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 Abstract — the present paper deals with the problems of 
dynamic simulation of over-constrained multibody systems 
applied in different motion and power transferring mechanical 
devices, self-locking mechanisms, etc. The elasticity of the links 
is taken into account. Generalized Newton-Euler dynamic 
equations are applied for the case of finite element discretization 
of flexible links. An approach of decomposition of the 
mechanisms in the singular configurations is proposed. Relative 
and absolute nodal coordinates are used. The method substitutes 
the kinematic constraints by elastic forces. An example of 
dynamic analysis of over-constrained mechanisms is presented. 
 
 Keywords: dynamics simulation, over-constrained 
mechanisms, flexibility. 

I. Introduction 
 The theory of the constrained dynamics is very well 
developed in the mechanics and widely applied in 
multibody system motion simulation [1 – 5]. The 
constraints imposed on the systems have different nature 
and type. Most often in the theory of the mechanisms 
kinematic and force constraints are regarded. Joints 
connecting rigid bodies impose kinematic constraints, 
while if one regards the elastic nature of the contact 
between the bodies the same joints could be regarded as 
force constraints. Closed chains in the mechanical scheme 
impose kinematic constraints that additionally diminish 
the system degree of freedom (dof). Furthermore, the 
notation “common constraints” is used for systems that 
have common restrictions imposed on the motion of the 
links. Such systems are: the plane mechanisms 
(restrictions for motion in the plane); spherical 
mechanisms (the joint axes are crossing in a common 
point); the mechanism of Bennett [6], etc. 
 The dynamics of constraint system is presented by 
Differential Algebraic Equations (DAE). Surveys of the 
existing techniques for solving DAE may be found in [4, 
7]. The classical method to deal with DAE is to express 
the constraint condition at acceleration level. This leads to 
replacement of the original system by a system of 
Ordinary Differential Equations ODE.  Maintaining the 
acceleration constraints one does not satisfy the position 
and velocity constraints. Baumgarte’s stabilization [8] 
term is introduced to ensure exponential convergence of 
the constraint error to zero. The problem with this method 
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is in selection of high gains to keep small constraint 
errors. A similar approach based on penalty functions is 
presented in [4, 9]. Implementation of both methods [4, 8, 
9] results in inclusion additional terms in the right side of 
the dynamic equations that could be treated as reaction 
forces in the joints cut but cannot be compared to the 
elastic forces in links.  
 Another group of researchers [10, 11, 12] proposed 
projection techniques to maintain the constraint conditions 
without modification of the equations of motion. 
 Other methods are based on coordinate partitioning [13]. 
At every step the set of the coordinates is partitioned of 
dependent and independent coordinates. However, a fixed 
set of independent coordinates may lead to dependent 
matrix of the derivatives of the constraints [4, 11].  
 Manipulation of the dynamic equations in the singular 
configurations is a challenging realm of the investigations. 
The Augmented Lagrangian formulation proposed in [14, 
15] can handle redundant constraints in singular 
configurations. In [16] an approach for kinematic analysis 
of mechanisms and their singular configurations using the 
Moore–Penrose pseudo-inverse matrix is applied. Eich-
Soellner and Fuhrer [17] solved the problem of constraint 
stabilization using optimization algorithms and the 
pseudo-inverse matrix so derived. In [18] a projection 
method is applied for simulation of constrained multibody 
systems. Mechanisms in the vicinity of singular 
configurations are regarded. Friction is taken into account.   
In [19] a pseudo-inverse matrix is proposed for effective 
solution of DAE and its application in singular 
configurations. However, special singular configurations 
exist for which there is no general solution and special 
methods are to be developed taking into account the 
elasticity of the links.  
 In the paper an approach for dynamic analysis of 
multibody systems that provides general solution in 
singular configurations and self-locking position is 
proposed. Elasticity of the links is taken into account. 
Generalized Newton-Euler dynamic equations are applied 
for the case of finite element discretization of flexible 
links. Relative and absolute nodal coordinate formulation 
is used. The closed kinematic chains are decomposed in 
open chains substituting the kinematic constraints by 
elastic forces due to elasticity of the links. Several 
examples of closed chain mechanisms in singular 
configuration and self-locking position are discussed. 
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II. Topology and kinematics of over-constrained 
mechanisms 
 Over-constrained mechanisms are systems which dof are 
less than degrees of mobility. For example, if one analyze 
a plain mechanism considering the regulations for the 
spatial mechanism you will obtain less dof (even 
negative), while it is quite applicable. So plane 
mechanisms could be also considered over-constrained, 
although in practice no one is thinking so. Spherical 
mechanisms are also over-constrained and it could be 
easily observed if the precision of the links and orientation 
of joint axes are not fulfilled within the prescribed 
tolerances. In Fig. 1 some of most famous over-
constrained mechanisms are shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Plane, spherical and Bennett’s linkages regarded as over-
constrained mechanisms 

  
 On the other hand, many closed chain mechanisms are 
movable, while the topology analysis shows zero or 
negative dof. This is because of the kinematic parameters 
for which the constraints equations are dependent. In 
Fig. 2 the simplest examples of such plane mechanisms 
are shown. 
 
