entry of the wheel set 
into the curved track as smooth as possible, thereby avoiding 
impulsive flange impacts. When the wheel set enters the spiral 
segment, the flange of the right wheel contacts the gage face of 
the rail. A short distance after entering the constant curvature 
segment the wheel set shows a steady state behavior (position 
with respect to the track coordinate system is constant). The 
dynamic forces at the three contact points are projected onto the 
track coordinate system and averaged over a time window. As 
an example of the results of the dynamics simulation, Fig. 23 
shows the contact forces on the tread of the left and right 
wheels and the flange of the right wheel during the motion of 
the wheel set. Here the results are obtained using the elastic 
approach, forward velocity of 5 m/s and, in the constant 
curvature segment, the track has 5 deg with balanced 
superelevation. It can be observed that the contact forces have 
high frequency oscillations that are typical when the elastic 
approach is used, but the average values are approximately 
constant during curve negotiation. This is due to the large 
stiffness associated with the elastic contacts. 
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Figure 23. Contact forces obtained using the dynamic 

simulation. 
 

Effect of the Track Curvature A set of simulation results 
has been obtained with track curvatures ranging from 1.3 
degrees to 9 degrees, a velocity of 5 m/s and zero 
superelevation. The simulation results show that for curvatures 
below 1.3 degrees the wheel set has only two points of contact. 
Figure 24 shows the yaw angle versus the track curvature. The 
plot shows the results obtained with the steady state equilibrium 
analysis and the dynamic simulation using the elastic and the 
hybrid methods. The agreement between the results of the 
specialized steady state formulation and the results of the 
forward dynamics simulations is good, especially when the 
hybrid method is used. Figure 25 shows the lateral force at the 
flange contact. Again, there is a good agreement between the 
results of the specialized steady state formulation and the 
results of the forward dynamics methods. Figures 26 shows the 
lateral forces at right tread. In general, the agreement between 
12 Copyright © 2003 by ASME 



the specialized steady state formulation and the hybrid method 
is better. This is expected since in the hybrid method the two 
tread contacts are modeled using constraints as in the case of 
the specialized steady state formulation. The differences 
between the results of the specialized steady state formulation 
and the results of the forward dynamics become more 
significant for high curvatures. 
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Figure 24. Yaw angle (velocity 5 m/s, zero superelevation). 
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Figure 25. Lateral force at the flange contact (velocity 5 m/s, 

zero superelevation). 
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Figure 26. Lateral force at the right tread contact(velocity 5 

m/s, zero superelevation). 
 

Influence of Track Superelevation  A set of results 
have been obtained for superelevations ranging from 0 to 200% 
of the balanced superelevation, forward velocity of 5 m/s and a 
curvature of 5 degrees. Figure 27 shows the yaw angle as 
function of the superelevation. The absolute values of the yaw 
angle are larger in the case of forward dynamics, particularly in 
 

the case of the elastic method. However, the rate of change 
shows a good agreement. Figure 28 shows the three contact 
forces, including normal contact forces and creep forces. Note 
that a large increase in superelevation leads to minor changes in 
the contact forces. The agreement between the results of the 
specialized the steady state formulation and the results of the 
hybrid forward dynamics method is again good. 
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Figure 27. Yaw angle (velocity 5 m/s, curvature 5 deg). 
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Figure 28. Contact forces (velocity 5 m/s, curvature 5 deg). 

 
7. SUMMARY AND CONCLUSIONS  

This paper examines the steady state curving behavior of 
wheel sets traveling on a track with constant curvature. Using 
the steady state configurations obtained using the specialized 
formulation to test the performance of a multibody dynamic 
computer algorithm developed for railroad vehicles. The 
kinematic variables and contact forces obtained using the 
specialized steady state formulation are compared with the 
results of the inverse dynamics and forward dynamics 
multibody system formulations.  

In the steady state configurations, the kinematics of the 
wheel set with three points of contact with the rail can be 
described using the yaw angle and the wheel set angular 
velocity about its axis. It has been shown that the wheel set has 
negative yaw angles for low forward velocities. The absolute 
value of the yaw angle decreases when the forward velocity 
increases, and the yaw angle becomes positive for large 
forward velocities. However, when the curvature of the track is 
varied, the absolute value of the yaw angle increases for low 
curvatures up to a maximum value. For larger curvatures, the 
absolute value of the yaw angle decreases. With regard to the 
13 Copyright © 2003 by ASME 



superelevation, it has been shown that the yaw angle increases 
as the superelevation increases. With regard to the normal 
contact forces, in general, the force on the left wheel (at the 
inner rail) decreases as the forward velocity or the curvature of 
the track increases, while the two forces on the right wheel (at 
the outer rail) increase. On the contrary, the force on the left 
wheel increases and the two forces on the right wheel decrease 
as the superelevation of the track increases. The comparison of 
the forces obtained using the specialized steady state 
formulation and those obtained using the general multibody 
dynamic equations show a good agreement. Both inverse 
dynamics and forward dynamics solutions show a good 
agreement with the steady state configurations predicted using 
the specialized wheel set formulation. 
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	The change in the sense of the yaw angle at low and high velocities can be explained considering the balance of the moments about the X axis of the track coordinate system.
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