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Abstract  
 
This work addresses the state estimation of multibody 
mechanical systems. These systems are described by 
second-order Lagrangian equations  in dependent, 
constrained coordinates. The proposed observer, 
based on the extended Kalman filter (EKF), is 
described by first-order differential equations, with 
independent, non-constrained  coordinates.  
 
These different kinds of models pose the main 
problem when designing the observer. The approach 
followed is based on intimately relate the EKF 
realization with efficient methods for dynamic 
formulation and fast implementation of multibody 
systems:  the velocity projection and the penalty 
methods. Simulation tests show robustness of the 
observer and promising ability for handling complex 
mechanical systems. 
 
 
1 Introduction 
 
The extended Kalman Filter (EKF) has been widely 
used, in combination with nonlinear dynamic models 
of systems, as state observer in several fields. The 
EKF for a nonlinear plant is in fact a simple linear 
Kalman Filter (KF) applied to the linearization of the 
plant around the trajectory given by the estimated 
state.   
 
So, the main advantage of the EKF is that it inherits 
the optimality of the KF (optimality against state and 
measurement noise). Due to the linearization feature, 
this optimality becomes only local, not global. This 
implies the appearance  of certain (usually large, but 
finite) “Domain of Attraction (DOA)”, that is, certain 
region of guaranteed convergence, which can be 
numerically  precomputed (Delgado and Barreiro, 
2003). In this way, the EKF provides robust observers 
for nonlinear systems. 

In current practice, the EKF is combined with 
simplified dynamic models of the systems and 
elementary numerical integration schemes in order to 
streamline convergence and to achieve real-time 
performance of the computation process. 
 
However, current state-of-the-art knowledge in 
Multibody System Dynamics opens the possibility of 
considering complex multibody models in real-time 
state observer applications, as long as specialized 
schemes (that combine dynamic formulations and 
numerical integrators to produce robust and efficient 
algorithms) are employed (Cuadrado, Cardenal, Bayo, 
1997). The advantage of using such complex 
multibody techniques is that more information can be 
extracted from the model. 
 
The EKF is typically formulated for first order 
nonlinear systems and non-constrained coordinates, in 
state-space form (ordinary differential equations, 
ODEs). Of course, the equations of a multibody 
system (differential algebraic equations, DAEs) can 
always be expressed in state-space form (minimum 
number of coordinates), and the corresponding second 
order equations can be converted into a first order 
one, duplicating the number of variables.  
 
However, practicability of the proposed strategy is 
limited by the ability of the resulting formalism to 
provide fast numerical execution and real-time 
performance. For example, reduction of the multibody  
DAE to a state-space ODE as in  (Haug, Negrut, 
Iancu, 1997) implies increasing the level of 
nonlinearity, which may be a serious drawback for 
complex multibody models and might affect the 
observer DOA size and convergence. 
 
In the applications reported in the literature, the 
combination of the EKF with constrained DAE plants 
is usually addressed from the EKF point of view. That 
means adapting the KF rationale to the specific DAE 



 

problem. For example, (Nikoukhah, Willsky, Levy, 
1990) show that the descriptor dynamics give rise to 
singular measurement noise covariance, and an 
extended maximum-likelihood method is applied. 
This same idea is followed in (Chiang et.al., 2002) 
where the constraint (unit quaternion norm) is treated 
as a pseudomeasurement. In (De Geeter, Van Brussel, 
De Schutter, 1997) the error from constraint 
linearization is treated in a separate step, after the 
EKF, increasing the computational complexity. 
 
In this work, the solution to the combination of EKF 
and DAEs is approached from the DAE point of view. 
This is an advantage for complex multibody systems. 
As any observer runs in real-time a copy of the plant, 
the same techniques that are useful for modelling and 
fast simulation of complex multibody systems will 
also be useful for implementing observers for such 
systems. 
 
So, this is the main idea of our approach, based on 
intimately relate the EKF realization with efficient 
methods for dynamic formulation and fast execution 
of multibody systems. In particular, this work reports 
the EKF formal derivation in the case of the velocity 
projection method and in the case of the penalty 
method.   
 