 
 
 
 
 

Fig. 2. Plane mechanisms with dependent constraints 
 
 In some mechanisms the proportion between the shape 
and size of the links is the reason for the increase of 
mechanism dof in specific positions, called singular 
configurations. Examples of mechanisms with closed 
chains in singular configuration for some basic groups 
from the classification of Assur are presented in Fig. 3.  
 The different nature and behavior of the over-
constrained mechanism is the reason for the development 
of specific approaches for the kinematic and dynamic 
analysis and simulation for almost every single case.  
Even for a single mechanism it could happen that different 
approaches are to be applied during its motion. That  
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Singular configurations for some basic groups of the Assur’s 

classification 
 
significantly slows down the effectiveness of the 
computations. But only for few cases such geometrical 
considerations could be regarded. For complex plane and 
even for simple space mechanisms, simple regulations 
cannot be discovered. For the case of singular 
configurations it is well know that the matrix of the 
derivatives of the constraint equation system (Jacobean 
matrix) is singular. This analysis is an onerous task, 
causes additional branches of the algorithms and cannot 
be implemented effectively in the vicinity of singularities. 
For numerical simulation of flexible system discretization 
of the continuum should be implemented and mass and 
stiffness properties of the flexible bodies are to be reduced 
to a finite number of points called nodes. The node of a 
flexible element is a free object that, in the three 
dimensional space, has six degrees of freedom [20]. The 
node motion is restricted by elastic forces acting between 
the neighbor nodes. In Figure 4, a flexible element with 
many nodes is shown, where for the node with index i the 
coordinates (using translations and Euler angles) of the 
node coordinate system relative to the  

 
 
  
 
 
 
 
 
 
 
 
 

Fig. 4. Flexible finite element node coordinate systems 
 
absolute reference frame are pointed out, while for the 
second node (i+1) the linear and angular velocities of the 
node are shown. The coordinates of node i are stored in a 

6×1 matrix [ ]\iiii 621 qqqq L= , where the 

notations 621 ,...,,m,mi =q  are the elements of the 
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matrix. “\” (backslash) denotes matrix transpose. The 
small finite translations and rotations of node i are 
compiled in a similar matrix iΔ  with elements 

621 ,...,,m,mi =Δ . The kinematic characteristics of 
motions of the nodes are mutually independent. The nodes 
of flexible elements have six degrees of freedom either 
with respect to the element coordinate system ( eee ZYX ) 
or to the absolute ( 000 ZYX ) one and their motions could 
be presented by virtual spatial joint with six dof as 
described in details in [20]. But it should be made clear 
difference between the coordinates iq  and the small 
possible motions iΔ . The definition of the nodes as 
coordinate systems allows the flexible particles of the 
multibody systems, similarly to the systems of rigid 
bodies, to be decomposed to systems of moving 
coordinate systems connected by joints.  
 All (of number a) coordinates of the system are placed 
in matrix Qa . The left superscripts denote matrix 

dimension, i.e.: Ai , Aj,i , Ak,j,i are i×1, i×j and i×j×k 
matrix–vector, plane and cubic matrices that, if once 
defined, could be missed. The coordinates Q are subject to 
constraints that define the function of Q with respect to 
generalized (of number g) coordinates qg .  
 The system is subject to d constraints (d = a – g), i.e.:  

 
( ) 0Q dd === ΦΦΦ  (1) 

 
where 0d  is d×1 zero matrix. The time derivatives are: 
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where ΦΦ a,d

QQ ∂∂ =  and ΦΦ a,a,d
QQ 22

∂∂
=  are matrices of the 

first and second order partial derivatives (the left 
subscripts denote the differentiating variables). Notation 
“

31\
⊗ ” presents matrix multiplication of three dimensional 

(space) matrix. Eq. 1 defines two sets of dependent Qd  

and independent qg coordinates, i.e., [ ]\\\ qQQ = .  
 The velocity equation, Eq. 2, could be transformed to [4] 
 

qRQ && ⋅=  (4) 

 
and the time derivatives of Eq. 4 are as follows [20]:  
 

qqRqRQ q &&&&&& ⋅⊗+⋅= ∂
31\

 (5) 

