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ABSTRACT
This work presents the application to the dynamics of multi-

body systems of two methods based on augmented Lagrangian
techniques, compares them, and gives some criteria for its use in
realistic problems.

The methods are an augmented Lagrangian method with or-
thogonal projections of velocities and accelerations, and an aug-
mented Lagrangian energy conserving method. Both methods
were presented by the authors in a very recent work, but it was
not complete since the testing and the comparison of the meth-
ods was done by simulating a simple and academic example, and
that was not sufficient to draw conclusions in terms of efficiency.
For this work, the whole model of a vehicle has been simulated
through both formulations, and their performance compared for
such a large and realistic problem.

∗Address all correspondence to this author.
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NOMENCLATURE
M ∈ℜnxn Mass matrix.
Q ∈ℜn Vector of generalized forces.
λ ∈ℜm Lagrange multipliers vector.
α Penalty factor
Φ ∈ℜm Constraints vector
Φq ∈ℜmxn Jacobian matrix of the constraints vector

INTRODUCTION
Some of the most robust methods for the dynamics of multi-

body systems make use of natural or fully Cartesian coordi-
nates [9], which are dependent by nature, and lead to systems
of differential-algebraic equations of motion (DAE) [5].

In order to solve such DAE in natural coordinates, different
formulations have been developed, like Baumgarte stabilization
[1], penalty and augmented Lagrangian schemes [2], or velocity
transformations [19], [17].
Copyright c© 2007 by ASME



Formulations based on penalty and augmented Lagrangian
methods have the advantages of being very simple, computation-
ally inexpensive and very robust in the presence of singular con-
figurations or redundant constraints [4].

Generally, it can be said that the choice of the dynamic for-
mulation determines that of the numerical integrator. In this di-
rection, different authors proposed several options to success-
fully integrate the equations arising from constrained multibody
systems, using integrators coming from the field of structural dy-
namics [6, 9, 12].

In [4, 6], the use of augmented Lagrangian techniques with
penalty only at position level along with the trapezoidal rule was
proposed. In order to guarantee the correct satisfaction of the
constraints, velocity and acceleration projections were proposed.
More recently, in [8] it was proposed the use of augmented La-
grangian techniques with other integrators of the Generalized-α
family along with projections, obtaining very good behavior. The
advantages of the projections were the simplicity and that they
could be used with a great variety of integrators. The projections
were responsible for maintaining the stability of the formulation.

On the other hand, other authors, [10, 13, 14], developed a
formulation based on an energy conserving penalty scheme, en-
forcing the constraints at the position level, and applied it to
the dynamics of multibody systems parametrized with natural
coordinates. In this case, the use of penalty at position level
had the advantage of enabling to derive the constraint forces
from a potential function: the constraint energy. The formu-
lation employed an energy-momentum integrator as integration
scheme [15, 18], so that the conservation of the total energy of
the system was imposed by construction of the algorithm. Here,
the stabilization of the penalty equations of motion arose in a
natural manner from the integration scheme.

Very recently in [11] an augmented Lagrangian formulation
with orthogonal projections in velocities and accelerations was
presented. The projections proposed in that work are more gen-
eral than the projections mentioned before. Also in [11] was
presented an augmented Lagrangian energy conserving formu-
lation, different of that presented in [10, 13, 14], which was a
penalty formulation.

In this paper, the work presented in [11] is extended, since
the numerical testing in the mentioned paper, was done with a
very simple and academic example, while in the present paper,
the whole model of a car is simulated using the same formula-
tions presented in [11], in order to compare them in terms of
efficiency.

AUGMENTED LAGRANGIAN FORMULATION
Many different methods have been proposed in the litera-

ture for the dynamics of constrained mechanical systems. The
formulation of the equations of a constrained mechanical system
poses some numerical difficulties. These difficulties are, in gen-
2

eral, different for each formulation and solution method, but are
typically related to stability properties of the numerical scheme.
Such problems motivate the interest in developing algorithms ca-
pable of providing stable and accurate solutions.

In this work, we restrict ourselves to the methods based on
the augmented Lagrangian formulation, which can be understood
as a compromise between the Lagrange multiplier formulation,
and the penalty formulations.