Although the final objective of our project is 
addressing complex multibody systems in automotive 
applications, in this first preliminary work, for clarity, 
a simple example is considered. This test example is a 
four-bar mechanism with a spring-damper element, so 
that conclusions based on this simple system can later 
serve to address larger and more complex systems.  
Two computational versions of the mechanism are 
created: the first one represents the real “prototype”, 
while the second one plays the role of the “model”.  
As the EKF provides robust observation, it is not 
necessary an exact identity between model and 
prototype. The physical parameters and exogenous 
forces may be different up to some extent. The 
objective is that the model follows the motion of the 
prototype with the help of an EKF. Preliminary 
numerical results and practical discussions are 
presented at the end of the paper. 
 
 
2 EKF observer and multibody dynamics 
 
Consider the system (plant) given by:  
 
 
                                                                               (2.1) 
 
Where x(t) is the (unknown) state vector, and u(t),y(t) 
are the known input and measurement variables. The 
matrix coefficients A(t),B(t),C(t) are also known and 
the equations are affected by state and measurement 
noises δ(t),ε(t) with zero mean and given covariances 
Θ,Ξ, respectively. Then, the classical linear Kalman 

filter (KF) observer is given by (Bryson and Ho, 
1975): 
 
                                                                               (2.2) 
 
 
 
Notice that the state estimation has a prediction-
correction structure, where the prediction is a copy of 
the plant (Ax+Bu) and the correction depends on the 
output error, affected by the Kalman gain K(t). The 
main feature of the KF is its optimality: it minimizes 
the covariance P(t) of the state-estimation error. When 
the plant is nonlinear: 
 
                                                                               (2.3) 
 
 
Then, the extended Kalman filter (EKF) is given by 
(Bryson and Ho, 1975):  
 
 
                                                                               (2.4) 
 
 
 
But now the matrices A(t),C(t) are computed as the 
Jacobians of  f, h with respect to the state, and are 
evaluated at the estimated trajectory (the true 
trajectory is not known).  
 
The justification of the EKF is based on the principle 
of linearization. Actually, the EKF is nothing more 
that a linear KF applied to the precise linear plant 
(2.1) obtained linearizing the true plant (2.3) around 
the estimated trajectory.   
 
If the state estimation error is small, then the 
linearization error is small as well, and KF and EKF 
are actually the same. For this reason, it can be said 
that the EKF is locally optimal, or optimal for small 
errors. 
But if for some reason (level of noise, disturbance, 
etc.), the estimation error becomes large, it might 
happen that the linearization error is so large that 
optimality is deteriorated and even stability is lost. If 
fact, EKF observers present, due to nonlinearity, a 
more or less large Domain of Attraction (DOA) that 
can be precomputed or estimated (Delgado and 
Barreiro, 2003). 
 
Some particular arrangements could be applied for 
improving convergence and robustness, as for 
example including the forgetting factor term λ(t)P(t) 
in the last equation in (2.4). Strong nonlinearity or 
problems with observability should be addressed by 
more specific techniques (like sliding-mode 
observers, bounded-gain forgetting, etc.). 
 
Now, the Multibody mechanical systems considered 
here are described by the constrained Lagrangian 
equations: 
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where  , ,q q q& &&  are positions, velocities and 
accelerations of a multibody system subject to the 
constraints Φ(q)=0, so that λ denote the Lagrange 
multipliers. The positive semidefinite matrix M is the 
constant mass matrix and the right-hand side Q(.) 
denote the generalized forces and momenta, including 
external known forces encoded in u(t). The second 
order system of equations can be written as a first 
order one, putting  x T =(q T, v T =dq T /dt) and 
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Both formulations (2.5) and (2.6) are obviously 
equivalent. The integral constraint Φ(q)=0 has been 
complemented with the differential one 
dΦ/dt=Φq(q)v=0. In this way, counting pairs of 
positions and velocities, the total number of 
dependent states 2nd is subject to 2nc  constraints so 
that there are 2ni free independent states. 
 
Once the second order equations have been converted 
into first order, the main problem to match (2.6) (plus 
some noise signals) to (2.3), and derive the EKF, is 
the presence of constraints and the corresponding 
Lagrange multiplier term in (2.6). This problem can 
be dealt with in several ways. 
 
Of course, one can always eliminate the constraints 
and the Lagrange multipliers in (2.6). However this is 
analytically involved (Haug, Negrut, Iancu, 1997) and 
in practice it increases the degree of nonlinearity 
which might affect the observer DOA size, and reduce 
convergence. 
 
