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Abstract. The simulation of flexible multibody systems is a very demanding task that needs 
improvements in efficiency in order to achieve real-time performance. One of the improve-
ments can be the use of topological formulations, which have provided good results in the si-
mulation of large rigid multibody systems. In this work, a topological formulation for rigid 
bodies is extended to the flexible case, and tests are carried out in order to compare its per-
formance with that of a global formulation. Three systems are simulated, a double four-bar 
mechanism, a vehicle suspension, and a full vehicle. As it happened in the rigid case for the 
first two examples, the topological formulation shows lower performance than its global 
counterpart for such small systems, but the difference decreases as more bodies are modeled 
as flexible. Also like in the rigid case, the topological formulation is faster and more robust in 
the third example, whose size is approximately one order of magnitude larger, though its ad-
vantage over the global approach is not as remarkable as in the rigid case. This is due to the 
calculation of the mass matrices of the flexible bodies that takes most of the CPU-time. The 
use of a different method for this calculation may have a very significant impact in the per-
formance, so further tests should be conducted in order to verify this point. 
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1 INTRODUCTION 
During the last years, several efficient methods for the real-time simulation of rigid multi-

body systems have been developed. The performance enhancement experienced by computers 
makes the inclusion of new features possible, like flexibility and contact. But all these new 
features have a negative effect on efficiency, making the achievement of real-time simulation 
more difficult, so that new efforts must be carried out regarding the dynamic formulations, in 
order to perform more realistic, real-time simulations. 

Most real-time methods for the dynamics of rigid multibody systems take advantage of the 
mechanism topology and, therefore, are called topological (they use relative coordinates). Al-
though more difficult to implement than global methods (those using Cartesian or fully Carte-
sian coordinates), they have proven to be more efficient for large systems [1]. 

The purpose of this work is to extend a topological formulation for rigid bodies to the flex-
ible case, and to compare its behavior with that of a global formulation, as it has been pre-
viously done for rigid multibody systems. 

2 GLOBAL AND TOPOLOGICAL METHODS 
Two methods, one global and another topological, are considered in this work. The global 

method is a floating frame of reference (FFR) formulation [2] based on natural coordinates, as 
described in [3]. The new topological method combines the approach used to address flex-
ibility by the global one, with a rigid body topological semi-recursive formulation which has 
showed excellent results for large rigid multibody systems [1]. 

The global FFR flexible formulation is based on natural coordinates. Each flexible body 
has a local frame of reference attached to it, which is defined by a point at the origin and three 
orthogonal unit vectors along the axes. This frame experiences the large amplitude motion, 
and deformations are added on local coordinates, by using component mode synthesis to re-
duce the model size. 

In the rigid case, the topological method, semi-recursive, opens the closed loops to get the 
associated open loop mechanism, and defines such system with relative coordinates. In order 
to obtain the dynamic equations, an intermediate set of global Cartesian coordinates is defined 
at body level (three translations plus three rotations), and then a velocity transformation is car-
ried out to project the equations into the relative coordinates. This projection is recursively 
performed by accumulation of forces and inertias, taking advantage of the mechanism topolo-
gy. Then, closed loop conditions must be imposed through the corresponding constraints, im-
plemented in natural global coordinates. 

In both methods, the equations of motion, stated through an index-3 augmented Lagrangian 
formulation, are combined with the integrator (trapezoidal rule), to produce a nonlinear alge-
braic system of equations with the dependent positions as unknowns [4], solved by Newton-
Raphson iteration. Once convergence is attained into the time-step at position level, velocities 
and accelerations are projected for them to satisfy the first and second derivatives of the con-
straints.  