Description of the formulation
Let us consider a multibody system, with a configuration

defined by a vector q ∈ ℜn. The system is also subjected to
m holonomic constraints Φ ∈ ℜm involving the different points
and vectors of the system. The dynamic equations constitute an
index-3 DAE system of n+m equations given by:

Mq̈+ΦT
qαΦ+ΦT

qλ
∗ = Q , Φ = 0 (1)

In practice, the augmented Lagrangian formulation, trans-
forms the DAE into a system of ordinary differential equations
(ODE), defining an iterative update for the multipliers, given by
λ∗i+1 = λ∗i +αΦ verifiying that λ∗ → λ as i → ∞, which means
that, in the limit, the iterative scheme for the Lagrange multipli-
ers leads to the true Lagrange multipliers. Moreover, the itera-
tion update for the multipliers, prevents introducing the Lagrange
multipliers as unknowns of the problem, so that the system of
n+m equations is replaced by another one of size only n.

Mq̈+ΦT
qαΦ+ΦT

qλ
∗ = Q , λ∗i+1 = λ∗i +αΦ (2)

In order to solve the nonlinear equations (2), the use of Newton-
Raphson schemes is recommended, and then it is possible and
convenient to mix up the Newton-Raphson iteration and the La-
grange multipliers iteration. Several authors have used methods
based on the equations (2) for the dynamics of multibody sys-
tems. This equations show a slightly unstable behavior with most
of the commonly used integrators, characterized by the drift-off
effect and a progressive and unbounded growth of the total en-
ergy of the system.

FORMULATION A: INDEX-3 AUGMENTED LA-
GRANGIAN WITH PROJECTIONS

This formulation was presented in [11]. It is based on the
augmented Lagrangian equations (2).

The augmented Lagrangian formulation can be combined
with any standard integrator, and achieves the exact fulfillment
of the position constraints, but usually exhibits an unstable be-
havior, even with ODE integrators suited to stiff systems.
Copyright c© 2007 by ASME
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Based on previous results obtained in the literature, it can be
said that the numerical solution of a constrained mechanical sys-
tem seems to be more stable on the constraints manifold than off
it. Based on this fact, the exact enforcement of the constraints at
velocity and acceleration levels (Φ̇ = 0 and Φ̈ = 0 respectively),
which is not accomplished by the augmented Lagrangian formu-
lation (2), is expected to stabilize the numerical solution.

The way to enforce the constraints proposed in this section is
the so-called coordinate projection technique. The velocities and
accelerations coming from the integrator, are projected onto the
constraints manifolds Φ̇ = 0 and Φ̈ = 0 respectively, by means
of the following expressions:

(P+ΦT
qkαΦq)q̇ = Pq̇∗ −ΦT

qkαΦt (3)

(P+ΦT
qkαΦq)q̈ = Pq̈∗ −ΦT

qkα(Φ̇qq̇+ Φ̇t) (4)

where P is the projection matrix, q̇∗ and q̈∗ are the velocities
and accelerations coming from the integrator, q̇ and q̈ are the
projected velocities and accelerations, and k is a real constant.

The choice of the projection matrix P is of key importance,
since it determines the numerical stability of the solution. More-
over, a correct choice of this matrix can guarantee the uncon-
ditional energy-dissipative character of the projections, which
proves to be very efficient for stabilizing the system.

By a careful choice of the projection matrix P and the real
constant k, it is also possible to equal the LHS of the linear sys-
tems (3) and (4), (P+ΦT

qkαΦq), to the tangent matrix of the
Newton-Raphson iteration for the nonlinear system (2), matrix
which must be factorized only once, thus saving much time at
the projection stage.

FORMULATION B: CONSERVING AUGMENTED LA-
GRANGIAN FORMULATION

The approach described in this section, is the augmented La-
grangian energy conserving formulation presented in [11]. The
mentioned formulation, is based on the equations (2), repeated
here for clarity:

Mq̈+ΦT
qαΦ+ΦT

qλ
∗ = Q , λ∗i+1 = λ∗i +αΦ (5)

The key point of the conserving approach is the formulation of
the constraint and conservative forces in such a way that guaran-
tees the algorithmic conservation of the energy,

Mq̈n+1/2 +
[

∂Φi

∂qn+βi

]T (
αΦn+1/2 +λ∗

)
= Qc +(Qnc)n+1/2 (6)

3

qn+1 = qn +hq̇n+1/2 (7)

q̇n+1 = q̇n +hq̈n+1/2 (8)

λ∗(i+1)
n+1 = λ∗(i)n+1 +αΦn+1/2 (9)

In (6), Qc, and (Qnc) are the contributions of the conserva-
tive and non-conservative forces to the generalized forces vec-
tor, (·)n+1/2 = [(·)n+1 +(·)n]/2 and (·)n+βi

denotes evaluation at
qn+βi

, which can be calculated as qn+βi
= qn+βi(qn+1−qn). All

the remaining terms have the same meaning already explained
in the previous section. In (7) and (8), h is the time-step. To
guarantee the conservative behavior of the constraint forces, the
parameter βi ∈ [0,1] has to be computed for each constraint and
at each time-step, by imposing the following equality,

[
∂Φi

∂qn+βi

]T

(qn+1 −qn) = Φn+1 −Φn (10)

The form of the term Qc depends on the particular expression of
each conservative force, so it is case-dependent and will not be
described here.

