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SYNOPSIS 

Recently, the authors have developed an efficient, robust, accurate and easy-to-implement 
method for the real-time analysis of rigid-flexible multibody systems. The flexible bodies are 
modelled by means of the floating frame of reference formulation, along with modal 
superposition of both static and dynamic modes. The dynamic modes to be considered for 
each flexible body must be decided by the analyst. 
On the other hand, the co-rotational approach used to derive the inertia terms of the dynamic 
equations motivates that such terms depend on the discretization of the underlying finite 
element mesh. Therefore, the discretization size of the finite element model is another 
parameter to be selected by the analyst. 
Furthermore, the value of two other parameters must be chosen: the penalty factor for the 
dynamic equations, and the time-step size for the fixed single step numerical integrator. 
This paper studies the influence of the four parameters on the accuracy and efficiency of the 
abovementioned method, along with their relative dependence. To this end, a sweeping of the 
space generated by the parameters is carried out for a flexible system, and the corresponding 
results are analyzed in terms of accuracy and efficiency. In order to have a reference for 
comparison, the system is also solved through the nonlinear module of a finite element 
analysis commercial code. 

NOMENCLATURE 

p1, p2: points (natural coordinates) used to model the pinned-free beam. 
2xp , 2 yp : x- and y-coordinate of point p2. 

v1, v2: unit vectors (natural coordinates) used to model the pinned-free beam. 



1xv , 1yv : x- and y-component of unit vector v1. 
2xv , 2 yv : x- and y-component of unit vector v2. 

Φ: static bending mode of the pinned-free beam. 
η: amplitude of static bending mode Φ. 
n: number of the first dynamic bending modes considered. 
Ψ1, Ψ2, ..., Ψn: n first dynamic bending modes of the pinned-free beam. 

1ξ , 2ξ , ..., nξ : amplitudes of the n first dynamic bending modes Ψ1, Ψ2, ..., Ψn. 
q: vector of problem variables. 
m: number of finite elements used for the discretization of the pinned-free beam. 

iz : history of a certain magnitude. 
*
iz : history of a certain magnitude for the reference simulation. 

max
z : maximum absolute value of a certain magnitude during the simulation. 

α: penalty factor for the augmented Lagrangian dynamic formulation. 
∆t: fixed time-step selected for the numerical integration. 

1 INTRODUCTION 

During the last years, the authors have developed an efficient, robust, accurate and easy-to-
implement method for the real-time analysis of rigid-flexible multibody systems1,2. The 
method employs natural coordinates for the modelling3, applies the co-rotational approach4 to 
derive the inertia terms of the flexible bodies, establishes the equations of motion through an 
index-3 augmented Lagrangian formulation with projections in velocities and accelerations5, 
and carries out the numerical integration by means of the implicit, single step trapezoidal 
rule6. The kinematics of the flexible bodies is introduced through the floating frame of 
reference approach7, along with modal superposition to describe the corresponding local 
deformations8, carried out by means of both static and dynamic modes defined with respect to 
a tangent frame9. 
 
When a certain multibody system containing flexible bodies is to be studied through the 
described method, four kinds of parameters are left to the analyst decision: 
 
a) The dynamic modes to be considered for each flexible body. Once the modelling in natural 
coordinates of the whole multibody system has been carried out, the static modes for each 
flexible body are automatically established1 (some of them can be neglected, if desired, by 
imposing the corresponding constraint equation of null amplitude). However, the dynamic 
modes, which have the role of improving the representation of the deformation field given by 
the static modes, can arbitrarily be included in the model. Decision about how many and 
which dynamic modes to consider must be taken by the analyst. As demonstrated in previous 
works10,11, both the accuracy and the efficiency of the simulation will be strongly influenced 
by this choice. 
 