One may resort as well to specific solutions for 
Kalman filtering of Differential-Algebraic Equations 
(DAEs), as in the literature references discussed in the 
introduction, however the explicit treatment of the 
model as a DAE would increase conceptual and 
computational complexity. 
Our approach is motivated by the availability of new 
robust and efficient algorithms for dynamic 
formulation and numerical integration of multibody 
systems (Cuadrado, Cardenal, Bayo, 1997). And the 
main reason for choosing this approach is very simple 
to state: As any observer runs in real-time a copy of 
the plant, then the techniques that are useful for 
efficient simulation of complex multibody systems will 
be useful as well for implementing observers for the 
same systems. 
 
Following this idea, the sections 3 and 4 report the 
formal derivation of EKF observers for Multibody 
systems in the case of the velocity projection (R-
matrix) method and in the case of the Penalty method. 

 
3 EKF observer based on the r-matrix 
 
The main idea in this method, known as the ‘velocity 
proyection method’ or the ‘R-matrix method’ (García 
de Jalón and Bayo, 1994) is to obtain an ODE with 
dimension ni equal to the actual number of degrees of 
freedom (DOF), using a set z of independent 
coordinates. The starting point is to establish the 
following relation between velocities: 
 
                                                                               (3.1) 
 
Where q(t) are all the nd dependent variables and z(t) 
is a set of ni independent variables. Such relation (3.1) 
can always be found, for instance, taking the 
derivative of the restrictions,                   , and splitting 
all the velocities in two subsets, such that one subset 
of velocities can be written as a function of the other 
subset. Once (3.1) is obtained, it follows that 
 
 
And, going back to (2.5) 
 
 
Premultiplying by the transpose of R and having in 
mind that ΦqR=0, one reaches to 
 
 
                                                                               (3.2) 
 
 
which defines implicitly the corrected mass matrix          
and the corrected vector of generalized forces     .  
 
So, the result is that the DAE (2.5) in the dependent 
variables has been converted into the ODE (3.2) 
expressed  in independent variables. Then, the EKF in 
(2.4) can be straightforwardly applied. In particular, 
the state-space matrix is obtained as the linearization 
(evaluated at the estimated trajectory): 
 
 
 
                                                                               (3.3) 
 
 
 
The detailed expressions of the previous partial 
derivatives are omitted for brevity. They are long 
complex expressions, but otherwise conceptually 
simple, as they can be computed by laborious 
derivation and application of the chain rule. 
 
The main advantage of the R-matrix method is the 
reduction of the number of equations, at the expense 
of having to compute, at each instant, R(t) and the 
dependent coordinates as functions of the independent 
ones. It also requires the effort of managing the 
redundancy in restrictions and the changes in the 
representative set of velocities. 
 

q Rz=& &

0 ( )q q q= Φ &

q Rz Rz= +&&& & &&

T
qMRz MRz Qλ+ + Φ =&&& &

( ) ( )1 1T Tz R MR R Q MRz M Q
− − = − = 

&&& &

M
Q

( ) ( )1 1

O I
A M Q M Q

z z

− −

 
 = ∂ ∂ 
 ∂ ∂ &



 

4 EKF observer based on penalty method 
 
The basic idea in the penalty method is to postulate 
that the constraining forces in (2.5) are proportional to 
the violation of the restrictions. In particular, the 
Lagrange multipliers are chosen in the form (García 
de Jalón and Bayo, 1994): 
 
                                                                               (4.1) 
 
where α is the penalty factor, and it is usually fixed to 
a very large value, 106 or 107. Notice that the 
combination of the constraint function and their 
derivatives takes the form of a second order 
oscillating system with damping coefficient and 
natural frequency usually chosen as ζ=1,ω=10. So, 
the rigid constraints in the DAE (2.5) can be 
converted into non-rigid constraints in an ODE: 
 
  
 
                                                                         
                                                                               (4.2) 
 
However, due to the very large value of α, it can be 
shown that this is equivalent to representing the 
constraints by springs of large stiffness and dampers 
of large friction coefficient. In this way, the 
constraints can actually be violated, but only in a very 
small amount, enough for representing de DAE (2.5) 
as the ODE (4.2) with negligible approximation 
errors. 
 