3 THE PROPOSED FORMULATION 
The equations of motion, according to an index-3 augmented Lagrangian formulation in 

relative dependent coordinates, are stated in the form, 

 *T Tα+ + =z zMz Φ Φ Φ λ Q&&  (1) 

where z is the relative coordinates vector, M is the mass matrix, Φ is the closed-loop con-
straints vector, Φz is its Jacobian matrix, Q is the vector of elastic, externally applied and ve-
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locity-dependent forces, and λ* is the Lagrange multipliers vector, obtained from an iteration 
process carried out within each time step, 

 * *
1 1    0,1, 2,...i i i iα+ += + =λ λ Φ  (2) 

which starts with *
0λ  equal to the value of *λ obtained in the previous time-step. 

3.1 Flexible body modeling  
The position of an arbitrary point r of a deformed body is defined as follows, 

 ( )0 0 u f= + = + +r r Ar r A r q  (3) 

where r0 stands for the position of the origin of the local frame of reference, A is a rotation 
matrix defined by the three orthogonal unit vectors of the reference frame [u|v|w], ur  is the 
undeformed position of the point in local coordinates, and fq  is its local elastic displacement. 

 
Figure 1: General flexible body. 

The elastic deformation is obtained by means of a finite element model of the body, which 
generally contains a large number of degrees of freedom (DOFs), so that a model reduction 
must be carried out to reduce computation times. In the proposed method, a Craig-Bampton 
reduction [5] is used, since it allows for an easy coupling between bodies, and is particularly 
well suited for a topological implementation, as it will be seen later. This reduction method 
approximates the elastic displacement field by a linear combination of static and dynamic 
modes, which can be pre-computed using any finite element code. 

Following the formalism of the natural coordinates, the body is connected to the rest of the 
mechanism by means of boundary points and unit vectors. Boundary points and vectors are 
associated to finite element displacement and rotation DOFs respectively, so that each static 
mode is obtained as the displacement field resulting from applying a unit variation to one of 
these boundary DOFs while keeping the remaining fixed. Dynamic modes are normal eigen-
modes calculated with a fixed interface configuration. All static and dynamic modes are cal-
culated with the body clamped at the local frame of reference. 

At this point, the topological implementation shows some particular characteristics. In the 
global formulation, the frame of reference terms r0 and u, v, w, are problem variables, while 
in the topological one they are calculated when the kinematic problem is recursively solved 
for the open loop system, at each time-step, to obtain the joint positions. This avoids the need 
for additional constraints to ensure that the three vectors are orthonormal. Moreover, compa-
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tibility constraints are no longer needed to link the static modal amplitudes to the boundary 
points and unit vectors, since they are directly obtained while solving the kinematics. 

Using this reduction, the local elastic displacement that appears in Eq. (3) can be ex-
pressed as a linear combination of deformation modes, 

 
ns nd

f i i j j
i j

η ξ= +∑ ∑q Φ Ψ  (4) 

where Φi and Ψj are the static and dynamic modes, and ηi and ξj are their respective modal 
amplitudes, which are added as new coordinates of the multibody system. This expression can 
be written in matrix form, 

 [ ]

1

1 1
1

ns
f ns nd

nd

η

η
ξ

ξ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

q Φ Φ Ψ Ψ Xy

L

L L

L

 (5) 

being X a matrix formed by the modes as columns, and y a vector containing all the modal 
amplitudes of the body. 

3.2 Positions and velocities  
The Topological methods cut the closed loops to establish recursive relationships. These 

loops are then closed by the corresponding kinematic constraints. To calculate the body dy-
namic terms, an intermediate global Cartesian coordinate vector Z is defined at velocity level 
for each body, 

 { }TT T=Z s ω&  (6) 

In this vector, s&  is the velocity of the point of the body which instantly coincides with the ori-
gin of the global frame of reference, considering the point as rigidly attached to the body local 
frame [6], and ω is the angular velocity vector of the local frame of reference. These coordi-
nates are related to the rigid body motion, and the global velocity vector for a flexible body, 
after the addition of the modal amplitudes, is,  

 { } { }T TT T T T T= =q s ω y Z y& & & &  (7) 

The rigid body velocity vector Zi of an element i can be obtained for an open loop me-
chanism by means of a recursive relationship [7], 

