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ABSTRACT 

Recently, the authors have developed a method for 
real-time dynamics of multibody systems, which combines 
a semi-recursive formulation to derive the equations of 
motion in dependent relative coordinates, along with an 
augmented Lagrangian technique to impose the loop 
closure conditions. The following numerical integration 
procedures, which can be grouped into the so-called 
structural integrators, were tested: trapezoidal rule, 
Newmark dissipative schemes, HHT rule, and the 
Generalized-α family. It was shown that, for large 
multibody systems, Newmark dissipative was the best 
election since, provided that the adequate parameters were 
chosen, excellent behavior was achieved in terms of 
efficiency, robustness and accuracy. 

In the present paper, the performance of the described 
method in combination with another group of integrators, 
the Implicit Runge-Kutta family (IRK), is analyzed. The 
purpose is to clarify which kind of IRK algorithms can be 
more suitable for real-time applications, and to see whether 
they can be competitive with the already tested structural 
family of integrators. The final objective of the work is to 
provide some practical criteria for those interested in 
achieving real-time performance for large and complex 
multibody systems. 
 
 
1. INTRODUCTION 

Newmark integrators, widely used in structural 
dynamics, have shown to adapt well to the equations of 
motion of multibody systems, even for real-time 
applications, as can be seen in Garcia de Jalon and Bayo 
(1994), or Geradin and Cardona (2001). 

As an alternative, the suitability of the Runge-Kutta 
(RK) algorithms to face such kind of problems is being 
studied. Two main types of RK integrators can be 
distinguished: explicit and implicit. The explicit RK 
integrators are simple and easy-to-use, but they cannot deal 
with stiff systems, very common in multibody dynamics 
due to both the presence of physical devices of high 
stiffness, and the consideration of the constraints by means 

of penalty techniques. The implicit RK integrators (IRK) 
are much more complex than their explicit counterparts, but 
they behave much better too. 

Inside this group are the so-called Singly Diagonally 
Implicit Runge-Kutta (SDIRK) algorithms (see Hairer and 
Wanner (1996), Lambert (1997), Ascher and Petzold 
(1998)). They show advantages with respect to the general 
IRK integrators regarding simplicity and computational 
cost and, moreover, they can provide good stability and 
accuracy properties. Therefore, the SDIRK integrators 
seem to be the most suited, belonging to the IRK family, to 
address real-time applications in multibody systems. This 
kind of applications will ask for a low number of stages, so 
that the computational cost of each time-step keeps 
moderate, in order to be competitive with the Newmark 
integrators, specifically adapted to the second order 
dynamic equations which arise in multibody systems. 
 
 
2. THE PROPOSED DYNAMIC FORMULATION 

The proposed dynamic formulation has been presented 
by the authors in Cuadrado and Dopico (2003). It combines 
a recursive technique to derive the equations of motion in 
relative coordinates, dependent in the general case, and an 
augmented Lagrangian approach to impose the loop closure 
conditions. 

When combined with the structural integrators 
(Cuadrado and Dopico (2003)), the mentioned augmented 
Lagrangian approach was formulated in its index-3 form, 
so that fulfillment of both the dynamic equations and the 
position constraints was achieved at the same time, during 
the iterative convergence process inside a time-step. Such a 
formulation requires that the integrator enables to express 
the velocities and accelerations as functions of the positions, 
which in fact is possible when dealing with Newmark 
integrators, but not if IRK schemes are used. Therefore, 
combination of the proposed dynamic formulation with 
IRK integrators will demand the implementation of the 
augmented Lagrangian approach in its index-1 form. This 
means that satisfaction of both the dynamic equations and 
the acceleration constraints will be achieved at the same 
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time during the iterative convergence process inside a time-
step. Hence, a change in the formulation is imposed by the 
use of the IRK integrators instead of the Newmark 
integrators. 

It must be pointed out that the proposed dynamic 
formulation states the equations of motion in relative 
coordinates, which are dependent in the general case, i.e. 
when the system presents closed-loops in its topology, thus 
leading to the integration of a system of differential 
algebraic equations (DAE). Therefore, the approach is 
different from that taken in recent works, like those of 
Meijaard (2003) and Negrut et al (2003), which state the 
equations of motion in state-space form and, then, require 
the integration of a system of ordinary differential 
equations (ODE). 

