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1. Introduction 

In flexible multibody dynamics, one of the most widely used methods for considering flexible bodies is 
the Floating Frame of Reference (FFR) [1]. This method attaches a local frame of reference to each elastic solid, 
in such a way that the frame undergoes the large rigid body motion, and the elastic displacements are 
superimposed using local coordinates. The most common way to model the local deformation is by means of the 
finite element method, so that a reduction procedure, such as component mode synthesis, can be then applied to 
reduce the number of system coordinates. 

In a previous work [2], the authors compare two FFR formulations, one based on absolute natural 
coordinates [3] and other using relative coordinates, concluding that the absolute method is better suited for 
small sized problems, whereas the relative method is faster when the system has a large number of coordinates. 

In both cases, the co-rotational approximation proposed by Géradin and Cardona [4] is used to obtain 
the mass matrix and the velocity dependent inertia forces of flexible bodies. These terms are obtained at each 
time-step by performing matrix products in which the finite element mass matrix is involved. This implies that 
although the use of component mode synthesis reduces the number of coordinates to be integrated in time, the 
method does not take full advantage of the reduction, since large matrices of the finite element mode size still 
appear in the mass matrix and inertia forces calculation. 

The main idea of this work is to study the performance of both the absolute and the relative 
formulations, when these terms are obtained by means of smaller matrix operations, involving matrices of the 
size of the reduced model. This is achieved by calculating several constant matrices, obtained through shape 
integrals in a preprocessing stage, as shown in [1]. Once the method is defined, a new comparison between the 
two formulations will be carried out, in order to check if the performance differences are kept or new criteria 
should be established. 

2. Description of the method 

The procedure will be described for the absolute formulation, being analogous for the relative one. The 
position of any given point r of a flexible body can be obtained as, 

 ( )0 0 u δ= + = + +r r Ar r A r r  (1) 

where r0 stands for the position of the origin of the local frame of reference, A is a rotation matrix defined by the 
three orthogonal unit vectors of the reference frame [u|v|w], ur  is the undeformed position of the point in local 
coordinates, and δ r is its local elastic displacement. The elastic displacement at a point is approximated using 
component mode synthesis, which can be written in matrix form, 

 δ =r Xy  (2) 

being X a matrix containing the mode shapes as columns, and y the vector of modal amplitudes. The body 
motion can be defined by the vector of variables of the body q, which contains the position of the origin r0, the 
local frame vectors u, v, w, and the modal amplitudes y, 
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By time differentiation of (1), a linear relationship can be established between the velocity of a point r 
and the time derivatives of the body coordinates q, 
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where ,   and x y z  are the components of the deformed local position of the point r. This relationship can be 
introduced into the kinetic energy expression, to obtain the mass matrix M, 
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which, after developing the matrix product TB B, has the following form, 
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where all the terms can be manipulated to put the body coordinates A and y outside the integrals. For example, 
the integral of x , 
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In this expression, ux  is the undeformed local x coordinate, Xx is the first row of X, m is the mass of the solid, 
and G

ux , Gx  are the local x coordinates of the center of mass in the undeformed and deformed configurations 
respectively. 

A similar procedure can be applied to all the 
remaining terms. All of them can be obtained from matrix 
operations involving the modal amplitudes y, and 
constant matrices resulting from integrals of the mode 
shapes, the undeformed positions, and products between 
them. In the case of the relative formulation, the B matrix 
relates different coordinates to the nodal velocities, and 
the expressions are somewhat more complicated, but the 
procedure for obtaining the mass matrix is analogous. 

As it was done in [2], a comparison between both 
formulations will be carried out by simulating different 
systems, such as the Iltis vehicle running through a rough 
profile (Fig. 1), and criteria will be established to decide 
which formulation should be used depending on the 
problem size and the number of elastic bodies. 

Preliminary tests have shown that, in the absolute method, with flexible bodies modeled using 10 
elements (33 DOFs) and 6 modes, performance can be increased about 175% by using preprocessing. In the case 
of large finite element models, the difference can be much more significant, since preprocessing makes the 
CPU-time independent of the finite element mesh size. 
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Fig. 1. Iltis maneuver. 