 1 1, 1, , ,i i i i i i i i i i i i− − −= + + −Z Z b z φ η φ η& &&  (8) 

To illustrate this expression, Fig. (2) shows a sample planar revolute joint between two de-
formed bodies i-1 and i. Zi-1 is the absolute velocity of the preceding body frame in the kine-
matic chain. The zi vector contains all the relative coordinates defined at joint i, so each bi 
matrix column is the relative velocity that arises when giving a unit velocity to the corres-
ponding relative coordinate. In the example, zi is the relative angle at the joint. Vectors 1,i i−η  
and ,i iη  are the amplitudes of the static modes defined at joint i for bodies i-1 and i respective-
ly (i.e. the local elastic displacement vectors of the boundary point) so that the φ terms  
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Figure 2: Recursive kinematics in a planar revolute joint. 

have an analogous meaning to the b ones due to how the static modes are defined. The b and 
φ terms depend on the joint and mode type (translational or rotational) respectively, and are 
functions of the positions. In the particular case of a body whose frame of reference is placed 
at its entry point, the last term in Eq. (8) doesn’t appear, since the body is clamped at its local 
frame origin. 

Accelerations can be calculated by time differentiation of Eq. (8), 

 1 1, 1, , , 1, 1, , ,i i i i i i i i i i i i i i i i i i i i i− − − − −= + + − + + −Z Z b z φ η φ η d φ η φ η& & && && & & & &&&  (9) 

where di stands for i ib z& & . 
Equations (8) and (9) yield the velocities and accelerations of the local frames of refer-

ence. Differentiation of Eq. (3) particularized to a finite element node n yields its velocity *
nv  

as a function of its absolute position *
nr  and the body coordinates q, 

 ( )* * *
n n n= + × +v s ω r A X y& &  (10) 

where *
nX  is the submatrix formed by the three rows of X corresponding to the elastic dis-

placements of node n. This expression can be written in matrix form to include the velocities 
of all the nn nodes, 

 

* * *
1 3 1 1
* * *

* 2 3 2 2

* * *
3nn nn nn

⎧ ⎫ ⎡ ⎤−
⎧ ⎫⎪ ⎪ ⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎪ ⎪ −⎢ ⎥⎩ ⎭ ⎣ ⎦

v I r AX
s

v I r AX
v ω Bq

y
v I r AX

%
&

%
&

L L L L
&

%

 (11) 

where the tilde denotes the skew-symmetric matrix associated to the corresponding vector. 
The velocities of all the nodes, required for the calculation of the inertia terms, are therefore 
expressed as a function of the body coordinates q. 

3.3 Dynamic terms in Cartesian coordinates  
The kinetic energy of a body can be expressed as, 

 1
2

T

V
T dm= ∫ r r& &  (12) 

where V is the volume of the deformed body. For the calculation of this integral, the co-
rotational approximation proposed by Géradin and Cardona [8] is used. This approximation, 
which leads to a simplified mass matrix at the cost of introducing a kinematic inconsistency, 
assumes that the finite element interpolation functions N, intended for the interpolation of 
elastic displacements, can be used as well for the interpolation of velocities. In that case, the 
kinetic energy can be approximated in terms of the finite element mass matrix MFEM and the 

1,i i−η
,i iη

i-1

i
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nodal velocities v*, 

 * * * *1 1
2 2

T T T
FEMV

T dm= =∫ v N Nv v M v  (13) 

These nodal velocities can be calculated by using the B matrix defined in Eq. (11), so that the 
mass matrix M  of an elastic body in body coordinates is obtained as, 

 1
2

T T T
FEM FEMT = ⇒ =q B M Bq M B M B& &  (14) 

This is a very simple expression for the mass matrix, taking into account that the finite ele-
ment mass matrix is directly obtained from a standard finite element code and is constant. 
Application of the Lagrange equations to this expression of the kinetic energy leads to the ve-
locity dependent inertia forces, 