b) In a general approach, a finite element (FE) model of each flexible body is also prepared. 
Such model serves, in a pre-processing stage, to obtain the static and dynamic modes, as well 
as the mass and stiffness matrices of the finite element method and, in a post-processing stage 
carried out at each time-step, to work out the values of elastic strains, stresses, displacements 
and efforts. Hence, the way in which the body is discretized becomes relevant, since it is 



expected to affect both to the accuracy and the efficiency of the simulation. For flexible 
bodies of simple geometry, like straight and uniform beams, the analytical form of the modes 
is available and, therefore, the described pre- and post-processing stages are not needed, and 
the simulation behaviour no longer depends on the FE mesh. However, if the authors’ method 
is used, the FE model still appears in the formulation. The reason is that, when the co-
rotational approach is introduced, the inertia terms of the dynamic equations for each flexible 
body are obtained as products of several matrices which depend on the FE model1,2. 
Therefore, either if the analytical modes are available or not, the adopted FE discretization 
affects to the performance of the simulation. This is the second decision left to the analyst. 
 
c) In the proposed method, the equations of motion are established by means of an index-3 
augmented Lagrangian formulation, which requires a penalty factor to amplify the internal 
forces caused by constraint violations. Such factor is crucial for the simulation stability, and 
constitutes the third decision to be taken by the analyst. 
 
d) Since the described method is targeted to achieve real-time performance, the fixed single 
step trapezoidal rule is used. Therefore, the fixed time-step for the numerical integration must 
be selected: this is the fourth decision for the analyst. 
 
Choices (a) and (b) can be referred to as the modelling parameters, since they deal with the 
modelling of each flexible body, while (c) and (d) may be called the numerical parameters, as 
they are related to the dynamic formulation and integration procedure of the whole multibody 
system. 
 
This paper aims to study the influence that the four mentioned parameters have on both the 
efficiency and the accuracy of the proposed method, and to search for relationships among 
such four parameters. To achieve these objectives, a sweeping of the space generated by the 
two modelling parameters is carried out for a flexible system, and the two numerical 
parameters are adjusted for each combination. The results are analyzed in terms of accuracy 
and efficiency. In order to have a reference for comparison, the example is also solved 
through the nonlinear module of a finite element analysis (FEA) commercial code. 
 
The remaining of the paper is organized as follows: Section 2 shows the flexible system to be 
analyzed, along with its modelling with both the proposed and the FE method; Section 3 
explains the characteristics of the motion undergone by the system, the criteria to generate the 
multiple simulations executed, the magnitudes to be recorded, and the way to determine the 
error incurred by each simulation; Section 4 presents the results obtained for all the 
simulations, which are discussed in Section 5; finally, Section 6 summarizes the conclusions 
of the work. 

2 THE EXAMPLE 

The flexible system to be analyzed, shown in Figure 1a, consists of a beam pinned at one end 
to the ground, which starts from the rest and undergoes the bang-bang torque depicted in 
Figure 1b. Gravity effects are neglected. Physical properties of the beam are: mass density 
8000 Kg/m3, modulus of elasticity 2x1011 N/m2, length 1.5 m, cross-sectional area 10-4 m2, 
moment of inertia 10-10 m4. 
 



 
 

Fig. 1 a) pinned-free beam; b) bang-bang torque. 
 
Following the method developed by the authors, the modelling of the beam has been carried 
out as illustrated in Figure 2. At the pinned end, point p1 and unit vectors v1 and v2 have 
been defined, thus constituting the local reference frame of the body. In this case, point p1 is 
fixed. At the free end, point p2 has been defined. The local displacement of point p2 in v2-
direction activates static bending mode Φ. Its local displacement in v1-direction has been 
prevented through a constraint equation, so as to avoid the appearance of the corresponding 
axial mode, not relevant in this example. To better represent the deformed configuration of 
the beam, as many dynamic modes as desired can be considered: they are the natural modes 
of vibration of the beam with fixed boundaries (points p1 and p2, and unit vectors v1 and v2), 
which means that, for their calculation, left end must be clamped and right end must be 
pinned. Figure 2 shows the two first dynamic modes, Ψ1 and Ψ2. 
 

 
 

Fig. 2 Modelling of the flexible pinned-free beam with the authors’ method. 
 