The equations of the motion provided by the 
mentioned index-1 augmented Lagrangian formulation are, 

 ( ) ( ) *
tα α+ = − + −T T T

q q q q qM Φ Φ q Q Φ Φ q Φ Φ λ& &&& &  (1) 

where q is the vector of relative coordinates of the 
mechanism, M is the mass matrix, Q is the vector of 
applied forces, Φ is the vector of constraints, Φq is its 
Jacobian matrix, *λ  is the vector of Lagrange multipliers, 
and α is the penalty factor. M and Q are obtained through 
an efficient recursive procedure, based on a velocity 
transformation technique. The vector of Lagrange 
multipliers is iteratively updated (sub-index i) according to 
the following expression, 
 * *

1 1i i iα+ += +λ λ Φ&&  (2) 
Once convergence is attained at the time-step, the 

resulting accelerations satisfy the second derivatives of the 
constraints, but the constraints themselves and their first 
derivatives are not satisfied by positions and velocities, 
respectively. To enforce such a fulfillment, projections of 
the positions and velocities are carried out. The form of the 
projections is, for the positions (iterative, sub-index j), 

 ( ) ( ) ( )1j jj j
α α++ = − −T T

q q qM Φ Φ ∆q M∆q Φ Φ  (3) 

and, for the velocities (non-iterative), 

 ( )+ = −T * T
q q q tM Φ αΦ q Mq Φ αΦ& &  (4) 

where = − *∆q q q , and *q , *q&  are, respectively, the 
positions and velocities obtained after convergence is 
achieved at the time-step, which, as commented above, do 
not satisfy the constraints and their first derivatives. 
 
 
3. GENERAL FORM OF SDIRK INTEGRATORS 

The general equations of an s-stage SDIRK algorithm 
are well-known, and can be found in Hairer and Wanner 

(1996) for the integration of first order ODE having the 
form ( , )t=y f y& . For a certain time-step starting at time 0t  
and ending at time 1t , such equations are, 

 ( )0
1

,
s

i i i
i

h b t c h
=

= + + +∑1 0 0y y f y z  (5) 

where 0y  and 1y  are the state variables at times 0t  and 
1t , respectively, 1 0h t t= −  is the time-step size, ib  and 
ic  are coefficients of the method, and the iz  are obtained 

from the following nonlinear set of equations, 

( )
( )

( )

0 1

21 0 2

1 2 0

,
,

�

,s s s

t c h
a t c h

h

a a t c h

γ
γ

γ

 + +    
     + +    = = =    
        + +    

1 n 0 1

2 n n 0 2

s n n n 0 s

z I 0 0 f y z
z I I 0 f y z

z

z I I I f y z

K

L

M M M M M

L

�h= Af

where γ and the ija  are coefficients of the method, n is the 
number of state variables, and nI  is the identity matrix of 
size n. 

Then, making use of Eq. (6), Eq. (5) can be rewritten 
as, 
 � �h −= + = +T T 1

1 0 0y y b f y b A z  (7) 
where, 
 ( )1 2 sb b b=T

1xn 1xn 1xnb 1 1 1L  (8) 
with 1xn1  representing a row vector of ones. 

In order to solve the nonlinear set of equations (6), the 
iterative Newton-Raphson procedure is applied, the 
residual vector being, 
 �� h= −r z Af  (9) 
and the corresponding approximated tangent matrix, 

 늿 #늿

늿 늿 #
h h h

     ∂ ∂ ∂ ∂ ∂   = − = − = −             ∂ ∂ ∂ ∂ ∂        
sxn sxn

z f f y fJ A I A I A
z z y z y

 (10) 

where sxnI  stands for the identity matrix of size sxn. 
If the derivatives � �/∂ ∂f y  are approximated by 

( )/∂ ∂
0

f y , that is, by the value of the derivative at time 0t , 
then, the linear set of equations provided by the Newton-
Raphson procedure is, 

 
21

1 2s s

h

a h h

a h a h h

γ

γ

γ

  ∂
−  ∂  

     ∂ ∂   − −       =∂ ∂      
   
       ∂ ∂ ∂ − − −      ∂ ∂ ∂      
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y

∆z
f fI 0 ∆z
y y
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f f fI
y y y

K

L
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h
h

h

− 
 − = −
 
  − 

1 1 1

2 2 2

s s s

z A f
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M

with, 
 [ ]1 2   i ia a γ=i n n nA I I I 0 0K K  (12) 

 ( )0 ,it c h= + +i 0 if f y z  (13) 

and, finally, the unknowns are updated 늿 #← +z z ∆z , until a 

Proceedings of ACMD 2004

-  400  -



 