 T
v FEM= −Q B M Bq& &  (15) 

The elastic potential of a deformed body is obtained from the finite element stiffness ma-
trix KFEM and the nodal elastic displacements, 

 * *1
2

T
f FEM fU = q K q  (16) 

The elastic displacements of the nodes from Eq. (5) can be introduced into this equation, so 
that a stiffness matrix K is obtained in terms of the modal amplitudes, 

 1
2

T T T
FEM FEMU = ⇒ =y X K Xy K X K X  (17) 

and this constant matrix can be used for the calculation of the elastic forces, 

 el
U∂

= − = −
∂

Q Ky
q

 (18) 

Applied forces are introduced in body coordinates by means of the virtual power principle. 
For example, for a point force F applied at node ri, 

 
T

T T Ti
ext i ext iδ δ

⎛ ⎞∂
= ⇒ = =⎜ ⎟∂⎝ ⎠

rQ q F r Q F B F
q

& &  (19) 

where Bi is the three row submatrix of B corresponding to the three degrees of freedom of 
node i. 

3.4 Equations of motion 
In order to make the following steps clearer, the coordinates of the whole system will be 

grouped into two vectors, one for each coordinate set, 

 
{ }
{ }

1 1 1

1 1 1

TT T T T T T
nb nb nb

TT T T T
nc nb nbz z

=

=

q Z Z η η ξ ξ

z η η ξ ξ

& && & &L L L

& && && & &L L L
 (20) 

where nb stands for the number of bodies in the system, and nc is the number of relative coor-
dinates of the open loop version of the mechanism. The mass matrix and force vector in body 
coordinates can be assembled for the whole system, having separate blocks for the rigid body 
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part, the static modal amplitudes, and the dynamic modal amplitudes, 

 
, ,

, ,

, ,

    ;     
RB RB RB RB

RB

RB

η ξ

η η η ξ η

ξ ξ η ξ ξ

⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥= = ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

M M M Q
M M M M Q Q

M M M Q
 (21) 

The application of the virtual power principle yields, 

 ( )* 0T − =q Mq Q& &&  (22) 

equation that must be transformed into the set of relative coordinates z. They are related to the 
body coordinates q by a transformation matrix R such that, 

 =q Rz& &  (23) 

Substitution of q and its derivatives in Eq. (22) results in the following expression for the eq-
uations of motion, taking into account that the z coordinates are independent for an open loop 
system, 

 ( )T T= −R MRz R Q MRz&&& &  (24) 

This means that the leading matrix and the right hand side of the equations of motion in rela-
tive coordinates are, 

 ( )    ;    T T= = −M R MR Q R Q MRz& &  (25) 

These operations can be performed very efficiently by taking advantage of the open loop to-
pology. The R matrix is the result of assembling in matrix form the recursive relationships 
defined in Eq. (8) for the open loop system, which makes its structure rather particular. Matrix 
R can be divided into blocks if the q and z coordinates are arranged as described in Eq. (20), 

 
0

0 0
0 0

RB η⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R R
R I

I
 (26) 

where RRB and Rη are two submatrices which relate the Cartesian coordinates to the relative 
coordinates and to the static modal amplitudes, respectively. The first submatrix, the rigid 
body part of R, would be the R matrix of an equivalent rigid mechanism in the current de-
formed configuration. 

 
Figure 3: Mechanism topology example. 
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The example mechanism described in Fig. (3), in which bodies 2 and 3 are flexible, is used to 
show how the R matrix terms look like, 

 

6 1

6 6 2

6 6 6 3

6 6 6 4

6 6 6 6 5

2,2
6

2,34
6 6 6

3,3
6 6

6 6
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d
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⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤

−⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥−⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

I b
I I b

R I I I b T R
I I I b
I I I I b

φ
I

φ
R I I I

φ
I I
I I

d
η ηT R

 (27) 

