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ABSTRACT 

This work is a preliminary study on the use of the 
extended Kalman filter (EKF) for the state estimation of 
multibody systems. The observers based on the EKF are 
described by first-order differential equations, with 
independent, non-constrained coordinates. Therefore, it 
should be investigated how to formulate the equations of 
motion of the multibody systems so that efficient, robust 
and accurate observers can be derived, which can serve to 
develop advanced real-time applications. In the paper, two 
options are considered: a state-space reduction method and 
the penalty method. Both methods are tested on a four-bar 
mechanism with a linear spring-damper. The results enable 
to analyze the pros and cons of each method and provide 
clues for future research. 
 
 
1. INTRODUCTION 

The extended Kalman Filter (EKF) has been widely 
used, in combination with nonlinear dynamic models of 
systems, as state observer in several fields. The EKF for a 
nonlinear plant is in fact a simple linear Kalman Filter (KF) 
applied to the linearization of the plant around the 
trajectory given by the estimated state. 

So, the main advantage of the EKF is that it inherits 
the optimality of the KF (optimality against state and 
measurement noise). Due to the linearization feature, this 
optimality becomes only local, not global. This implies the 
appearance of certain (usually large, but finite) “Domain of 
Attraction (DOA)”, that is, certain region of guaranteed 
convergence, which can be numerically precomputed 
(Delgado and Barreiro (2003)). In this way, the EKF 
provides robust observers for nonlinear systems. 

In current practice, the EKF is combined with 
simplified dynamic models of the systems and elementary 
numerical integration schemes in order to streamline 
convergence and to achieve real-time performance of the 
computation process. 

However, current state-of-the-art knowledge in 

multibody dynamics opens the possibility of considering 
complex multibody models in real-time state observer 
applications, as long as specialized schemes (that combine 
dynamic formulations and numerical integrators to produce 
robust and efficient algorithms) are employed (Cuadrado et 
al. (2004)). The advantage is that more information can be 
extracted from the model. 

The EKF is typically formulated for first order 
nonlinear systems and non-constrained coordinates, in 
state-space form (ordinary differential equations, ODEs). 
Of course, the equations of a multibody system (differential 
algebraic equations, DAEs) can always be expressed in 
state-space form (minimum number of coordinates), and 
the corresponding second order equations can be converted 
into first order by just duplicating the number of variables. 

However, practicability of the proposed strategy is 
limited by the ability of the resulting formalism to provide 
fast numerical execution and real-time performance. 
Therefore, different methods should be investigated so as to 
find the most efficient alternatives. 

In the applications reported in the literature, the 
combination of the EKF with constrained DAE plants is 
usually addressed from the EKF point of view. That means 
adapting the KF rationale to the specific DAE problem. For 
example, Nikoukhah et al. (1990) show that the descriptor 
dynamics give rise to singular measurement noise 
covariance, and an extended maximum-likelihood method 
is applied. This same idea is followed in Chiang et al. 
(2002), where the constraint (unit quaternion norm) is 
treated as a pseudo-measurement. In De Geeter et al. 
(1997), the error from constraint linearization is treated in a 
separate step, after the EKF, increasing the computational 
complexity. 

In this work, the solution to the combination of EKF 
and DAEs is approached from the DAE point of view. This 
is an advantage for complex multibody systems. As any 
observer runs in real-time a copy of the plant, the same 
techniques that are useful for modeling and fast simulation 
of complex multibody systems, will also be useful for 
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implementing observers for such systems. 
So, this is the main idea of our approach, based on 

intimately relate the EKF realization with efficient methods 
for dynamic formulation and fast execution of multibody 
systems. In particular, this work reports the EKF formal 
derivation in the case of a state-space reduction method and 
in the case of the penalty method. 

Although the final objective of our project is to 
address complex multibody systems in industrial 
applications, in this first preliminary work a simple 
example is considered for clarity. This test example is a 
four-bar mechanism with a spring-damper element, so that 
conclusions based on this simple system can later serve to 
address larger and more complex systems. 

Two computational versions of the mechanism are 
created: the first one represents the real “prototype”, while 
the second one plays the role of the “model”. In other to 
test the observer, the model is not an exact replica of the 
prototype, but differs in some physical or geometric 
parameters; also, the readings coming from sensors and 
actuators may be altered when passed to the model. The 
objective is that the model follows the motion of the 
prototype with the help of an EKF. Preliminary numerical 
results and practical discussions are presented at the end of 
the paper. 
 