Copyright ⓒ2004 by KSME 

certain error tolerance is achieved. 
From Eq. (11), it is clear that each vector iz  only 

depends on itself and on the other vectors jz  such that j<i. 
Therefore, the linear system of equations (11) can be solved 
by blocks, thus requiring the solution of s blocks of size 
nxn, instead of a unique system of size (sxn)x(sxn). The 
equations corresponding to block i are, 

 hγ
  ∂

− =   ∂  
n i

0

fI ∆z
y

 

 
1

1 1

i i

ij ij
j j

ha a h
−

= =

  ∂
= − − −   ∂  

∑ ∑i j j
0

fz f ∆z
y

 (14) 

 
4. COMBINATION OF EQUATIONS OF 
MOTION AND INTEGRATOR 

In this Section, the SDIRK integrators shown in 
Section 3 are to be combined with the dynamic formulation 
presented in Section 2. 

In order to reduce the second order of Eq. (1) to first 
order, so that the SDIRK integrators can be applied, 
positions and velocities are considered as state variables 

( ) ( ), ,= =T T T T Ty q q q p&  and, therefore, Eq. (1) can be 
rewritten as, 

 
α

   
⋅ =  +   

T
q q

I 0 q
0 M Φ Φ p

&

&
 

 ( ) *α

  =  − + −  
T T
q q t q

p

Q Φ Φ p Φ Φ λ& &  (15) 

or in a more compact form, since ( ) ( ),, t= = TT T Ty q p f y& && , 
 ⋅ =M f Q  (16) 
with, 

 
α

 
=  + 

T
q q

I 0
M

0 M Φ Φ
 (17) 

Differentiating Eq. (16) and neglecting non-relevant 
terms, the following relation is obtained, 

 
α

  ∂
⋅ =    − − −∂   

T
q q

0 IfM
K C Φ Φy &  (18) 

Eq. (14) can be modified, so that the product 
( )/∂ ∂

0
M f y  explicitly appears in it, thus avoiding the 
need of inverting the M  matrix to obtain ( )/∂ ∂f y  in Eq. 
(18). Multiplication of Eq. (14) by M  yields, 

 hγ
  ∂

− =   ∂  
i

0

fM M ∆z
y

1

1 1

i i

ij ij
j j

ha a h
−

= =

  ∂
= − − −   ∂  

∑ ∑i j j
0

fMz Mf M ∆z
y

 (19) 

If now the results of Eqs. (17-18) are substituted into 

Eq. (19), the following set of equations is obtained, 

 
( )

h

h α h α

γ

γ γ

−     =   + + +      

q
i

T T q
q q q q i

I I ∆z
K M Φ Φ C Φ Φ ∆z &&

( )
i

j
α

=



= − 
 + − 

∑

q
i

T q
q q i

z

M Φ Φ z &

  
=  
 

q
i
q
i

e
e &

 (20) 

where the super-indexes q  and q&  indicate that the 
corresponding variables are associated to positions and 
velocities, respectively. 

The set of equations (20) can be decoupled if the first 
matrix equation is multiplied by the factor ( )hγ− K , and 
then it is added to the second matrix equation, as proposed 
in Meijaard (2003), 

 ( ) ( )2α h α hγ γ + + + + = 
T T q
q q q q iM Φ Φ C Φ Φ K ∆z && hγ= −q q

i ie Ke&

 hγ= +q q q
i i i∆z e ∆z &  (22) 

Therefore, q
i∆z &  can be obtained from Eq. (21), and 

then, its value can be introduced in the right-hand-side of 
Eq. (22), so as to get q

i∆z . 
 
 
5. IMPLEMENTATION 

The proposed method obtained as combination of the 
described index-1 augmented Lagrangian formulation and 
the SDIRK family of integrators, has been implemented 
according to the following algorithm: 

 
1- Start: t=0, 0=*λ , q and q&  are known; 

2- Solution of Eq. (1): q&& ; 

3- Prediction of iz  i=1,s by means of Eq. (6); 

4- Loop of times: t=t+h; 

5-  Calculation of the tangent matrix of Eq. (21); 

6-  n=0; 

7- Loop of Newton-Raphson iterations: n=n+1; 

8- i=0; 

9- Loop of stages: i=i+1; 

10- Solution of Eq. (1);  

11- If ( ) ( ) ( )1   then   n α> ← +* *
i i in n-1 n
λ λ Φ&& ; 

12- Calculation of ,q q
i ie e &  (see Eq. (20)); 

13- Solution of Eqs. (21) and (22): i∆z ; 

14- ← +i i iz z ∆z ; 
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15- If  go to 9i s< ; 

16- 
1

s

i
error

=

= ∑ i∆z  

17- If   go to 7error tolerance> ; 

18- Update the state variables according to Eq. (7): 

�−← + T 1
t t-1y y b A z ; 

19- Projections of positions and velocities: Eqs. (3-4); 

20- If end   go to 4t t< ; 

21- End. 
 