 
The matrices R and Rq∂  are computed from the partial 

derivatives ΦQ∂  and Φ
Q2∂

 [20]. The equality 

constraints represent the connectivity of the links in closed 
chains. The equation constraints of closed chains contain 
dependent coordinates and, most often, they are the reason 
for the singularity of the Jacobean matrix. Equation 
constraints of open branches could be directly transformed 
with respect to the independent coordinates. This 
approach is widely applied in constraint dynamics [1 – 4] 
and consists in virtual disconnections of joints that pertain 
to the closed chain. The entire constraint equations system 
is then compiled inserting additional kinematic constraints 
that present the connectivity. 
 The principle proposed in the paper consists in 
transformation of a closed chain into open branch cutting 
not the joints but the flexible links. Using the finite 
element approach allows the kinematic constraints to be 
substituted by force constraints, i.e. by elastic forces in the 
nodes. Illustration of this approach applied for the 
mechanisms of Fig. 3 is presented in Fig. 5. 
 
 
 
 
 
 
 
 
Fig. 5. Transformation of a closed chain into open branches substituting 

flexile links by elastic forces 
 
 Such transformation of a three contour six-link 
mechanism in Fig. 5 results in an open chain with four 
branches and eight links. The elastic forces 1f  and 2f  in 
Fig. 5 depend on the shape, size and stiffness of the links 
cut. The first step is the transformation of the closed chain 
into open branches representing the connectivity between 
the coordinate systems of the rigid bodies and the 
coordinate systems of the nodes of the flexible elements. 
For example, for the four-bar mechanism in Fig. 3 and its 
transformation (Fig. 5) the connectivity of the coordinate 
systems is shown in Fig. 6. The coordinate systems with  
 
 
 
 
 
 
 
 
 

 
Fig. 6. Connectivity of the coordinate systems of rigid links and nodes 
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indices 2’ and 2” correspond to the nodes of  the flexible 
beam – link 2. The kinematic analysis of these two 
branches is a trivial task for every computer code 
generation program. For the next stage, the dynamic 
analysis, the main initial preparations will consist in mass 
distribution of the flexible elements to the node coordinate 
system (estimation of the mass matrix), as well as, the 
elastic forces (the stiffness matrix). 

III. Dynamics of rigid and flexible mechanisms 
 Vector translation iCs  of an object (point or node iC  of 
a body or a node of flexible element), and vector of the 
small rotations iθ  compile the matrix of the finite 

displacements [ ]\\
i

\
Ci i

 
s θΔ = . The coordinate 

transformation matrix, i
, Δτ66 , for vector iΔ  is: 
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where i

, τ33  is the matrix transformation of the coordinate 
system i. Similarly to iΔ  and Eqs. 4, 5, the quasi 

velocities and accelerations iΔ& , iΔ&&  are expressed with 
respect to q , as well as, q&  and q&&  [20], i.e.: 
 

 
where iΔR  and iΔRq∂  are compiled from the partial 

derivatives of  iΔ  with respect to q [20]. 
 For rigid body i the velocities that define its motion are 

stored in 6×1 matrix [ ]\
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node velocities. The Newton – Euler equations define the 
inertia forces and moments loading the body. For rigid 
body i the 6×1 matrix of the inertia forces and moments in 
the centre of gravity and relative to the inertial frame are: 
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and im , iJ  are the body mass and inertia tensor, 
respectively. The underlined notations point out reference 
to body fixed coordinate system. In [20] dense (no zero 
elements) 6×6 mass matrices are regarded. These matrices 
are computed in cases of mass reduction, as it is for the 
finite element discretization, for which the node 
translations and rotations are dependent. For such matrices 
the generalized Newton – Euler equations [20] are: 
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The mass matrix of a flexible element i with n nodes is 
6.n×6.n symmetric positive defined dense matrix iM . 
The mass matrices are computed assuming the 
equivalence of the kinetic energy of the deformable 
particles to the energy of the masses reduced to the nodes. 
If small relative deflections within the elements are 
assumed, these matrices are considered constant. The 
mass reduction is implemented on the basis of polynomial 
approximation of the beam deflections [21]. The kinetic 
energy of such an element is: 
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where ( )iiii ,...,,diag τττΔτ =  is 6.n×6.n coordinate 
system transformation matrix for flexible element i; iM  is 
6.n×6.n element mass matrix relative to inertial reference 
frame. The inertia forces (6.n×1 matrix iF ) in the nodes 
of flexible element i with n nodes are defined as follows:  
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while the deflections relative to the element coordinate 
system are small. In order the finite element stiffness 
matrices to be correctly applied the elastic forces loading 
the nodes are to be computed using only the small relative 
deflections of the nodes relative to the element. 
 The small deflections of element i with n nodes are 
compiled, similarly to the velocities in Sec. 4.1, in a 6.n×1 

