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1. Introduction 

Efficiency is an issue for any application in multibody dynamics, and becomes essential for those 
requiring real-time performance, like human- and hardware-in-the-loop simulations. 

In a previous work [1], the authors developed a semi-recursive penalty formulation which integrates in 
time the relative coordinates of the mechanism, dependent in the general case (presence of closed loops). The 
formulation was compared with two others: a global penalty formulation which integrates the natural coordinates 
of the system (dependent), and a semi-recursive formulation which integrates a minimum set of coordinates 
(independent). The comparison showed that the proposed semi-recursive penalty formulation achieves the best 
results in terms of efficiency and robustness for large rigid multibody systems. 

The present work reports on the study being conducted in order to evaluate the behavior of the 
mentioned formulation when dealing with flexible multibody systems. The objective is to find out whether the 
advantages shown by such formulation in the rigid case are kept when flexible bodies are also considered. Since, 
in the flexible case, the minimum number of coordinates is usually much higher than in its rigid counterpart, the 
third formulation mentioned above, i.e. that which integrates a set of independent coordinates only, has not been 
included in the study. Therefore, the comparison is established between the semi-recursive penalty formulation 
integrating relative coordinates, and the global penalty formulation integrating natural coordinates. In both cases, 
the flexible bodies are modeled by means of the floating frame of reference method (FFR), according to the form 
proposed by the authors in [2]. 

2. Semi-recursive penalty formulation 

For rigid multibody systems, the first step consists of applying the cut-joint method, so as to convert the 
multibody system into its open-tree version, and describing its motion through the corresponding relative 
coordinates. Then, the dynamic equations are stated according to an index-3 augmented Lagrangian formulation 
in the form, 
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where z are the relative coordinates, M is the mass matrix of the mechanism expressed in terms of the relative 
coordinates, Φ is the constraints vector due to the closure conditions of the loops, zΦ  is the Jacobian matrix of 
the constraints, α is the penalty factor, Q is the vector of applied and velocity-dependent forces, and *λ  is the 
vector of Lagrange multipliers. 

In order to determine the dynamic terms M and Q, a Cartesian set of coordinates is defined for each 
body of the mechanism, 

 { }T =Z s ω  (2) 

being s  the velocity of the point of the body which at that particular time is coincident with the fixed frame 
origin, and ω  the angular velocity of the body. 

A matrix R can be defined so that the following relationship stands, 

 =Z Rz  (3) 



where now Z includes the Cartesian coordinates (2) of all the bodies of the mechanism. Due to the use of such 
coordinates, matrix R can be written as, 

 d=R TR  (4) 

with T a connectivity matrix, and dR  a block-diagonal matrix. Due to the especial structure of matrix R, both 
matrix M and vector Q of the whole mechanism, required in (1), are easily obtained through and efficient 
recursive procedure, from the corresponding terms at body level expressed in the Cartesian coordinates (2). 

On the other hand, the constraints needed to close the loops can be established in natural coordinates 
with very little effort, the Jacobian being, 

 z q zΦ = Φ q  (5) 

where qΦ  is the traditional Jacobian matrix of the constraints when natural coordinates are used, and zq  
represents the velocities of the natural coordinates q when unit velocities are successively given to the relative 
coordinates z. 

3. Consideration of flexible bodies 

The FFR method proposed by the authors in [2] employs natural coordinates to describe each flexible 
body. It defines the local reference frame of the body with a point 0r  at the origin, and a set of orthogonal unit 
vectors u, v and w for the local axes. Then, the position of an arbitrary point r of the body can be defined as, 

 0= + ⋅r r A r  (6) 

being A the rotation matrix, whose columns are the three unit vectors mentioned, and r  the deformed position 
of the point in local coordinates. In order to increase the efficiency, this deformed position is expressed by modal 
superposition, 
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where ur  is the undeformed position, iφ  and jψ  are the nd static and ns dynamic mode shapes, and iη  and jξ  
are their respective amplitudes. The static modes depend on the points and unit vectors defined at the joints of 
the body. Then, a flexible body is described by the local frame ( 0r , u, v, w) and the modal amplitudes ( iη , jξ ), 
and the mass matrix and forces vector are obtained with respect to such variables. 

Consequently, for these flexible bodies to be included into the semi-recursive penalty formulation 
presented above, the following set of coordinates should be defined at body level, 

 { }1 1
T
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so that the mass matrix and forces vector are transformed to such new coordinates. Moreover, the set of relative 
coordinates describing the open-tree version of the rigid mechanism must be increased with the amplitudes of the 
static modes of all the flexible bodies considered. Provided the mentioned measures are taken, the recursive 
procedure to calculate the dynamic terms M and Q required in (1), already explained for rigid bodies, can be 
extended to the flexible case. 

4. Comparison between formulations 

In order to compare the behavior of both the global and semi-recursive formulations, the same examples 
already used for the rigid case in [1] will be addressed now. The strategy will consist of progressively 
substituting rigid bodies by flexible bodies, so that criteria may be established on which formulation to use, 
depending on the modeling conditions. 
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