Each of these two submatrices can be considered as the product of a connectivity matrix T, 
which depends exclusively on the mechanism topology, and a block diagonal matrix Rd, con-
taining the kinematic b or φ terms. Each block column of the connectivity matrices is asso-
ciated to either a joint (RB) or a boundary generating static modes (η), and contains identity 
matrices in the rows corresponding to those bodies being affected by a variation of the col-
umn’s relative coordinates or modal amplitudes. Expanding in blocks the mass matrix projec-
tion of Eq. (25) [7], 

 

,

,

, ,

, , , ,

, ,

0 0 0 0
0 0

0 0 0 0

0

0
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RB RB RB RB RB

T T T
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RB RB RB RB

T T
RB RB RB RB RB
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η

η η η η η ξ

ξ η ξ

η ξ

η η η η η η ξ

ξ ξ η

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥+ +⎢ ⎥
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R M R R M R
R MR R M R R M R M M

M M
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 (28) 

The same may be done for the force vector, 

 ( )
( ){ } ( ){ }T T

RB RB RB

T

η η η

η

ξ

⎡ ⎤− + −⎢ ⎥
⎢ ⎥− = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R Q MRz R Q MRz

R Q MRz Q
Q

& && &

& &  (29) 

All of these terms can be recursively calculated by accumulating the individual mass matrices 
from the leaves to the root. For example, the rigid body part of the mass matrix 

 ( )T dT T d
RB RB RB RB RB RB RB RB=R M R R T M T R  (30) 

For the mechanism shown in Fig. (3), 



U. Lugrís, J. Cuadrado, F. González, A. Luaces 

 9

 

1 2 3 4 5 5 5

2 3 4 5 4 4 5

3 3 3

4 5 2 2 3 4

5 1 1 2

0 0     ;    T
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where all the RB subindices have been removed for clarity. All the remaining terms of the 
mass matrix can be calculated following a similar procedure, taking advantage on the connec-
tivity matrices. The same procedure is explained to show how the first term of the rigid body 
part of Q is obtained, 

 ( ){ } ( ){ }T dT T
RB RB RB RB RBRB RB

− = −R Q MRz R T Q MRz& && &  (32) 

For the Fig. (3) example, 
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 (33) 

where the RB subindices have been removed again for making the equations smaller. 
Once the dynamic terms have been obtained in relative coordinates for the open loop sys-

tem, the closed loop kinematic constraints are imposed in natural coordinates. The Jacobian 
matrix of the constraints appearing in Eq. (1) is evaluated by differentiating the constraints 
with respect to the relative coordinates, which can be done by means of the chain differentia-
tion rule, 

 =z q zΦ Φ q  (34) 

where in this case q stands for the natural coordinates at the corresponding cut joint. The term 
qz is easily calculated since each column contains the velocities of natural coordinates when a 
unit velocity is given to its corresponding relative coordinate z and zero to the rest. 

3.5 Time integration  
The numerical integrator adopted is the implicit single-step trapezoidal rule, whose differ-

ence equations, for a time-step of Δt are, 

 
1 1

1 12 2

2 2

4 4 4

n n n n

n n n n n

t t

t t t

+ +

+ +

⎛ ⎞= − +⎜ ⎟Δ Δ⎝ ⎠
⎛ ⎞= − + +⎜ ⎟Δ Δ Δ⎝ ⎠

z z z z

z z z z z

& &

&& & &&

 (35) 

If dynamic equilibrium is imposed at step n+1 by combining the integrator equations (35) 
with the equations of motion (1), a nonlinear system of algebraic equations must be solved for 
the relative coordinates in n+1, 
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 ( )1 0n+ =f z  (36) 

The system can be solved using the Newton-Raphson iteration with the following approx-
imated tangent matrix and residual vector, 

 
( )

( )