 
2. EKF OBSERVER 

Consider the system (plant) given by: 
 

= + +
= +

x x u δ
y x ε
A B
C

 (1) 

 
where x is the (unknown) state vector, and u, y are the 
known input and measurement variables. The matrix 
coefficients A, B, C are also known and the equations are 
affected by state and measurement noises δ, ε with zero 
mean and given covariances Θ, Ξ, respectively. Then, the 
classical linear Kalman filter (KF) observer is given by 
(Bryson and Ho (1975)): 

 

( )
T 1

T T 1

ˆ ˆ ˆ
−

−

= + + −

=

= + − +

x x u y x

P Ξ
P P P P Ξ P Θ

A B K C

K C

A A C C

 (2) 

 
Notice that the state estimation has a prediction-

correction structure, where the prediction is a copy of the 
plant (Ax+Bu) and the correction depends on the output 
error, affected by the Kalman gain K. The main feature of 
the KF is its optimality: it minimizes the covariance P of 
the state-estimation error. 

 
When the plant is nonlinear: 
 

( )
( )
,= +

= +

x f x u δ

y h x ε
 (3) 

 
Then, the extended Kalman filter (EKF) is given by 

(Bryson and Ho (1975)): 
 

( ) ( )( )
T 1

T T 1

ˆ ˆ ˆ,
−

−

= + −

=

= + − +

x f x u y h x

P Ξ
P P P P Ξ P Θ

K

K C

A A C C

 (4) 

 
But now the matrices A, C are computed as the 

Jacobians of f and h with respect to the states, and are 
evaluated at the estimated trajectory (the true trajectory is 
not known). 

The justification of the EKF is based on the principle 
of linearization. Actually, the EKF is nothing more that a 
linear KF applied to the linear plant (1) obtained by 
linearizing the true plant (3) around the estimated trajectory. 

If the state estimation error is small, then the 
linearization error is small as well, and KF and EKF are 
actually the same. For this reason, it can be said that the 
EKF is locally optimal, or optimal for small errors. 

But if for some reason (level of noise, disturbance, 
etc.), the estimation error becomes large, it might happen 
that the linearization error is so large that optimality is 
deteriorated and even stability is lost. If fact, EKF 
observers present, due to nonlinearity, a more or less large 
DOA that can be precomputed or estimated (Delgado and 
Barreiro (2003)). 

 
 

3. MULTIBODY DYNAMICS 
In its most basic form, the dynamics of a multibody 

system is described by the constrained Lagrangian 
equations: 

 
T+ =

=
qMq Φ λ Q

Φ 0
 (5) 

 
where M is the positive semidefinite mass matrix, q  the 
accelerations vector, Φ the constraints vector, q  the 
Jacobian matrix of the constraints, λ the Lagrange 
multipliers vector, and Q the applied forces vector, 
including the external actuation forces encoded in u. 

Φ

In order to adopt the form of the equations (3) required 
for application of the EKF, the second order system of 
equations (5) can be written as a first order one, just by 



4th Asian Conference on Multibody Dynamics 2008 
 

doing { }T T T=x q v  with =v q , 
 

( )1 T−

=

= − q

q v

v M Q Φ λ
 (6) 

 
or, more compactly, 

 

( )1 T       ( )−

⎧ ⎫⎧ ⎫ ⎪ ⎪= ⇒⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎪ ⎪⎩ ⎭q

vq
x f x

M Q Φ λv
=  (7) 

 
with the positions and velocities subject to the constraints 
at position and velocity level, 

 
=

=q

Φ 0
Φ v 0

 (8) 

 
If d  is the number of dependent variables and i  

is the number of degrees of freedom (independent 
variables) of the multibody system, the size of the problem 
is  (since the states are positions plus velocities).  

n n

2 dn
In order to match (7) to (3), there are several problems. 

On the one hand, the Lagrange multipliers are unknowns, 
and the mass matrix is not always invertible. On the other 
hand, the formalism (3) does not consider constraints 
among the states. 

One may resort to specific solutions for Kalman 
filtering of differential-algebraic equations (DAEs), as in 
the literature references discussed in the Introduction. 
However the explicit treatment of the model as a DAE 
would increase conceptual and computational complexity. 

In our approach, two formulations that convert the 
DAE (5) into an ODE have been used: a state-space 
reduction method known as matrix-R method (Garcia de 
Jalon and Bayo (1994)) and the penalty method. The 
derivation of EKF observers for multibody systems based 
on the two mentioned methods is reported in the two 
following sections. 
 