Then, if a certain number n of dynamic modes is chosen for the modelling, the vector of 
problem variables results, 
 
 { }t

1 21 1 2 2 2 2x y x y n x yv v v v p pη ξ ξ ξ=q  (1) 
 
where η  is the amplitude of the static deformation mode Φ, and ξ1 , ξ2 , ..., nξ  are the 
amplitudes of the dynamic modes considered Ψ1, Ψ2, ..., Ψn. Therefore, the total number of 
variables is 7+n, with only 2+n independent. The analytical forms of both the static and 
dynamic modes have been used. 
 
For the underlying FE model of the beam, a mesh of m two-dimensional beam elements 
(BEAM2D) has been generated. All the elements are identical, with nodes of three degrees of 
freedom: two displacements in the plane of the beam and the corresponding slope. As the 



node placed at the pinned end of the beam can only experiment rotation, the total number of 
variables rises to 3m+1. 

3 THE ANALYSIS 

The motion of the flexible beam undergoing the described torque is simulated for 2 s. 
Simulations are run with a number of dynamic modes n going from 0 to 4, and a number of 
beam elements m ranging from 21 to 26. The penalty factor is initially adjusted to 109, and 
increased only when bad results are obtained. The time-step is set to 1 ms; in case that the 
simulation fails, the time-step is reduced until good behaviour is achieved. 
 
For each simulation, the following results are recorded: a) CPU-time required; b) history of 
the y-coordinate of the free end of the beam; c) history of the bending moment at the middle 
section of the beam. In order to have a reference for comparison, so as to evaluate the quality 
of the solution obtained at each simulation, the problem has also been solved through the 
nonlinear module of FEA commercial code COSMOS/M 2.8, using a discretization of 26=64 
elements. 
 
Two error values have been obtained for each simulation: a displacement error and a bending 
moment error. In both cases, the error has been calculated as follows. The history of the 
corresponding magnitude has been recorded at every 1 cs for both the simulation of reference 
and the simulation being evaluated. Then, the error is obtained as, 
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where 201 is the number of values considered (steps of 1 cs during 2 s of simulation), iz  
represents the history of the corresponding magnitude (y-coordinate of the free end of the 
beam, or bending moment at the middle section of the beam) for the current simulation, *

iz  is 
the same for the reference simulation, and 

max
z  is the maximum absolute value of the 

magnitude during the simulation. The resulting errors have the form of percentages. 

4 RESULTS 

Table 1 shows the obtained results for all the simulations performed. Remember that n is the 
number of dynamic modes, m is the number of beam elements, α is the penalty factor, and ∆t 
is the fixed time-step selected for the numerical integration. The symbol “---“ means that the 
simulation failed with such a combination of dynamic modes and discretization size. The 
simulation which produces the most accurate results has been boldfaced. The CPU-times 
reported have been obtained on a Pentium III @ 900 MHz. 
 



Table 1 CPU-time and errors for all the simulations performed. 

#sim n m α ∆t (s) CPU-time (s) Error in 
displacement (%)

Error in bending 
moment (%) 

1 2 109 10-3 0.15 8.86 97.68 
2 4 109 10-3 0.16 9.50 74.59 
3 8 109 10-3 0.25 11.33 81.23 
4 16 109 10-3 0.56 11.63 81.93 
5 32 109 10-3 1.71 11.58 81.50 
6 

0 

64 109 10-3 7.19 11.57 81.35 
7 2 --- --- --- --- --- 
8 4 109 10-3 0.22 11.17 61.94 
9 8 109 10-3 0.29 7.48 48.62 
10 16 109 10-3 0.83 3.63 25.59 
11 32 109 10-3 2.40 2.10 19.95 
12 

1 

64 109 10-3 8.32 2.24 20.32 
13 2 --- --- --- --- --- 
14 4 --- --- --- --- --- 
15 8 109 10-3 0.49 8.10 46.10 
16 16 109 10-3 1.12 6.41 37.20 
17 32 109 10-3 2.99 3.68 25.26 
18 

