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Abstract 
The addition of flexible bodies to the simulation of multibody systems can affect seriously 
the CPU-time. The present work focuses on the introduction of a substantial improvement 
in two existing methods, one based on natural coordinates and another based on relative 
coordinates, that use finite element models –to which modal reduction is applied– attached 
to a floating reference frame. By means of shape integrals preprocessing, constant terms 
from the mass matrix and the velocity dependent inertia forces vector can be extracted, 
which makes the number of operations needed at each time-step for their computation 
dependent only on the number of modes, and not on the finite element mesh size. Both 
methods have been tested by simulating a vehicle with up to 12 flexible elements, 
observing that efficiency can be considerably increased, especially in the case of large finite 
element models. 
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1. Introduction 

The main purpose of this work is to introduce and evaluate an efficient method for the 

calculation of the mass matrix, M, and the velocity dependent inertia forces vector, Qv, 

in the simulation of flexible multibody systems. In previous works [1,2], the authors 

developed two formulations based on the Floating Frame of Reference (FFR) 

approach [3], one in absolute (natural) coordinates, and another in relative coordinates. 

In both methods, component mode synthesis (Craig-Bampton reduction [4]) is used to 

reduce the number of coordinates. The problem is that M and Qv are obtained at each 

time-step by means of a projection of the finite element (FE) nodal velocities into the 

vector of the body coordinates q, operation which requires the evaluation of products 

involving matrices whose size is that of the FE model, thus reducing the efficiency 

because the modal reduction is not fully taken advantage of. 

In this work, the implementation of shape integrals preprocessing [3] for the calculation 

of M and Qv, in both the absolute and the relative formulations, is described and 



discussed. In addition, a comparison in terms of efficiency is carried out between both 

formulations, with and without preprocessing. 

 

2. Description of the Formulations 

The equations of motion, according to an index-3 augmented Lagrangian formulation, 

are stated in the form [5], 

 *T Tα+ + =q qMq Φ Φ Φ λ Q  (1) 

where q is the coordinates vector, M is the mass matrix, Φ is the closed-loop constraints 

vector, Φq is its Jacobian matrix, Q is the vector of elastic, externally applied and 

velocity dependent forces, and *λ  is the Lagrange multipliers vector, obtained from an 

iteration process carried out within each time-step, 

 * *
1 1    0,1, 2,...i i i iα+ += + =λ λ Φ  (2) 

which starts with *
0λ  equal to the value of *λ obtained in the previous time-step. 

Both the absolute and relative formulations share the same FFR approach for flexible 

body modeling. The absolute position of any given point r of a flexible body can be 

obtained as, 

 ( )0 0 u δ= + = + +r r Ar r A r r  (3) 

where r0 stands for the position of the origin of the local frame of reference, A is a 

rotation matrix defined by the three orthogonal unit vectors of the frame [u|v|w], ur  is 

the undeformed position of the point in local coordinates, and δ r is its local elastic 

displacement. The elastic displacement at a point is approximated by using component 

mode synthesis, which can be written in matrix form, 

 δ =r Xy  (4) 

being X a matrix whose columns are the mode shapes, and y the vector of modal 

amplitudes. 

The position and deformation status of the body can be described by a vector q,  
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containing the rigid body variables qr, which depend on the formulation (absolute or 

relative) and define the position and orientation of the frame of reference, and the modal 

amplitudes y, the same in both formulations.  

A linear relationship, different for each formulation, can be established between the 

velocity of any point of the body r, and the velocities q, 

 ( )=r B q q  (6) 

This relationship can be substituted into the kinetic energy expression, to obtain the 

mass matrix M, 

 1 1           
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T T T T

V V V
T dm dm dm= = ⇒ =∫ ∫ ∫r r q B Bq M B B  (7) 

If the Lagrange equations are applied to the kinetic energy, the velocity dependent 

inertia forces can also be obtained, 

 T
v V

dm= −∫Q B Bq  (8) 

These integrals are calculated by applying the co-rotational approximation proposed by 

Géradin and Cardona [6]. According to this approximation, the finite element 

interpolation matrices, intended for displacements, can be used also to interpolate 

velocities among neighbor nodes. This approximation becomes more exact as the FE 

mesh is refined, and is reasonably good for practical use. Assuming this, the B matrix 

integrals can be performed using the FE interpolation functions. 

 

2.1. B Matrix Method 

The approach used in [1,3] calculates B at every time-step, at all nodes, and assembles it 

in a full Bf matrix. Since the FE constant mass matrix Mf is the integral of the mass 

within all the body volume V, the following expressions for the mass matrix and the 

inertia forces can be obtained, 

     ;    T T
f f f v f f f= = −M B M B Q B M B q  (9) 



This method is very easy to implement, but has an important drawback: these operations 

must be performed at each integrator step, and since the size of Bf and Mf is the same as 

the number of degrees of freedom of the FE model, this method partially eliminates the 

improvement introduced by the modal reduction. 