 
4. MATRIX-R FORMULATION 

The main idea in this method (Garcia de Jalon and 
Bayo (1994)) is to obtain an ODE with dimension ni equal 
to the actual number of degrees of freedom, using a set z of 
independent coordinates. The starting point is to establish 
the following relation between velocities: 

 
=q Rz  (9) 

 
where q are all the nd dependent variables and z is a set of 
ni independent variables. Such relation (9) can always be 

found, for instance, taking the derivative of the restrictions, 
=qΦ q 0 , and splitting all the velocities in two subsets, so 

that one subset of velocities can be written as a function of 
the other subset. Once (9) is obtained, it follows that 

 
= +q Rz Rz  (10) 

 
Going back to (5), premultiplying by the transpose of 

R, and having in mind that , one reaches to, =qΦ R 0
 

( ) ( )1T T 1− −⎡ ⎤= − =⎣ ⎦z R MR R Q MRz M Q  (11) 

 
which implicitly defines the corrected mass matrix M  
and the corrected vector of generalized forces Q . 

So, the result is that the DAE (5) in the dependent 
variables has been converted into the ODE (11) expressed 
in independent variables. 

The main advantage of the matrix-R method is the 
reduction of the number of equations, at the expense of 
having to compute, at each instant, R and the dependent 
states as functions of the independent ones. It also requires 
the effort of managing the redundancy in restrictions and 
the changes in the representative set of velocities. 

If now the states are defined as { }T T T=x z w , with 
=w z , the following equations can be written, 

 

( ) ( )1T T 1− −

=

⎡ ⎤= − =⎣ ⎦

z w

w R MR R Q MRw M Q
 (12) 

 
or, more compactly, 

 

1       ( )−

⎧ ⎫ ⎧ ⎫
= ⇒ =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

z w
x f x

w M Q
 (13) 

 
These equations perfectly match to (3) and, therefore, 

the EKF in (4) can be straightforwardly applied. In 
particular, the state-space matrix is obtained as the 
linearization (evaluated at the estimated trajectory): 

 

( ) ( )1 1( ) − −

⎡ ⎤
∂ ⎢ ⎥= = ∂ ∂⎢ ⎥∂

⎢ ⎥∂ ∂⎣ ⎦

0 I
f x

M Q M Qx
z w

A  (14) 

 
which can be approximated as, 
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( )
( )

2

1 T

1 T
2

2−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
= − +

= − +

21 2

21 q

2

0 I

M R KR MR Rw

M R CR MR

A
A A

A

A

 (15) 

 
where K is the stiffness matrix and C the damping matrix. 

In this case, the size of the problem is . Now, 
according to (4), the correction provided by the EKF must 
be included into the observer equations, leading to 

2 in

 
( )

( )2

− + − =

− + − =
1 s

s

z w y y 0

Mw Q M y y 0

K

K
 (16) 

 
where 1  and 2  are the upper and lower parts of the 
Kalman gain matrix K, and  are the outputs provided 
by the sensors. 

K K
sy

Since real-time performance of the algorithms will be 
required by the final applications, the integration procedure 
is relevant in order to make the algorithm as efficient as 
possible. The implicit single-step trapezoidal rule has been 
selected as integrator, 

 

1 1

1 1

2 2

2 2

n n n n

n n n n

t t

t t

+ +

+ +

⎛ ⎞= − +⎜ ⎟Δ Δ⎝ ⎠
⎛ ⎞= − +⎜ ⎟Δ Δ⎝ ⎠

z z z z

w w w w
 (17) 

 
Now, (17) can be substituted into (16), thus leading to 

the nonlinear system of equations in the states, 
 

1
1

2 1

( )
      ( )

( )
n

n
n

+
+

+

=⎧
⇒ =⎨ =⎩

1g x 0
g x 0

g x 0
 (18) 

 
This system can be iteratively solved by the Newton-

Raphson iteration, the approximated tangent matrix being, 
 

T T

2

2 1 2 2

2

2( )

t

t

⎡ ⎤−⎢∂ Δ= +⎢ ⎥
∂ ⎢ ⎥+ +

⎢ ⎥Δ⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 1 1

I I
g
x R KR R CR MR M

M M
KC KC
KC KC

⎥

 (19) 

 
where 1  and 2C  are the upper and lower parts of the 
output Jacobian matrix C. 