2

2
*

2 4

4

T

T T

t t

t

α

α

Δ Δ
≅ + + +

Δ
= + + −

z z z

z z z

f M C Φ Φ K

f Mq Φ Φ Φ λ Q&&

 (37) 

being K and C the generalized stiffness and damping matrices, 

 ;= − = −z zK Q C Q&  (38) 

which can be calculated using the chain differentiation rule if the forces are expressed in natu-
ral coordinates. 
The solution of Eq. (36) yields a position vector that fulfills the dynamic equilibrium equa-
tions and the kinematic restrictions at position level 0=Φ . However, the velocities and acce-
lerations do not satisfy the derivatives of the constraints, since they have not been imposed. 
Therefore, the resulting velocities and accelerations need to be projected in order to enforce 
their fulfillment of the constraint derivatives. Naming *z&  and *z&&  the velocities and accelera-
tions obtained once the Newton-Raphson iteration has converged, the new projected velocities 
and accelerations are obtained solving the following linear systems, 

 

( )

2 2
*

2 2
*

2 4 4

2 4 4

T
t

T
t

t t t

t t t

α

α

⎡ ⎤Δ Δ Δ
= + + −⎢ ⎥
⎣ ⎦
⎡ ⎤Δ Δ Δ
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⎣ ⎦

z z

z z z

f z M C K z Φ Φ

f z M C K z Φ Φ z Φ

& &

& &&& && &

 (39) 

4 TEST EXAMPLES  
Three examples, already used for a global vs topological comparison in rigid multibody 

systems [1], have been implemented in the flexible case through both the global and the topo-
logical formulation. The first one is a planar double four-bar mechanism, formed by five iden-
tical bars, the second is the front left suspension of the Iltis, and the third is a full Iltis vehicle. 
Performance measurements have been carried out with different numbers of flexible elements, 
in order to evaluate the influence of such parameter in each formulation. The first two exam-
ples were implemented in MATLAB, so the CPU-times should not be considered as a refer-
ence for the efficiency, but only for comparison between formulations. The Iltis vehicle is 
programmed in FORTRAN, obtaining faster simulations despite of being a much larger sys-
tem. 

4.1 Double four-bar mechanism  
The system consists of five identical steel bars, each of them having unit length and mass, 

connected by revolute joints. Each bar can be considered as rigid or flexible, modeled in the 
flexible case by 10 beam elements, with one axial static, one bending static, and two bending 
dynamic modes. 
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Figure 4: Double four-bar mechanism. 

The number of coordinates varies as more flexible bars are considered in the system, being 
this variation different in the global and topological formulations, because the latter doesn’t 
include as coordinates the unit vectors of the local frames. The number of coordinates for 
each formulation and number of flexible bodies is given in Table 1. 

# flexible bars 0 1 2 3 4 5 
Global 6 13 20 27 34 41 
Topological 5 8 11 14 17 20 

Table 1: Number of system coordinates in the first example. 

This number tends to be double in the global case when more flexible bodies are consi-
dered, because each flexible body adds four modal amplitudes plus four unit vector compo-
nents, while, in the topological case, each body adds only the four modal amplitudes. 

The system is subject to gravity, and receives an initial velocity of 1 rad/s in clockwise di-
rection. Motion is integrated during 5 s, the time to approximately complete 2.7 revolutions. 
The time-step used in all simulations is 10 ms, and the CPU-times required for the integration 
are those provided in Table 2. 

# flexible bars 0 1 2 3 4 5 
Global 0.91 3.30 6.24 9.61 11.51 15.22 
Topological 4.85 9.11 12.62 15.74 17.74 20.92 

Table 2: CPU-times (s) in the first example. 

As it may be seen in the table, the CPU-times reduce their difference when more bodies are 
considered flexible. In the rigid case, the global formulation is five times faster, while, in the 
fully flexible model, the topological formulation needs only 37% more time for integration, 
probably due to the proportionally lower number of coordinates mainly. 

