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SYNOPSIS 

During the last years, our group has worked on real-time formulations for the dynamics of 
multi-body systems. Now, in order to find out if such methods are suitable to address real 
industrial problems, we intend to develop control algorithms for a car on its computer model 
(virtual prototyping), and evaluate the performance of such controllers when implemented on 
the corresponding physical prototype. This paper addresses the first part of the work. Two 
maneuvers are to be considered: straight line and obstacle avoidance. 
The computer model of the car has been written in Fortran language. Fuzzy logic has been 
chosen to design the control algorithms, which have been implemented on Matlab 
environment. Several alternatives to connect Fortran- and Matlab-based functions have been 
studied, concluding that the most appropriate election depends on the purpose being pursued: 
controller tuning or onboard use of an already tuned controller. Simulator capabilities have 
been given to the program by means of a realistic graphical output and game-type driving 
peripherals (steering wheel and pedals), so that comparison may be established between 
human and designed automatic control. 

1 INTRODUCTION 

During the last years, our group has worked on real-time formulations for the dynamics of 
multi-body systems1,2. As a result, a robust and efficient method has been developed2: an 
index-3 augmented Lagrangian formulation with projections of velocities and accelerations, 
which features natural coordinates for the modelling, the trapezoidal rule as numerical 
integrator and sparse matrix technology for calculations. The method has shown to be robust 
and accurate, successfully facing singular configurations, changing topologies and stiff 
systems, as well as efficient, achieving real-time performance on a conventional PC when 



simulating the full model of a car vehicle undergoing rather violent manoeuvres, like stairs 
descent. 
 
Now, in order to find out if such formulation is suitable to address real industrial problems, 
we intend to develop control algorithms for a car on its computer model (virtual prototyping), 
and evaluate the performance of such controllers when implemented on the corresponding 
physical prototype. Figure 1 shows the general diagram describing the mentioned objective. 
 
The actual prototype has been built, and its virtual counterpart has been implemented on a 
computer through the mentioned dynamic formulation. The instrumentation of the former and 
the programming of the latter have been carried out in such a way that the inputs (actuators) 
and outputs (sensors) of the model and the physical prototype are exactly the same. Then, 
control algorithms can be designed and tested on the computer model of the car, until 
satisfying behaviour of the controller is achieved. If the simulator is accurate enough, the 
resulting control algorithms should also work properly when implemented on the actual car. 
Two manoeuvres are to be considered: straight line and obstacle avoidance. 
 

 
 

Fig. 1. General context of the work. 
 
Many references can be found in the literature regarding the automatic control of car vehicles. 
Two good reviews of the state-of-the-art concerning the trajectory tracking problem were 
presented by Antos and Ambrosio3, and Gordon et al4. Some other works have been focused 
on more specific aspects of the problem, like the so-called intelligent cruise control (ICC)5,6, 
or the measurement of some kinematic magnitudes during the motion7. Conversely, the 
present work aims to address the problem from a more holistic and general point of view. 
 



The paper is organized as follows: Section 2 focuses on the computational model of the car; 
Section 3 justifies the use of fuzzy logic in the present work; Section 4 explains the different 
alternatives available to connect the Fortran code containing the dynamics of the car with the 
Matlab functions implementing the fuzzy logic control algorithms, and points out their 
preferred contexts of application; Section 5 shows the comparison, for the two manoeuvres 
considered, between human and automatic control at simulation level; finally, Section 6 
outlines the conclusions of the work. 

2 COMPUTATIONAL MODEL OF THE CAR 

The mathematical model of the car, illustrated in Figure 2 along with the physical prototype, 
has been carried out in natural coordinates8: 44 points, 7 unit vectors, 5 distances and 1 angle 
have been used as problem variables, leading to a total problem size of 159. Some few out of 
the mentioned variables have not been included for strict mechanical reasons, but rather for 
graphical representation requirements.  
 

 
 

 
 

Fig. 2. a) The prototype; b) its model in natural coordinates. 
 