C

 

 
5. PENALTY FORMULATION 

The basic idea in the penalty method is to postulate 
that the constraining forces in (5) are proportional to the 
violation of the restrictions. In particular, the Lagrange 
multipliers are chosen in the form (Garcia de Jalon and 
Bayo (1994)): 

 

( )22α ζω ω= + +λ Φ Φ Φ  (20) 

 
where α is the penalty factor, usually fixed to a very large 
value, 107 or more. Notice that the combination of the 
constraint function and their derivatives takes the form of a 
second order oscillating system with damping coefficient 
and natural frequency usually chosen as ζ=1, ω=10. So, the 
rigid constraints in the DAE (5) can be converted into non-
rigid constraints in an ODE: 

 

( ) ( )1T T 22α α ζω ω
−

⎡ ⎤= + − + +⎣ ⎦q q q qq M Φ Φ Q Φ Φ q Φ Φ  (21) 

 
However, due to the very large value of α, it can be 

shown that this is equivalent to representing the constraints 
by springs of large stiffness, dampers of large friction 
coefficient and masses of large inertia. In this way, the 
constraints can actually be violated, but only in a very 
small amount, enough for representing de DAE (5) as the 
ODE (21) with negligible approximation errors. 

Compared to the matrix-R method (11), the equation 
(21) has the drawback that the number of variables is 
larger: it is equal to the total number of dependent variables, 

d . However, this method has the advantage that (21) can 
be directly integrated as an ODE and it is not necessary to 
solve at each time instant the problems of passing from 
independent to dependent states and related problems 
mentioned in the previous section. Furthermore, the 
corrected mass matrix (the inverted matrix in (21)) is 
invertible, even if M is only positive semidefinite. 

n

If now the states are defined as { }T T T=x q v , with 
=v q , the following equations can be written, 

 

T 1

T 2

( ) [

( 2 )]

α

α ζω ω

−

−

=

= + −

+ + =
q q

q q

q v
v M Φ Φ Q

Φ Φ v Φ Φ M Q1

 (22) 

 
or, more compactly, 
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1       ( )−

⎧ ⎫ ⎧ ⎫
= ⇒ =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

q v
x f x

v M Q
 (23) 

 
Then, the EKF in (4) can be straightforwardly applied. 

In particular, the state-space matrix is obtained as the 
linearization (evaluated at the estimated trajectory): 

 

( ) ( )1 1( ) − −

⎡ ⎤
∂ ⎢ ⎥= = ∂ ∂⎢ ⎥∂ ⎢ ⎥∂ ∂⎣ ⎦

0 I
f x

M Q M Q
x

q v

A  (24) 

 
which can be approximated as, 

 

( )
( )

1 T T

1 T

2

2

ω α α

α ζω

−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

= − + +

⎡ ⎤= − + +⎣ ⎦

21 22

2
21 q q q qq

22 q q q

0 I

M K Φ Φ Φ Φ v

M C Φ Φ Φ

A
A A

A

A

 (25) 

 
In this case, the size of the problem is . As the 

size of the problem increases, it affects particularly to the 
covariance matrix P (see (4)), with a number of entries 
proportional to the square of the size. 

2 dn

Now, according to (4), the correction provided by the 
EKF must be included into the observer equations, leading 
therefore to 

 
( )

( )2

− + − =

− + − =
1 s

s

q v y y 0

Mv Q M y y 0

K

K
 (26) 

 
where 1  and 2  are the upper and lower parts of the 
Kalman gain matrix K, and  are the outputs provided 
by the sensors. 

K K
sy

As for the previous formulation, the implicit single-
step trapezoidal rule has been selected as integrator, 

 

1 1

1 1

2 2

2 2

n n n n

n n n n

t t

t t

+ +

+ +

⎛ ⎞= − +⎜ ⎟Δ Δ⎝ ⎠
⎛ ⎞= − +⎜ ⎟Δ Δ⎝ ⎠

q q q q

v v v v
 (27) 

 
Now, (27) can be substituted into (26), thus leading to 

the nonlinear system of equations in the states, 
 

1
1

2 1

( )
      ( )

( )
n

n
n

+
+

+

=⎧
⇒ =⎨ =⎩

1g x 0
g x 0

g x 0
 (28) 

 
This system can be iteratively solved by the Newton-

Raphson iteration, the approximated tangent matrix being, 
 

( )

2

2 1 2 2
2

T

T
2

2

22

t

t

ω α

α ζω

⎡ ⎤− ⎡ ⎤∂ ⎢ ⎥= +Δ ⎢ ⎥⎢ ⎥∂ ⎣ ⎦⎣ ⎦
= +

= + + +
Δ

1 1 1

21 2

2
21 q q

2 q q q

I Ig
M Mx T T

T K Φ Φ

T C Φ Φ Φ M

KC KC
KC KC

 
(29) 

 
where 1  and 2C  are the upper and lower parts of the 
output Jacobian matrix C. 