Therefore, the main calculation effort of the algorithm 

can be summarized as follows: the tangent matrix of Eq. 
(21) must be calculated at the beginning of each new time-
step (step 5); the linear system of equations (1) must be 
solved once for each stage and iteration (step 10), so that 
the residual vector of Eq. (20) can be determined (step 12); 
the linear system of equations (21) has to be solved and 
then Eq. (22) has to be evaluated, both once for each stage 
and iteration, (step 13), but notice that the leading matrix of 
Eq. (21) is factorized only once at the beginning of the 
time-step (step 5). 

 
 

6. SELECTION OF THE SDIRK INTEGRATOR 
As commented before, when seeking for real-time 

performance, integrators must be selected which 
encompass a moderate computational cost along with good 
stability properties. Therefore, it seems that two-stage 
integrators will be the most suitable for real-time purposes 
among the SDIRK family, provided they exhibit a stable 
behavior when dealing with multibody systems. 

The conditions that must fulfill the coefficients of an 
IRK integrator for it to possess the first orders of accuracy, 
the so-called order conditions, are the following: 

 st1 (1  order)i
i

b =∑  (23) 

 nd

,

2 1 (2  order)j jk
j k

b a =∑  (24) 

 rd

, , , ,

3 1; 6 1 (3  order)j jk jl j jk kl
j k l j k l

b a a b a a= =∑ ∑  (25) 

Table 1 shows the values of the coefficients for two-
stage SDIRK integrators, so that the order conditions are 
fulfilled up to the second order. The maximum order 
achievable by these two-stage methods is third order. 
 
 

Table 1. TWO-STAGE SDIRK INTEGRATORS. 
 

c1=γ a11=γ a12=0

 c2=1-γ a21=1-2γ a22=γ

 b1=1/2 b2=1/2

 
 

If the third order conditions given in (25) are imposed 
to the coefficients shown in Table 1, it comes out that the 
two conditions are reduced to the following single one: 

 2 2
2 21

1
3

b a γ γ= − +  (26) 

Substituting now the values of 2b  and 21a  provided 
by Table 1 in Eq. (26) yields, 

 2 1 3 30
6 6

γ γ γ ±
− + = → =  (27) 

Then, there exist a couple of two-stage SDIRK 
methods which are third order accurate. The method with 

( )3 3 6γ = +  is A-stable, while the method with 
( )3 3 6γ = −  offers a very small stability area in the 

negative complex half-plane. Since the A-stability is a 
highly desirable property to deal with stiff systems, like 
those appearing in multibody systems, the first method can 
be a good candidate to be tested for real-time applications. 
However, it must be remarked that A-stability does not 
guarantees stability in the case of nonlinear systems, which 
is the case of multibody systems. 
 
 
7. NUMERICAL EXAMPLE 

In order to test the proposed formulation for 
demanding real-time multibody applications, a large, 
complex and realistic example, the full model of the Iltis 
vehicle (Iltis (1990)), illustrated in Fig. 1 and used as a 
benchmark problem by the European automobile industry 
to check multibody dynamic codes, has been analyzed. 

The simulation consists of 8 s of motion with the 
vehicle going up an inclined ramp and then down a series 
of stairs, starting at a horizontal speed of 5 m/s (the road 
profile is shown in Fig. 2). A rather violent motion is 
undergone by the vehicle, reaching acceleration peaks of up 
5g. 

Programs to simulate the dynamics of the vehicle 
through the two following methods have been implemented 
in FORTRAN language: 

a) The approach proposed in this paper, that is, a semi-
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recursive formulation in relative coordinates, dependent in 
the general case, which imposes the loop closure conditions 
through an index-1 augmented Lagrangian formulation 
with projections in positions and velocities, combined with 
a third order accurate, A-stable, two-stage SDIRK 
integrator, having a value of ( )3 3 6γ = + . This 
approach will be referred to as SDIRK. 

b) The approach proposed in Cuadrado and Dopico 
(2003), that is, the same semi-recursive formulation in 
relative coordinates mentioned in the previous paragraph, 
but this time imposing the loop closure conditions through 
an index-3 augmented Lagrangian formulation with 
projections in velocities and accelerations, and combined 
with the trapezoidal rule, which is the simplest structural 
integrator. This approach will be referred to as TR. 
 