The equations of motion have been derived by means of an index-3 augmented Lagrangian 
formulation with projections of velocities and accelerations2. The steering wheel is 
kinematically guided. Forces which deserve to be described are the following: 
- Suspension forces: they have been considered through linear models of springs and 
dampers. 
- Tire forces: lateral force and self-aligning torque have been introduced through the magic 
formula9 with coefficients provided by the tire maker. The longitudinal effort has been 
neglected. 
- Power transmission forces: from the engine relationships torque-speed and the gear ratios, 
both provided by the engine maker, the automatic gearing has been modelled. Then, for a 
certain value of the car velocity, the engine speed and, consequently, the engine torque, can 
be easily derived. The torque is applied on the rear wheels. 
- Brake forces: the braking torque has been estimated from disk geometry10, and applied on 
the four wheels. 
 
A code that calculates the dynamics of the described model has been implemented in Fortran 
language, due to its high efficiency. 

3 REASONS FOR THE USE OF FUZZY LOGIC 

Designing a conventional controller, such as a proportional, integral and derivative (PID) 
controller, normally follows a standard procedure of modelling the plant, constructing a 
controller and evaluating the performance11. A complete ground vehicle is naturally a highly 
nonlinear system. Developing a model which preserves the nonlinear characteristics of the 
system, and is simple enough to represent the plant of the complete system, is not easy at all. 
In fact, it’s common to resort to a simplified model, as the bicycle model, in order to design a 
controller for a whole vehicle. 
 
Fuzzy control is knowledge-based control technology that can mimic human strategies to 
control complex systems12. Due to its capability of handling systems nonlinearity, this 
technique seems a good choice to control a ground vehicle, and has been used recently to 
control different parts of actual vehicles13. Reviewing the accomplishments reported on 
applications of fuzzy control to vehicle systems, a common feature was that natural language 
models were used to describe the control process14, being similar for plants having similar 
implementation mechanisms. This characteristic of fuzzy control makes it possible to design a 
generic fuzzy controller for similar plants. Moreover, another valuable reason is that a reliable 
toolbox for fuzzy logic programming is provided by Matlab environment. This fact highly 
simplifies both the programming and tuning of the controller. 

4 FORTRAN-MATLAB CONNECTION 

In order to introduce the control on the prototype model, the Fortran code containing the 
dynamics of the car and the Matlab functions implementing the fuzzy logic control algorithms 
must be combined. Matlab always employs double-precision variables, so that the different 
types of Fortran variables must be converted to double-precision for Matlab compatibility. To 
connect Fortran and Matlab, two alternatives have been investigated: Matlab Engine and 



MEX files. For both of them, compatibility between Matlab and the Fortran compiler is 
required. 
 
Fortran-Matlab communication through Matlab Engine requires opening a communication 
channel from Fortran to Matlab. Matlab features several compilation functions which enable 
data transference between both languages, as well as executing functions in Matlab15. Then, 
when the Fortran program is run, a Matlab session is started, which implies some delay. 
Likewise, data transmission through the communication channel and the execution of Matlab 
instructions both slow down the program. In fact, to execute a Matlab function it must be 
written and executed on Matlab command window through the communication channel. 
Despite this fact, the simulation CPU-times obtained are kept moderate and, therefore, Matlab 
Engine can be considered as a suitable tool to design new control algorithms. 
 
Matlab allows the user to write new functions by means of the so-called MEX files. Through 
this method, the user can write the whole program in Matlab language with the exception of 
bottleneck functions, which could be written in more efficient languages, like Fortran or C, 
and executed directly from Matlab as its own functions. A command library is available in 
order to communicate Matlab with the other programming language. The compilation is 
carried out in Matlab. Consequently, this option is just opposite to the previous one. In the 
present work, the whole Fortran program containing the dynamics of the car has been 
converted to a MEX file, which can be executed in Matlab, thus enabling the access to the 
functions of the fuzzy logic toolbox. The efficiency has shown to be a little lower than that 
obtained with the first option. 