4.2 Iltis suspension 
The front left suspension of the Bombardier Iltis vehicle [9] consists, as shown in Fig. (5), 

on a lower A-arm triangle (A) connected to both the car body and the wheel hub. A damper 
connects the A-arm to the car body, and the upper side of the hub is connected to the chassis 
by means of a leaf spring, which is modeled as an articulated bar (B) with a spring element 
added between the bar tip and the chassis. In this system, three elements can be considered as 
flexible: the A-arm, the bar that models the leaf spring, and the steering rod (S). 
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Figure 5: Iltis suspension. 

All of them have been modeled as steel elements, with 10 finite elements per bar (two 
bending static modes and four bending dynamic modes) and 21 finite elements in the case of 
the A-arm (one vertical static mode in the connection to the hub, another in the connection to 
the damper, and the first two dynamic modes). The number of coordinates of all the possible 
combinations of formulation and flexible bodies results, 

 Flexible elements None A B S A+B A+S B+S All 
Global 25 38 40 40 53 53 55 68 
Topological 8 12 14 14 18 18 20 24 

Table 3: Number of system coordinates in the second example. 

Being this a three-dimensional system, the consideration of a body as flexible in the global 
case can add up to 9 coordinates in addition to the modal amplitudes, since a local reference 
frame needs three unit vectors, though in practice some of the vectors can be shared between 
elements thus reducing the total number of variables. In this case the number of coordinates in 
the global model is around three times larger, and, unlike the previous example, this relation 
remains almost constant with the number of flexible bodies. 

The suspension reaches equilibrium and then runs down a 0.2 m step at t=2 s. The integra-
tion, with a time-step of 10 ms, is carried out for 5 seconds until the suspension reaches equi-
librium again. The time history of the vertical coordinate of the chassis, as well as that of the 
wheel center, with all possible flexible elements, are plotted in Fig. (6), showing a very good 
agreement between the two formulations (dotted line for the topological method). 

The CPU-times required to carry out the simulation are displayed in Table 4. For the cases 
of one or two flexible bodies, the mean values of the three different combinations are shown. 

 
# flexible elements 0 1 2 3 
Global 1.95 9.05 14.56 19.43
Topological 8.19 20.54 29.55 38.57

Table 4: CPU-times (s) in the second example. 

In the three-dimensional case, the performance difference is reduced when more flexible 
bodies are considered, as it happened in the planar case. The CPU-time ratio changes from a 
value of 4 in the rigid case, to a value of 2 when the three mentioned bodies are modeled as 
flexible. 
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considered as flexible, it is done in all four suspensions. The number of coordinates obtained 
for each combination is shown in Table 5. 

Flexible elements None A B S A+B A+S B+S All 
Global 168 196 216 228 244 256 276 304 
Topological 34 50 58 58 74 74 82 98 

Table 5: Number of system coordinates in the third example. 

It is shown that the coordinate numbers tends to be three times lower in the topological 
case, as it happened in the previous example. But the topological formulation, due to the 
modal amplitudes, no longer has the very low number of coordinates common for such for-
mulations, reaching a total of 98 coordinates in case of the highest number of flexible bodies. 

   
Figure 8: Road profile for the Iltis vehicle simulation. 

The vehicle runs during 8 s over the road profile shown in Fig. (8), going from left to right 
with an initial velocity of 5 m/s. The integration is carried out with a time-step of 10 ms. It 
must be noted that this is quite a violent maneuver, since the car bounces several times when 
running down the steps. The time histories of the height of both the chassis origin and the cen-
ter of the front left wheel, with all flexible bodies, are displayed in the following two figures, 
showing a very good agreement between the different methods. 

 
Figure 9: Time-history of the origin of the chassis. 
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Figure 10: Time-history of the height of the front left wheel. 

The integration times obtained can be seen in Table 6 and Fig. (11), including all combi-
nations of flexible and rigid bodies. 

Flexible elements None A B S A+B A+S B+S All 
Global 1.05 2.44 2.38 2.50 3.62 3.99 3.82 5.25 
Topological 0.14 0.63 0.45 0.45 1.06 1.13 0.83 1.44 

Table 6: CPU-times (s) in the third example. 