2 

64 109 10-3 11.07 3.58 25.06 
19 2 --- --- --- --- --- 
20 4 --- --- --- --- --- 
21 8 --- --- --- --- --- 
22 16 109 10-4 8.00 4.25 23.40 
23 32 109 10-4 22.77 8.91 51.43 
24 

3 

64 109 10-4 80.88 6.48 34.72 
25 2 --- --- --- --- --- 
26 4 --- --- --- --- --- 
27 8 --- --- --- --- --- 
28 16 1010 10-4 9.22 7.44 35.86 
29 32 109 10-4 25.56 3.09 20.23 
30 

4 

64 109 10-4 93.68 5.22 28.76 
 
In order to provide the reader with a more visual presentation of the results, the CPU-time and 
errors for all the simulations performed are also given in Figure 3. CPU-times of 100, and 
error values of 20 for displacements and 100 for bending moments have been assigned to 
those simulations which failed (symbol “---“ in Table 1), so that plots are not distorted. 
 



 

 

 

 
Fig. 3 Results: a) CPU-time; b) displacement error; c) bending moment error. 

 



Both errors (displacement and bending moment) have been reduced to single figures, 
according to Equation (2), in an attempt of condensing the information and making easier its 
interpretation. In order to show the correlation between the error values presented in Table 1, 
and the actual discrepancies of the simulations with respect to the reference, plots comparing 
the histories of displacement and bending moment for simulations 1, 11, 23 and 30 along with 
the corresponding histories for the reference simulation are depicted in Figure 4. 
 

  
 

  
 

  



  
 

Fig. 4: a) Errors in simul.  #1 (n=0, m=2): displ. (8.86%), bend. moment (97.68%); 
 b) Errors in simul. #11 (n=1, m=32): displ. (2.10%), bend. moment (19.95%); 
 c) Errors in simul. #23 (n=3, m=32): displ. (8.91%), bend. moment (51.43%); 
 d) Errors in simul. #30 (n=4, m=64): displ. (5.22%), bend. moment (28.76%). 
 
From the presented plots, it can be seen that, if the error is determined as proposed in 
Equation (2), an error in displacement of 8% is a great error, while a value of 2% means very 
good accuracy. On the other hand, an error in bending moment of 100% represents a large 
error, and 20% indicates excellent agreement with the reference. Although the scales of both 
errors are different, as are the mean values of each kind of results, their trend is, in general, 
the same. 

5 DISCUSSION 

At the view of the results presented in the previous Section, it is clear that consideration of 
more dynamic modes does not necessarily leads to more accurate results, but always to less 
efficient simulations. In the example, the most accurate results are obtained with only one 
dynamic mode, and the corresponding efficiency is high in the context of all the executed 
simulations. This means that an optimum number of dynamic modes exists for a certain 
analysis. 
 
Regarding the discretization, it can be affirmed that a maximum mesh size cannot be 
exceeded based on the highest dynamic mode considered. Once under such maximum, more 
accurate results are obtained for more refined meshes until a certain value; further refinement 
does not lead to any improvement. On the other hand, the efficiency decreases as the mesh is 
refined. Therefore, it comes out that the required discretization depends on the number of 
dynamic modes, and that there is also an optimum size for the underlying FE mesh. It must be 
pointed out that the exponential increment in CPU-time reported in Table 1 as the number of 
finite elements rises, is due to products of matrices whose size depends on the mesh size, 
needed to build up the inertia terms. Such products can be done more efficiently if the sparse 
structure of the arrays is accounted for, so attenuating the pronounced growth of the CPU-
times with respect to the discretization size. 
 
Going now to the numerical parameters of the method under study, it seems that an increment 
of the penalty value can be worthy only for cases of insufficient FE discretization. On the 



other hand, the time-step size needed to perform the numerical integration shows to be related 
to the highest dynamic mode included in the modelling: higher dynamic modes imply smaller 
time-step sizes and, consequently, lower efficiency. 
 