5 HUMAN VS AUTOMATIC CONTROL IN SIMULATION 

The computational model of the car has been used to create a driving simulator, shown in 
Figure 3a, by combining the already mentioned vehicle dynamics code, along with a realistic 
graphical output and game-type driving peripherals (steering wheel and pedals), so that 
comparison may be established between human and designed automatic control. 
 

 
 



    
 

Fig. 3. Driving simulator: a) general view; b) first manoeuvre; c) second manoeuvre. 
 
As said in the Introduction, two manoeuvres have been performed. In the first one, the car 
starts from rest, covers a distance of 20 m following a straight line, and stops. The maximum 
speed allowed is 5 m/s, but the time spent in the manoeuvre has not been limited. First, a 
human driver has carried out the manoeuvre. Figure 3b shows the corresponding simulator 
environment. 
 
The control scheme for automatic driving has been represented in Figure 4. It receives 
position, velocity and acceleration of the car, and acts upon gas and brake. The values sent to 
both actuators range from 0 to 1, corresponding to null and maximum displacement of the 
respective devices. Simultaneous operation of gas and brake has been avoided. No error 
function has been used, but the position of the car. The total travelling distance has been 
divided into four intervals –start, taxiing, brake and stop–, and control rules have been 
specified for each interval. A fifth interval has been defined for the rest period after the 
arrival, in order to avoid an undesired behaviour in that phase. 
 

 
 

Fig. 4. Control diagram. 
 
Figure 5 shows the comparison of the position history, gas actuation and brake actuation 
carried out by both the human driver and the controller. As it can be observed, the manoeuvre 
performed by the controller is cleaner. The controller does not need to make several 
approximations, as the human driver does. Actuation on both the gas and brake is more 
efficient when the car is automatically controlled, and less time is needed to complete the 
manoeuvre. 



 

 
 

 
 

 
 

Fig. 5. Comparison between human driving (dashed) and automatic control for the first 
manoeuvre: a) position history; b) gas actuation; c) brake actuation. 

 
The second manoeuvre consists in obstacle avoidance: starting from rest, the car covers an 
initial straight path of 20 m, then follows a full period (from peak to peak) of a sinoidal path 
of amplitude 1.75 m and, finally, must return to the straight line. The speed is kept under 8 
m/s. First, a human driver has carried out the manoeuvre. Figure 3c shows the corresponding 
simulation environment. 



 
For this second manoeuvre, the controls of both the steering and the gas-brake couple have 
been addressed separately, as illustrated in Figure 6. The pursued objective is that the 
controller slows down the car when the error in path tracking increases. 
 
For steering control, two error functions have been defined. The first one is the position error 
of the vehicle at the current time. The second one aims to anticipate the behaviour of the car 
in the next instants. For this purpose, the tangent to the trajectory at the current point is 
compared with the tangent to the desired trajectory at a more advanced point. The anticipated 
distance depends on the car speed, being greater for larger speeds. 
 
For gas-brake control both the velocity and acceleration of the car are taken into account, as 
well as the path tracking error. In this case, the error is calculated as the mean of the two 
errors used for the steering control. 
 

 
 

 
 

Fig. 6. Control diagrams: a) steering wheel control; b) gas-brake control. 
 
Figure 7 shows the comparison of the velocity and the trajectory carried out by both the 
human driver and the automatic controller. It can be seen that the human driver tends to 
smooth the trajectory at the turns. His maximum error is 0.5 m, and occurs at the time of 
returning to the straight path. It is surprising the fact that the driver does not anticipate the last 
turn, likely due to an excessive speed. 
 
The controller shows a more moderate trend to smooth the trajectory at the turns. During the 
curved part of the trajectory, the error is negligible, and the speed reduction is less acute than 
in the human-driven case. Again, the most difficult point arrives at the time of returning to the 
straight path, with an error of 0.22 m. For lower speeds, such error is almost zero. However, 



as observed when looking at the trajectory performed by the human driver, the manoeuvre has 
been managed at a quasi-critical speed from a stability point of view. 
 