 
Figure 11: CPU-times (s) in the third example. 
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Fig. (12) shows the CPU-times vs the number of flexible bodies, in order to show more 
clearly its influence. The times for four and eight flexible bodies (one and two per suspension) 
are the mean values of all the corresponding different cases, as in the second example. 

 
Figure 12: CPU-times (s) vs number of flexible bodies in the third example. 

As it happened in the rigid case, the topological method is faster than the global one for 
large systems, but not to the same extent. As it can be seen in Table 6, the topological method 
is roughly 8 times faster in the rigid case, but only 4 times in the fully flexible case. This hap-
pens because the computation of the flexible mass matrices takes most of the computing time. 
It should be noted that the topological method needs a very accurate initial position to run 
properly, while the global method has better tolerance to non-equilibrium initial conditions. 

In Table 7 the CPU-times for the fastest simulations possible, obtained by varying the 
time-step, are shown, along with the corresponding real-time ratios. 

 
Global 
rigid 

Global 
flexible 

Topological 
rigid 

Topological 
flexible 

Δt (s) 0.012 0.012 0.036 0.036 
CPU-time (s) 0.896 4.607 0.078 0.953 
Real-time ratio 8.93 1.74 102.56 8.40 

Table 7: CPU-times (s) in the third example, for highest time-step. 

The global method can run with a maximum time-step of 12 ms in both the rigid and the 
flexible case, obtaining a CPU-time reduction of about 12~15%. The topological formulation 
allows for an increase of up to 36 ms, with a significant improvement in the CPU-time: 43% 
in the rigid model and 34% in the flexible one, reaching a real-time ratio of more than 8 times 
in a system with 12 flexible bodies. 

5 CONCLUSIONS 
A new topological formulation for flexible multibody dynamics has been presented, and its 

performance compared with that of a global formulation. As expected, the new formulation 
obtains lower performance than the global one for small systems, and higher performance for 
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large systems, in agreement with the results obtained for the rigid case. However, this time the 
advantage for large systems is more moderate. 

The maximum time-step reached by the topological method in the last example shows that 
it is not only faster for large systems, but also more robust. This is also demonstrated by the 
fact that, in order to make the global method run properly the Iltis simulation, it has been ne-
cessary to add structural damping to the flexible bodies, although the topological method does 
not need it and works as well with undamped elements. 

The introduction of finite element models through the co-rotational approximation is very 
easy but has a high impact on performance. Profiling shows that the B matrix calculation and 
mass matrix projection can take most of the total integration time. The impact of these opera-
tions obviously grows with the number of flexible bodies, reaching, for the Iltis vehicle with 
all flexible elements, 82% of the total time in the topological formulation and 72% in the 
global one. The implementation of a preprocessing stage for obtaining constant mass matrix 
terms, instead of keeping the size of the underlying finite element model –as it happens with 
matrix B– would affect the results, modifying the difference between formulations. These op-
erations (B calculation and mass projection) are performed faster in the topological method, 
due to the fact that in the global case a flexible body has 12 rigid body coordinates, for only 6 
in the topological one. Each of these coordinates adds a column to the B matrix, which affects 
very significantly its size in systems with few modes per flexible body. 

The first two examples were implemented in MATLAB, where matrix multiplications are 
calculated by compiled internal functions and, hence, are very fast, while m-code is very inef-
ficient. This motivated that calculation of the mass matrix and force vector of Eq. (25) by 
means of the accumulation method described in section 3.4, was slower than by direct multip-
lication. Consequently, direct multiplication was used in these examples, thus loosing the 
theoretical advantage provided by the recursive accumulation of masses and forces. Probably, 
the difference between formulations would be different if these examples were implemented 
in a compiled language. 

The third example has been implemented in FORTRAN, taking advantage of all the possi-
ble optimizations applicable to the topological formulation. In the global case, a sparse solver 
was used, while in the topological formulation a symmetrical dense one was employed, even 
with matrices as big as 98x98 which could benefit from a sparse solver. 
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