The proposed algorithm given by (6), (7), (8) and (9)
achieves exact conservation of the total energy in conservative
systems, and exact fulfillment of the position constraints.

The formulation B proposed in this section has proven to
stabilize the behavior of the original formulation (2), but using
a different strategy than the formulation A: the control of the
energy stored in the conservative forces (including the constraint
forces).

Moreover, it is possible to use the projection strategy de-
scribed with the Formulation A, together with the conserving
formulation described here, in order to enforce the constraints
at velocity and acceleration levels.

NUMERICAL SIMULATIONS I: SPHERICAL COM-
POUND PENDULUM

The first problem analyzed is a spherical compound pendu-
lum, Goicolea and Garca Orden (2002), (see Figure 1). The sys-
tem is composed of two particles with masses m1 = m2 = 1kg,
placed respectively in the center and end of a massless rod of total
length l1 + l2 with l1 = l2 = 1m. The pendulum is released from
the position ϕ1 = 0, ϕ2 = π/2, with initial velocities ϕ̇1 = 0.5,
ϕ̇2 = 0 The system is modeled in natural coordinates.



Figure 1. NUMERICAL SIMULATION: AN SPHERICAL COMPOUND

PENDULUM.

Stability problems of the index-3 augmented La-
grangian with standard integrators

The simulation is carried out for 5s., based on the formula-
tion (2), and integrated with the trapezoidal rule and a time-step
of 25ms. The penalty factor chosen is 107.

Figure 2 and Figure 3 show the time history of the norm
of the constraints at velocity level,

∥∥Φ̇∥∥, and the total energy
respectively. The drift-off effect of the velocity constraints can
be appreciated in Figure 2. In Figure 3, it is observed that the
total energy of the system is significantly affected, and grows in
an uncontrolled manner.
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Figure 2. CONSTRAINTS DERIVATIVE BEHAVIOR.
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Figure 3. TOTAL ENERGY BEHAVIOR.

Stabilized formulations: Formulation A vs. Formula-
tion B

The Formulation A and Formulation B described in previous
sections are analyzed here. Those formulations were designed
to overcome the problems shown by the original augmented La-
grangian formulation.

Figure 4 and Figure 5 show, as expected, that the scheme
with coordinate projections fulfills better the constraints at ve-
locity and acceleration levels. Figure 6 shows that the conserving
scheme achieves the exact conservation of the total energy.
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Figure 4. CONSTRAINTS DERIVATIVE BEHAVIOR.
The important point is that both schemes provide an ade-
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quate stabilization of the equations (2).

NUMERICAL SIMULATIONS II: THE ILTIS VEHICLE
As a good complex and realistic example to test methods

for demanding multibody applications, the full model of the Iltis
vehicle [16], illustrated in Figure 7, and used as a benchmark
problem to check multibody dynamic codes, has been chosen.

Road profile I: Smooth profile
The first simulation used to compare the Formulation A and

the Formulation B, consists of 5s. of manoeuvre with the vehicle
crossing two bumps. The first bump affects only to the right
wheels and the second only to the left wheels (the road profile
Figure 7. ILTIS VEHICLE.

Figure 8. ROAD PROFILE I: RIGHT WHEELS (TOP) AND LEFT

WHEELS (BOTTOM).

for the right and left wheels is shown in the Figure 8), starting at
a horizontal speed of 5m/s.

Several analyses were performed using the Formulation A
and the Formulation B, with different time-steps. The Figure 9
shows the time history of the z coordinate of the chassis for both
formulations using a constant time-step of 10ms. The Figure 10
shows the time history of the center of the left and right wheels.
The response is practically the same for both formulations. A de-
tailed analysis of the results, shows that the Formulation A damps
out part of the response and the crests are not so pronounced like
in the case of the Formulation B, but this effect is barely percep-
tible in the figures.

The Formulation A can achieve time-steps up to 60ms, while
the Formulation B fails to converge for time-steps bigger than
10ms. The Formulation B has more problems when the integra-
tion conditions become hard.