C

 
 
6. EXAMPLE 

The four-bar mechanism with a spring-damper 
element shown in Fig. 1 is chosen as example. Two 
computational versions of the mechanism are created: the 
first one represents the real “prototype”, while the second 
one plays the role of the “model”. A sensor in the prototype 
provides as a measurement y=s, the distance between point 
A and point 2, i.e. the ends of the spring-damper element. 

 
Figure 1. FOUR-BAR MECHANISM WITH SPRING-DAMPER 

ELEMENT. 
 
 

The state variables in this example are the Cartesian 
coordinates of points 1 and 2, and the distance s: 

 
{ }T

1 1 2 2x y x y s=q  (30) 
 
The inertial matrix of the whole mechanism is 

computed by considering the contributions of the three 2D 
bars (Garcia de Jalon and Bayo (1994)) and the zero 
contribution of the spring-damper element (of negligible 
mass): 
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+⎡
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⎢

+⎢
⎢
⎢= +⎢
⎢
⎢ ⎥+
⎢
⎢
⎢⎣

M

0

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥⎦

 (31) 

 
Notice the fifth row and column of zeros, as there is 

no inertia associated to the spring-damper element. 
The generalized force vector is obtained considering 

the gravity as the only force that acts over each bar. So, for 
the three bars it results (Garcia de Jalon and Bayo (1994)): 

 

( )

1 2

32

0

0

2 2
0

2 2

B B

BB

m g m g

m gm g

k s s cs

⎧ ⎫
⎪ ⎪
⎪ ⎪− −
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
− −⎪ ⎪

⎪ ⎪
⎪ ⎪− − −⎩ ⎭

Q  (32) 

 
where k is the elastic constant, c the damping coefficient 
and 0s  the natural spring length. 

Finally, the constraints vector is: 
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2 2
1 1

2 2 2
2 1 2 1 2

2 2 2
2 2

2 2 2
2 2

A A B

B

B B B

A A

x x y y L

x x y y L

x x y y L

x x y y s

⎧ − + − −
⎪
⎪ − + − −⎪= ⎨ ⎬

− + − −⎪
⎪

− + − −⎪⎩

Φ

1

3

⎫
⎪
⎪⎪

⎪
⎪
⎪⎭

 (33) 

 
The numerical values of the parameters are: masses 

1Bm =2 kg, 2Bm =25 kg, 3Bm =2 kg; bar lengths 1BL =0.9 
m, 2BL =1 m, 3BL =1.05 m; natural spring length 0s =1.4 
m; fixed points Cartesian coordinates A=(0,0), B=(0,−1); 
spring coefficient k=10000 N/m, and damping coefficient 
c=500 Ns/m. 

Regarding the tuning of the EKF, the main parameters 
are the matrices Θ, Ξ. In principle, they have to represent 
the covariances of the zero-mean noises δ, ε in (1) or (3). 
However, in practice, this information is not always clearly 
known, so in fact the matrices Θ, Ξ are used as tuning 
parameters adjusted by trial-and-error experimental work. 

It should be stressed that there is no perfect solution to 

the filtering problem, but rather there exist trade-offs 
between competing objectives. Typically, the solutions that 
provide fast convergence (of the estimations to the true 
values) are affected by higher levels of noise. If low levels 
of noise are desired, then the initial errors converge more 
slowly to zero. To facilitate the tuning, typically the 
matrices are postulated to be diagonal, Θ=diag( iθ ), 
Ξ=diag( iξ ). 

After some trial-and-error test work under the 
simulation conditions to be detailed later, the EKF tuning is 
set to Θ=diag(10), Ξ=diag(0.01). The initial covariance 
value has been chosen to be P(0)=diag(diag( i ),diag( i )), 
to represent different initial uncertainties in positions and 
velocities. As it is supposed that model and prototype start 
from rest conditions, the initial uncertainty is zero in 
velocities and, let us say, 0.1 in positions, so that   
P(0)=diag(diag(0.1),diag(0)). 

p v

Regarding the simulation conditions, to show the 
recovering from different initial conditions, the real 
prototype starts at s(0)=1.80 m, while the virtual model 
(observer) starts at s(0)=1.85 m. In the same way, to 
evaluate the effect of noise and error in measurements, it is 
supposed that y=s+ε, with measurement noise ε within the 
interval [−0.02,+0.02] m (2 cm), uniformly distributed. 
Finally, in order to check what happens with uncertain 
exogenous forces, the prototype runs under normal gravity, 
g=9.81 m/s2, but the observer runs under g=8.81 m/s2. 