 

  
 

Figure 1. THE ILTIS VEHICLE. 
 
 

 
 

Figure 2. ROAD PROFILE. 
 
 

The programs have been run on a PC with one AMD 
Athlon XP processor 1600+ @ 1.4 GHz. 
 
 
8. RESULTS AND DISCUSSION 

First, the two methods have been compared for a time-
step size of 0.001 s. The TR method has shown to be 2.9 
times faster than the SDIRK method, while providing a 
similar level of accuracy, although the number of required 

iterations is more or less the same for both methods: 9200 
iterations for the TR method; 10899 for the SDIRK method. 

The difference in efficiency can be easily explained if 
the calculation load of each method is roughly reminded: 
the SDIRK method must solve four linear systems of 
equations for each iteration, although two of them make use 
of a leading matrix already factorized at the beginning of 
the time-step (see Section 5); the TR method just need to 
solve one linear system of equations for each iteration. 

Moreover, while the linear system that must be solved 
for each iteration when using the TR approach is symmetric, 
two out of the four linear systems that must be solved at 
each iteration when using the SDIRK approach (see Eq. 
(21)), are not symmetric, due to the term ( )αT

q qΦ Φ& . This 
fact also contributes to decrease the efficiency of the 
SDIRK method. 

Therefore, it is clear that the advantage in efficiency of 
the TR method would be larger in case that the selected 
SDIRK integrator possessed more than two stages. 

Second, the time-step size has been increased for each 
method, until the corresponding limit of convergence is 
reached, so as to evaluate the stability properties. The 
SDIRK method reached a maximum time-step size of 
0.0075 s, providing an over-oscillating solution, which 
announced the imminent loss of stability. The TR method 
reached a maximum time-step size of 0.035 s, almost five 
times larger than that of the SDIRK method and, moreover, 
the solution did not show over-oscillation. The reason for 
such different behaviors can be the index-3 approach taken 
for the TR method, face to the index-1 approach followed 
for the SDIRK method. But remind that adopting the index-
3 approach for the SDIRK method was not possible. 

On the favor of the SDIRK method, it must be said 
that almost the same results are obtained if the projections 
in positions and velocities at the end of each time-step are 
suppressed, while the projections in velocities and 
accelerations are essential for preserving the stability of the 
TR method. However, the computational cost saved when 
eliminating the projections for the SDIRK method, does not 
compensate at all its previously related drawbacks. 

Consequently, the TR method has shown to be largely 
more efficient and robust than the SDIRK method. 
Furthermore, note that, as demonstrated in Cuadrado and 
Dopico (2003), the TR method was notably improved if the 
trapezoidal rule was substituted by, for example, an 
integrator from the Newmark dissipative family. Therefore, 
it can be concluded that the IRK integrators are not 
competitive at all with the structural integrators, when 
addressing the real-time dynamics of multibody systems. 
 
 
9. CONCLUSIONS 

Based on the obtained results, the following 
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conclusions can be drawn from the present work: 
- A method for the real-time dynamics of 

multibody systems has been developed, as combination of a 
semi-recursive index-1 augmented Lagrangian formulation 
in relative coordinates, and a third order accurate, A-stable, 
two-stage SDIRK integrator. The method has been 
designed so as to keep at a minimum the computational 
cost required. 

- The method has been compared with another one, 
obtained as combination of a semi-recursive index-3 
augmented Lagrangian formulation in relative coordinates, 
and the simplest structural integrator, the trapezoidal rule. 

- The comparison has been established through the 
simulation of a very demanding maneuver of a large, 
complex and realistic multibody system: the full model of 
the Iltis vehicle. 

- The IRK method has shown to be less efficient 
than its structural counterpart, due to a greater 
computational load for each time-step, and to the presence 
of a non-symmetric leading matrix in two out of the four 
linear systems to be solved for each time-step. 

- The IRK method has shown to be less robust or 
stable than its competitor, maybe due to the index-1 
approach required in the former, face to the index-3 
approach adopted in the latter. 

- The projections in positions and velocities at the 
end of each time-step can be suppressed for the IRK 
method, while the corresponding projections in velocities 
and accelerations are essential for the stability of the 
structural method. However, this advantage in favor of the 
IRK method does not compensate its previously described 
drawbacks. 

- The advantage of the structural method with 
respect to the IRK method would be larger if a different 
IRK integrator and/or a different structural integrator was 
used. 

- Therefore, it comes out from this study that the 
IRK integrators are not competitive with the structural 
integrators to address the real-time dynamics of multibody 
systems. 
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