In the Table 1 and Table 2 the CPU-time of each formula-
tion is presented, to solve the 5s of manoeuvre with a constant
time step of 10ms (Table 1) and with the maximum time-step
possible (Table 2). Even when the same time-step is chosen, the
Formulation A is faster. This fact is motivated because of the
higher number of iterations necessary for the Formulation B to
converge, and also because of the non-symmetric tangent matrix
5 Copyright c© 2007 by ASME
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CHASSIS. h = 0.01s
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Figure 10. PROFILE I: FORMULATION A VS. FORMULATION B,

WHEELS. h = 0.01s

which comes from the solution of the nonlinear system of equa-
tions (7).

Road profile II: Rough profile
The second simulation which has served to compare the For-

mulation A and the Formulation B, consists of 8s. of motion with
the vehicle going up an inclined ramp and then down a series of
stairs, starting at a horizontal speed of 5m/s (the road profile is
shown in Figure 11). A rather violent motion is undergone by
the vehicle, reaching acceleration peaks of up to 5g.

Several analyses were performed with the Formulation A
and the Formulation B, using different time-steps. Figure 12
shows the response of both formulations with a time-step of
Table 1. FORMULATION A VS. FORMULATION B: CPU-TIME. h =
0.01s

Formulation Iterations CPU-time (s)

A 1039 2.35

B 1485 4.40

Table 2. FORMULATION A VS. FORMULATION B: CPU-TIME. MAXI-

MUM TIME-STEP

Formulation Iterations CPU-time (s)

A 501 0.96

B 1485 4.40

5.0 10.0 5.0 5 x 1.0 15.0

2.0
5 x 0.3

0.5

Figure 11. ROAD PROFILE II.

10ms.
The Formulation A, used with a standard integrator, the

trapezoidal rule, is capable of solving this violent maneuver and
provides a good solution (Figure 12).

On the other hand, the Formulation B fails to solve the same
maneuver with any time-step. The method is not robust enough
to achieve the convergence when the maneuver becomes violent,
and it cannot pass through the first impact of the front wheels
with the stairs, so that it only provides a solution for the first 4s.
of the simulation (Figure 12).

Combination of both stabilizing strategies It was
noted in the previous subsection that the Formulation B can-
not integrate the motion of the Iltis vehicle with the road profile
shown in Figure 11.

Moreover, it was pointed out previously, that the projection
strategy is also compatible with the conserving Formulation B.
The resulting scheme brings together two different ways of sta-
bilizing the augmented Lagrangian equations (2): keeping the
energy of the system bounded, and keeping the solution onto the
constraints manifold.

With this combined scheme of conserving formulation and
projections, it is possible to solve the motion of the Iltis vehicle
6 Copyright c© 2007 by ASME
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0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

time (s)

z−
ch

as
si

s 
(m

)

Formulation A
Formulation B+projections

Figure 13. PROJECTIONS + TRAPEZOIDAL RULE VS. PROJEC-

TIONS + CONSERVING. h = 0.01s

with a higher precision than that given by the trapezoidal rule
with projections, for the same time-step.

Figure 13 shows that the trapezoidal rule prolongs the pe-
riod of the solution in comparison whit the conserving formu-
lation. This effect is even more apparent with bigger time-
steps. This circumstance make possible to get acceptable so-
lutions for higher time-steps, if the conserving augmented La-
grangian scheme with projections is used.

CONCLUSIONS
Two different methods to integrate the equations of con-

strained multibody systems have been described, both of them
based on an augmented Lagrangian formulation.
The formulations described, use two different strategies to

stabilize the numerical behavior: one strategy is based on the pro-
jection of velocities and accelerations onto the constraints mani-
folds, and the other one on a specialized integrator which exactly
conserves the energy for conservative systems.

The simulation of the whole model of a vehicle was carried
out using the formulations described in the paper. This is a very
realistic and demanding simulation that permits to draw conclu-
sions about the formulations.

The Formulation B (conserving) shows a very good behav-
ior, especially in long term simulations of conservative systems,
for which the conservation is very important, but It is clear from
the experiments that this formulation does not achieve the high
robustness of its opponent (Formulation A).

The Formulation A (projections) shows a very robust be-
havior along with an acceptable precision. The formulation is
not as adequate as the previous one for long term simulations
of conservative systems, but it is the best option for demanding
simulations, due to its high robustness.

The combination of the conserving scheme with the coor-
dinate projection technique results in an algorithm which brings
together the advantages of both strategies.

The criteria of application for the formulations described can
be the following: For very demanding and hard simulations in
which the exact conservation of energy is not important, the For-
mulation A is better option. For smoother simulations, or long
term simulations of conservative systems in which the precision
is important, the Formulation B is better option.
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