 

2.2. Preprocessing Method 

The approach proposed in this work uses a preprocessing stage to reduce the number of 

operations. After developing Equations (7) and (8), the body variables q and q  can be 

taken out from the integrals, since they are constant for all the points of the body. All 

the variable terms of the mass matrix and the forces vector can be calculated from ten 

constant shape integrals: the integral of the modes Γ, three integrals of the undeformed 

position times the modes , ,x y zΓ Γ Γ , and six integrals of products between the directions 

of the modes , , , , ,xx xy xz yy yz zzΓ Γ Γ Γ Γ Γ . The form of the integrals is as follows, 

     ;       ;    T
x u xy x yV V V

dm x dm dm= = =∫ ∫ ∫Γ X Γ X Γ X X  (10) 

For example, the integral of the deformed local position, which appears in the mass 

matrix of the global formulation, is, 

 ( ) G G
u uV V

dm dm m m= + = + =∫ ∫r r Xy r Γy r  (11) 

In this expression, ur  is the undeformed local position, m is the mass of the solid, and 
G

ur , Gr  are the local positions of the center of mass in the undeformed and deformed 

configurations respectively. 

All the remaining terms appearing in the mass matrix and the inertia forces vector can 

be calculated in a similar way, performing operations with matrices of the size of y, 

being much less time consuming than the full Bf matrix projection. 

 

3. Test Example and Results 

The Iltis vehicle [7], which is a well known benchmark model for multibody system 

dynamics, is used as the base system for the tests. The vehicle consists of four identical 

suspensions, having each of them three flexible elements: the A-arm, the steering rod 



(fixed in the rear suspensions), and the upper bar which links the top of the hub to the 

chassis. All the elastic bodies have been modeled using 3D beam elements, with ne 

elements per bar. The steering rods and upper links are modeled as beams, with two 

static transversal modes and the first four dynamic ones. The A-arm consists of two 

bars, coincident at the hub connection, with one added element for the damper 

attachment (2ne+1elements), and it has two vertical static modes (damper and hub 

attachments) and two dynamic ones. This makes a total of 12 flexible bodies, with 

16ne+4 finite elements and 64 modes. 

 
Figure 1. Iltis vehicle. 

In the test, the Iltis runs over the road profile shown in Figure 2, with an initial velocity 

of 5 m/s. Simulation is carried out by using both the absolute and the relative 

formulations, with and without preprocessing, with a time-step of 10 ms. 
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Figure 2. Road profile for the Iltis simulation. 

The results obtained from the simulations are the same, regardless of the use of 

preprocessing. The trajectories of the chassis origin and the center of the front left wheel 

obtained in both cases have been compared, with no variation between them. This is 

because the operations performed for obtaining the mass matrix and the inertia forces 

are exactly the same, being the only difference that the preprocessing eliminates 

repeated operations by calculating them before the execution time. 

As it can be seen in Table 1 and Figure 3, the preprocessing makes the CPU-time 

invariant with respect to the number of elements. Both the absolute and the relative 



formulations benefit from this improvement, especially in the case of large finite 

element models, where the B matrix projection takes a significantly larger amount of 

time. 

 

Table 1. CPU-times for different finite element mesh sizes. 

Elements (ne) 5 10 50 100 
Absolute, B 5.34 6.59 36.78 131.59 
Absolute, P 4.69 4.70 4.65 4.63 
Relative, B 1.52 1.77 12.05 64.94 
Relative, P 1.11 0.99 0.98 0.99 

 

 

Figure 3. CPU-time vs number of finite elements. 

 

4. Conclusions 

From the results obtained, it can be said that the preprocessing improves very 

significantly the performance in all cases. When very large finite element models are 

used, the B matrix method can become unpractical, whereas the preprocessing keeps the 

CPU-time dependent only on the number of modes. 

The preprocessing times, which could be the only drawback of the proposed method, 

are negligible, if they are compared to the calculation of the mode shapes by solving the 

finite element system, since all the integrals can be obtained by direct matrix 

multiplication. In the present work, preprocessing has been done in MATLAB, and it 

takes less than 0.02 s for an A-arm with 100 elements per bar (i.e. 201 elements). 



5. References 

1. J. Cuadrado, R. Gutiérrez, M.A. Naya, P. Morer, A Comparison in Terms of 

Accuracy and Efficiency between a MBS Dynamic Formulation with Stress Analysis 

and a Non-Linear FEA Code, International Journal for Numerical Methods in 

Engineering, Vol.(51) (2001), 1033–1052. 

2. U. Lugrís, J. Cuadrado, F. González, A. Luaces, Efficiency of Topological and 

Global Formulations for Small and Large Flexible Multibody Systems, Proceedings 

of Multibody Dynamics 2007, ECCOMAS Thematic Conference, Milano, (2007). 

3. A.A. Shabana, Dynamics of Multibody Systems, 3rd edition, Cambridge University 

Press, Cambridge, (2005). 

4. R. Craig, M. Bampton, Coupling of Substructures for Dynamic Analyses, AIAA 

Journal, Vol.(6) (1968), 1313–1319. 

5. J. Cuadrado, D. Dopico, M. González and M.A. Naya, A Combined Penalty and 

Recursive Real-Time Formulation for Multibody Dynamics, Journal of Mechanical 

Design, Vol.(126) (2004), 602-608. 

6. M. Géradin, A. Cardona, Flexible Multibody Dynamics – A Finite Element Approach, 

John Wiley and Sons, New York, (2001). 

7. S. Frik, G. Leister, W. Schwartz, Simulation of the IAVSD Road Vehicle Benchmark 

Bombardier Iltis with FASIM, MEDYNA, NEWEUL AND SIMPACK, (1992). 