 
 

 
 

Fig. 7. Comparison between human driving (dashed) and automatic control for the 
second manoeuvre: a) velocity; b) trajectory. 

 
The CPU-times obtained for the two manoeuvres reported when using the Matlab Engine 
option on a Pentium IV @ 2 GHz are listed in Table 1. CPU-times* include the time spent in 
opening a Matlab session, while CPU-times** are obtained when the running program is 
attached to an already opened Matlab session. It must be said that, when no control is 
considered, the Fortran program comfortably reaches real-time performance when solving for 
the dynamics of the vehicle. 
 
It can be seen that the second manoeuvre needs a greater computational effort, due to the 
evaluation of two controllers, as described above. Evaluation of a fuzzy controller implies 
carrying out a fuzzification (i.e. determining the membership degree in the input fuzzy sets), 
applying the inference rules and, finally, performing a defuzzification (i.e. mapping an output 
value to its appropriate membership value in the output fuzzy sets). The CPU-times needed 
when using the MEX file option are slightly higher. 



 
Table 1 Efficiency. 

# Maneuver Time (s) CPU-time* (s) CPU-time** (s) 
1 12 18.00 11.99 
2 24 36.14 30.45 

 
The Matlab Engine option seems to be preferable, since the computational effort required is 
lower, and since less code must be added to the original program. Indeed, only commands for 
the opening and closure of the communication channel along with those relative to data 
transference must be added (when the MEX file alternative is chosen, a new heading file must 
be added too, in order to enable the program to be called from Matlab). 
 
Therefore, Matlab Engine represents a good solution when, as in the present case, only some 
parts of the program need to be executed on Matlab. Furthermore, it is adequate for the stage 
of controller tuning, since real-time is not required. However, for the use of an already tuned 
controller on a real application, real-time performance must be achieved. At the view of the 
CPU-times shown in Table 1, it is obvious that another alternative must be searched. In order 
to find a solution, it must be taken into account that the fuzzy logic generates, by means of 
rules of membership and actuation, a hyper-surface which relates the input (error, velocity, 
etc.) and output variables (gas, brake, steering). Then, it is possible to evaluate the controller 
by sweeping a mesh of the different input values, and storing the resulting output values on a 
matrix. The mesh will be more refined at those points in which the controller behaviour is 
more nonlinear. Matlab provides function evalfis to this end. For those elements which are not 
in the matrix, fast interpolation can be done, thus assuring real-time performance. 

6 CONCLUSIONS 

Based on the results previously described, the conclusions can be drawn as follows: 
 
a) By applying an authors’ method for the dynamics of multibody systems, the computer 
model of an actual prototype car has been generated, and a Fortran program to determine its 
motion has been implemented. 
 
b) Algorithms for the automatic control of the car during two manoeuvres have been 
developed by using fuzzy logic functions -which mimic human strategies-, provided by the 
corresponding Matlab toolbox. 
 
c) Different alternatives to connect the Fortran and Matlab programs have been studied. 
Matlab Engine seems to be the best option for controller tuning, while encapsulation of the 
controller hyper-surface in a matrix appear to be more convenient for real-time 
applications. 
 
d) Simulator capabilities have been given to the program by means of a realistic graphical 
output and game-type driving peripherals (steering wheel and pedals), so that comparison 
may be established between human and designed automatic control. 
 



e) The two manoeuvres –straight line and obstacle avoidance– have been performed by 
both a human driver and the automatic controllers developed, and the obtained results 
have been compared, showing an excellent behaviour of the controllers. 
 
In a future work, the authors intend to address the experimental validation of their formulation 
for the dynamics of multibody systems, by implementing the developed control algorithms 
onboard the actual prototype car and verifying whether a good behaviour is still achieved. 
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