matrix [ ]\\
n,i

\
,i

\
,ii ΔΔΔΔ L21= . The element stiffness 

properties are presented by 6.n×6.n sized stiffness iK .  
For the finite elements the matrix iK  is transformed to 
the absolute reference frame to compile the stiffness 

matrix iK . The elastic forces [ ]\\
n,i

\
,i

\
,ii SSSS L21=  

with respect to the absolute reference frame are computed 
using the relation iii Δ⋅−= KS . In a similar way the 
elastic forces relative to the moving element coordinate 
system are calculated taking into account the regulations 
for selection the reference coordinate systems of the 
flexible elements [22]. For example, the elastic forces in 
the beam element coordinate system are calculated by the 
well known stiffness matrix using the relation [20]:  
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 The process of computation of the node elastic forces 
goes trough the following steps: 
- transformation of the coordinate systems of the nodes 
relative to the element coordinate systems; 
- computation of the small relative node deflections; 
- computation of the elastic forces in the nodes; 
- transformation of the elastic forces to the absolute frame. 
 The final form of the dynamic equations with l rigid 
bodies, m flexible elements and n external forces is 
derived summing up the reduced inertia forces (Eqs. 11, 
13) for all rigid and flexible objects, as well as, for all 
reduced external forces including the elastic forces (with 
common notation iMG , i = 1, 2, …, n), i. e.:   
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Eg. 15 is g×1 linear system of ordinary differential 
equations for the generalized accelerations.  
 
 
 

IV. Example 
 An example of application of the approach proposed to 
motion simulation of the six-link mechanism in Fig. 5 in 
case of singular configuration with no initial velocity is 
presented. The mechanism is of three chains and is 
decomposed of four branches. The kinematic scheme and 
elastic forces in the nodes of flexible element, link 3, 
( 'xf 3 , 'yf 3 'm3 , "m3 , "xf 3 , "yf 3 ) are presented in Fig. 7. 

Singular configuration for this mechanism is when the 
directrixes of the link 2, 3 (nodes 3’-3”) and 5 (nodes 5’-
5”) are crossing in a common point. For this case the 
Jacobean matrix, as well as, the mass-matrix of the 
dynamic equations are singular. 
 Using the approach proposed no kinematic constraints 
that describe the connectivity of nodes 3’ – 3” (of link 3) 
and 5’ – 5” (of link 5) are applied. These constraints are 
the reason for the singularity and it is avoided substituting 
them by external elastic forces. On every step the relative 
position of the coordinate systems of links 3’ – 3” and 5’ – 
5” is estimated and the small relative node deflections are 
computed. The elastic forces are calculated (Eq. 14) and 
used as external forces in the dynamic equations. 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
  

Fig. 7. Six link mechanism in its initial and final configuration 
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it is shown in Fig. 7, i.e.: 1q = π ; 23 π−=q ; 655 π=q . 
The prescribed motion is realized as a reonomic constraint 
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 The time histories of the mechanism motion, links 1, 3 
and 5, are presented in Fig. 8. The time histories of the 
elastic longitudinal forces in links 3 and 5 are shown in 
Fig. 9 and 10. The longitudinal elastic forces that arise as 
a result of the compulsive motion of the crank 1 do not 
cause significant influence of the transfer functions 3q  
and 5q . The integration process starts from the initial 
singular configuration and stops when the mechanism 
reaches another singular configuration at t≈8. It could be 
seen that longitudinal elastic forces are exaggerated in the 
initial stage for going out from the singular configuration. 
These forces become higher at the end of motion since 
additional inertia forces appear and become extremely 
high at the interruption of the integration process.   
 The example demonstrates the applicability of the 
numerical algorithm. Future investigations will include 
damping and friction forces. Numerical integration 
methods for suppression of the high order vibrations will 
be applied and investigated. 

V. Conclusions 
 An approach to simulation of rigid and flexible 
multibody system is proposed for which the kinematic 
constraints are substituted by elastic forces in the flexible 
links. The method provides general solution for every 
kind of closed chains including over-constrained 
mechanisms and singular configurations. 
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Fig. 8. Time history of the characteristics of motion of links 1, 3, 5
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Fig. 9. Time history of the longitudinal elastic forces in link 3  
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Fig. 10. Time history of the longitudinal elastic forces in link 5 