Compared to the R-matrix method, the equation (4.2) 
has the drawback that the number of variables is 
larger: it is equal to the total number of dependent 
variables. However, this method has the advantage 
that (4.2) can be directly integrated as an ODE and it 
is not necessary to solve at each time instant the 
problems of passing from independent to dependent 
coordinates and related problems mentioned in the 
previous section. Furthermore, the corrected mass 
matrix (the inverted matrix in (4.2)) may be 
invertible, even if M  is only positive semidefinite. 
 
An EKF as (2.4) is straightforwardly derived for the 
ODE (4.2) using the standard procedure. In particular, 
the state-space matrix A(t) has the same form than 
(3.3) but replacing the corrected mass matrix and 
corrected generalized forces by the corresponding 
values derived from (4.2). For the sake of brevity, the 
details of the derivation of A(t) are omitted. 
 
Notice that, in the covariance equation for P(t) in 
(2.4), the size of P(t) is now nd x nd so that the number 
of entries of P(t) might become now considerably 
larger than in the case of independent coordinates. As 
the size nd of the problem increases, it affects 
particularly to P(t), with a number of entries 
proportional to the square of the size. 
 
 

5 Example 
 
A four-bar mechanism with a spring-damper element 
is chosen as example, see Fig.1. Two computational 
versions of the mechanism are created: the first one 
represents the real “prototype”, while the second one 
plays the role of the “model”. A sensor in the 
prototype provides as a measurement y=s, the 
displacement value of the spring-damper element, that 
is, the distance between point A and point 2. 
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Figure 1. A four-bar mechanism with a spring-damper 

element. 
 
 
The state variables in this example are the coordinates 
of points 1 and 2, and the distance s: 

( )Tsyxyxq 2211=  

The inertial matrix of the whole mechanism is 
computed considering the contributions of the three 
2D bars (García de Jalón and Bayo, 1994) and the 
zero contribution of the spring-damper element (of 
negligible mass): 
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Finally, the 5x5 global inertial mass matrix is: 
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Notice that a fifth row and column of zeros has been 
added, as there is no inertia associated to the spring-
damper element. 
The generalized force vector is obtained considering 
the gravity as the only force that acts over each bar. 
So, for the three bars it results (García de Jalón and 
Bayo, 1994): 
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On the other hand, the contribution of the spring-
damper element is: 
  

0( )f k s s cs= − − − &  
 
Where k is the elastic constant, c the damping 
coefficient and s0 the natural spring length. 
 
Then, the vector Q is: 
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Finally, the constraints and the constraint Jacobian 
are: 
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So, the Multibody mechanical system considered here 
is described by the equations (2.5) with the previous 
data. 
 
The numerical values of the parameters are as 
follows. The masses are m1=2 Kg,  m2=25 Kg, m3=2 
Kg, the bar lenghts are L1=0.9 m, L2=1.05 m, L3=1m,  
the spring length is s0=1.70m,  the (x,y) fixed point 
coordinates are A = (0,0),  B = (−1,0), the spring 
coefficient is k=10000 Nw/m and the damping 
coefficient value is c=500 Nw/(m/s).  
Regarding the tuning of the EKF, the main parameters 
are the matrices Θ, Ξ. In principle, they have to 
represent the covariances of the zero-mean noises δ,ε  

in (2.1) or (2.3). However, in practice, this 
information is not always clearly known, so in fact the 
matrices Θ, Ξ. are used as tuning parameters adjusted 
by trial-and-error experimental work. 
 
It should be stressed that there is no perfect solution 
to the filtering problem, but rather there exist trade-
offs between competing objectives. Typically, the 
solutions that provide fast convergence (of the 
estimations to the true values) are affected by higher 
levels of noise. If low levels of noise are desired, then 
the initial errors converge more slowly to zero. To 
facilitate the tuning, typically the matrices are 
postulated  to be diagonal, Θ=diag(θ i), Ξ=diag( ξ i). 
After some trial-and-error test work under the 
simulation conditions to be detailed later, the EKF 
tuning is set to Θ=diag(0.1), Ξ=diag(0.001).  An 
additive forgetting factor term λ(t)P(t) has been added 
to the last equation in (2.4), with λ=0.1. The initial 
covariance value has been chosen in the form 
P(0)=diag(diag(pi),diag(vi)), to represent different 
initial uncertainties in positions and velocities. As it is 
supposed that model and prototype start from rest 
condition, the initial uncertainty in velocities is zero, 
and 0.1 in positions so that   
P(0)=diag(diag(0.1),diag(0)). 
 