From what has been said, it can be concluded that only one parameter is independent: the 
number of dynamic modes. The other three parameters –discretization size, penalty factor and 
time-step size– can be established as functions of the number of dynamic modes. Moreover, 
there is an optimum value of the number of dynamic modes for a certain problem. The reason 
is that the motion of the body is properly captured with such optimum number of dynamic 
modes, so that the inclusion of additional modes only leads to the appearance of higher 
frequencies in the solution, which in turn hinder the numerical integration process, thus 
producing higher errors. Therefore, a method to determine how many and which dynamic 
modes must be considered for a certain analysis is crucial to develop models which can be run 
on real-time with the proposed formulation. Of course, the iterative process will always be 
available, and can be an option for some applications. 
 
In the field of structural dynamics, the optimum number of dynamic modes depends on the 
physical properties of the body and the frequency content of the applied forces, and both of 
them can be analyzed before the simulation is carried out. However, in flexible multibody 
dynamics, joint and inertia forces, which cannot be analyzed a priori, are of key relevance; 
they depend on the motion undergone by the body, which is unknown until a simulation is 
performed. Therefore, it seems that making an initial estimation of the optimum number of 
dynamic modes in flexible multibody dynamics won’t be an easy task, and that, at least, a 
previous rigid-body simulation will be required in order to get some insight into the form of 
both the joint and inertia forces. 
 

Table 2 MPFs for the example. 
# dyn. mode MPF (%) 

1 100 
2 3.46 
3 0.77 
4 0.17 
5 0.06 
6 0.02 
7 0.01 

 
This is exactly what is proposed in the modal participation factor (MPF) method, which has 
been successfully employed recently11,12 to estimate the dynamic modes that must be included 
in the model of a flexible multibody system. Such method has been applied in the paper to the 
studied example, so as to correlate it with the obtained results. To this end, rigid-body 
simulation of the system has been carried out, and the most critical position identified. The 
forces acting upon the body in such position have been recorded, and a static analysis of the 
body, now considered as a structure, has been conducted. For this purpose, the FE model of 
64 elements, which had been served for comparison so far, has been used, and the first 16 
dynamic modes have been obtained. Both the stiffness matrix and the applied forces have 
been projected to the modal space, and the corresponding modal amplitudes derived from the 
static equilibrium equation. Table 2 shows the MPFs obtained for the first 7 dynamic modes. 
The MPFs of the remaining modes were even smaller. 



 
From the results presented in Table 2, it is clear that the first dynamic mode prevails, and that 
only the second is above the commonly accepted limit of 1% share. Therefore, the MPF 
method indicates that the optimal selection consists in just taking the first dynamic mode, or 
perhaps the first and the second ones, which is in good agreement with the results previously 
obtained in the paper. Consequently, the MPF method can be considered as a good candidate 
to provide an initial estimation of the optimum number of dynamic modes for each flexible 
body. Once such decision is taken, the automatic tuning of the other three parameters to their 
optimal values (discretization size for each flexible body, penalty factor and time-step size), 
seems to be relatively easier; the development of some method for this purpose will be 
addressed in the future. 

6 CONCLUSIONS 

Based on the previously exposed results and discussion, the conclusions can be drawn as 
follows: 
 
a) The authors have recently proposed an efficient, robust, accurate and easy-to-implement 
method for the real-time dynamics of rigid-flexible multibody systems, based on the floating 
frame of reference formulation, with both static and dynamic modes. 
 
b) When applying such method, the analyst must decide on the value of four parameters: two 
modelling parameters –number of dynamic modes and discretization size of the underlying 
FE mesh for each flexible body–, and two numerical parameters –penalty factor for the 
dynamic equations and fixed time-step size of the numerical integration–. 
 
c) The four mentioned parameters are not independent: a certain value of the number of 
dynamic modes will ask for corresponding optimum values of the other three parameters. 
 
d) An optimum number of dynamic modes exists for a certain problem, which leads to the 
best results in terms of accuracy. 
 
e) The modal participation factor method can be used to provide an initial estimation of such 
optimum number of dynamic modes. 
 
f) A method to automatically obtain the optimum values of the remaining three parameters 
once the number of dynamic modes has been decided is left for future development. 
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