In these conditions, the history of the states s, 1x  and 
1x  (real vs. estimated through both matrix-R and penalty 

method) is plotted in Fig. 2, Fig. 3 and Fig. 4. 
Furthermore, to address a more difficult situation, Fig. 

5, Fig. 6 and Fig. 7 show the evolution of the same states 
under a harder noise level [−0.1,+0.1] m, with a null 
damping coefficient for the prototype and a value of c=100 
Ns/m for the model. 

All the simulation plots show a reasonable good 
performance level, with satisfactory convergence speed, 
robustness against parameter uncertainty, and noise 
filtering and attenuation. 

Regarding the two multibody methods being 
compared, the plots show almost identical behavior for 
both of them (only, greater instability is perceived for the 
penalty method at some instants of Fig. 7). However, the 
following remarks must be done. 

It has been said that, unlike the matrix-R method, the 
penalty method does not require the solution of the position 
and velocity problems at each function evaluation, which 
represents an advantage. Yet, if such problems are not 
solved, the observer based on the penalty method behaves 
worse than the one based on the matrix-R method. The 
reason is that, while the measured coordinate s in perfectly 
followed by the observer, the remaining coordinates 1x , 

, 1y 2x ,  are not consistent with the distance s, since 2y
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Figure 2. HISTORY OF STATE s. 

 

 
Figure 3. HISTORY OF STATE 1x . 

 

 
Figure 4. HISTORY OF STATE 1x . 

 

 
Figure 5. HISTORY OF STATE s (UNDAMPED PROTOTYPE). 

 

 
Figure 6. HISTORY OF STATE 1x  (UNDAMPED PROTOTYPE). 

 

 
Figure 7. HISTORY OF STATE 1x  (UNDAMPED PROTOTYPE). 
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the penalty terms are not capable of ensuring the constraint 
satisfaction under the large forces introduced by the EKF. 
And this happens no matter which the value of the penalty 
factor is. 

The explanation to this phenomenon can be found by 
looking at the second equation in (26). It can be seen that 
an increment of the penalty factor increases the penalty 
forces which oppose to constraint violation but, at the same 
time, increases the value of the correction terms coming 
from the EKF. Therefore, increasing the value of the 
penalty factor in order to ensure constraint satisfaction is 
worthless. Consequently, when using the penalty method, 
the position and velocity problems must be solved at each 
function evaluation, so that constraints are fulfilled, and 
good results are obtained, at the cost of losing this 
advantage with respect to the matrix-R method. 

The CPU-times required for both methods to run the 
two described simulations under Matlab environment are 
gathered in Table 1. The fixed time-step used for the 
numerical integration is, in all cases, Δt=0.01 s. 
 

Table 1. CPU-TIMES (s). 
 

Method Case 1 Case 2 

Matrix-R 0.11 0.13 

Penalty 0.18 0.21 
 

Therefore, it is clear that the matrix-R method is more 
efficient than the penalty method. Likely, this fact is due to 
the above-mentioned need of solving the position and 
velocity problems in the penalty method. 

 
 

7. CONCLUSIONS 
This work presents a study on the application of EKF 

observers to multibody systems. Although the numerical 
tests have been carried out, by the moment, on a simple 
four-bar example, the final objective is to implement the 
observers on complex multibody systems for advanced 
real-time applications. 

So, having in mind complex multibody systems, the 
approach has been based on the idea that the same 
techniques which are efficient for efficient simulation of 
such complex systems, will be efficient as well for 
implementing the observers. Two methods have been 
chosen: the matrix-R formulation and the penalty 
formulation. The detailed development of the EKF observer 
for these methods has been presented. 

The simulation tests show successful results in both 
cases. After a not very involved trial-and-error tuning, the 
EKF final observers are robust with respect to sensor noise, 

initial estimation errors and even different input forces. The 
matrix-R method has the advantages of leading to a lower 
problem size and perfectly matching to the EKF formalism. 
The penalty method was expected to have the advantage of 
not requiring the solution of the position and velocity 
problems at each function evaluation. However, it was 
found that constraint satisfaction was not achieved by the 
penalty terms and, therefore, the mentioned advantage was 
lost. Consequently, the matrix-R method showed to be 
more efficient. 
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