Regarding the simulation conditions, to show the 
recovering from different initial conditions, the real 
prototype starts at s(0)=1.80m and the virtual model 
(observer) starts at s(0)=1.85m.  In the same way, to 
evaluate the effect of noise and error in 
measurements, it is supposed that y=s+ε, ,with 
measurement noise ε  within the interval 
[−0.02,+0.02]m (2cm), uniformly distributed. Finally,  
to check what happens with uncertain exogenous 
forces, the prototype runs under normal gravity, 
g=9.81m/s2, but the observer runs under g=8.81m/s2. 
In these conditions, the time trajectory for three of the 
state variables (the real one and the estimated one) is 
plotted in Fig.2, Fig.3, Fig.4 (R-matrix method) and 
correspondingly in  Fig.6, Fig.7, Fig.8 (Penalty 
method). Furthermore, to validate a more difficult 
situation, Fig.5 and Fig 9 show the evolution of s(t) 
and its estimation,, under a harder noise level in 
[−0.1,+0.1]m with the true or real coefficient is  c=0 
Nw/(m/s)  (so that the prototype oscillates) but the 
model is taken c=100 Nw/(m/s). 

 
Figure 2. Evolution of x1 variable in R-matrix method. 



 

 
Figure 3. Evolution of x1 velocity in R-matrix method. 

 
Figure 4. Evolution of “s” distance in R-matrix 

method. 

 
Figure 5. Evolution of “s” distance in R-matrix 

method (oscillating prototype) 
 

 
 

Figure 6. Evolution of x1 variable in penalty method. 

 
Figure 7. Evolution of x1 velocity in penalty method. 

 
Figure 8. Evolution of “s” distance in penalty 

method. 

 
Figure 9. Evolution of “s” distance in penalty method 

(oscillating protoype). 
 
All the simulation plots show a reasonable good 
performance level, with satisfactory convergence 
speed, robustness against parameter uncertainty, and 
noise filtering and attenuation. The R-matrix method 
appears to be better than the Penalty method. It is 
believed that the reason in related to the relaxation of 
constraints in the Penalty method. This relaxation is in 
part traded off against estimation accuracy: If one 
desires good and fast estimation, the “correction 
forces” in the observer need to be large, and (although 
the penalizer is large, α=10e7) these forces produce a 
larger and different violation of constraints in the 
observer, compared to the protoptype.  This suggest to 
consider, for future work, dynamic formulations of 
Multibody systems that force the constraints to be 
satisfied strictly,  like, for example in the Augmented 
Lagrangian method (García de Jalón and Bayo, 1994). 



 

6 Conclusions 
 
This work presents a study on the application of EKF 
observers to Multibody Dynamical Systems. 
Although the numerical tests have been carried out, 
by the moment, on a simple four-bar example, the 
final objective is to implement the observers on 
complex Multibody systems, such those arising in the 
field of automotive control. 
 
So, having in mind complex Multibody dynamics, the 
approach has been based on the idea that the same 
techniques which are efficient for efficient simulation 
of such complex systems will be efficient as well for 
implementing the observers. Two methods have been 
chosen: the velocity projection or R-matrix technique 
and the penalty technique. The detailed development 
of the EKF observer for these methods has been 
presented. 
 
The simulation tests show successful results in both 
cases. After a not very involved trial-and-error tuning, 
the EKF final observers are robust with respect to 
noise, initial estimation errors and even different input 
forces (9.81m/s2 and 8.81m/s2 different gravity 
forces). The R-matrix method has the advantage of 
working with a lower number of variables and the 
Penalty method has the advantage that it does not 
require the passing from independent to dependent 
variables at each time sample. 
 
The R-matrix method appears to be superior to the 
Penalty method and this suggests, from the discussion 
in the previous section, to consider in future work 
more efficient real-time Multibody formulations like, 
for example, the Augmented Lagrangian technique. 
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