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Abstract. This paper deals with continuous contact force models applied to the human-in-the-
loop simulation of multibody systems, but the results are valid in general to all that applications
with contacts when real-time is required. The contact model proposed in this work, is suited to
collisions between massive solids for which the assumption of quasi static contact holds and it
can be supposed that the deformation is limited to a small region of the colliding bodies while
the remainder of them are assumed to be rigid. The model consist of two components: nor-
mal compliance with nonlinear viscoelastic model based on Hertz law, and tangential friction
force based on Coulomb’s law including sticktion. Furthermore, the model takes into account
the geometry and the material of the colliding bodies. The tangential model presents original
contributions while the normal model is completely taken from previous works. For this work,
the formulation of the equations of motion is an augmented Lagrangian with projections of ve-
locities and accelerations onto their constraints manifolds and implicit integrator. The whole
solution proposed is tested in two applications: the first one is the simulation of a spring-mass
system with Coulomb’s friction, which is an academic problem with known analytical solu-
tion; the second one is a simulator of a hydraulic excavator Liebherr A924, which is a realistic
application that gives an idea of the capabilities of the method proposed.
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1 INTRODUCTION

The treatment of contact forces is a key issue in many applications involving multibody sys-
tems with eventual impacts or permanent contacts between bodies. If the application to address
includes, moreover, human-in-the-loop, this treatment has to be even more careful because the
real-time requirements impose firm constraints on the integration time step and, additionally,
on the number of iterations if implicit integration is used. In addition to the efficiency con-
siderations, the simulation has to be stable and robust enough along all the range of possible
operations of the system, as well as reproduce the behavior of the real system with an acceptable
precision.

The methods to solve the impact problem in multibody systems can be divided in two fam-
ilies (Ref. [1] Ref. [2], Ref. [3]): the discontinuous and the continuous approaches. The dis-
continuous approaches assume that the impact occurs instantaneously and changes the momenta
balances of the system instantaneously, for this reason they are not valid to deal with contacts of
finite duration or permanent contacts. On the other hand the continuous approaches are based
on regularized force models that relate the force and deformation of the bodies in collision,
Ref. [4], or based on unilateral constraints techniques that avoid the penetration between bod-
ies, Ref. [5]. In applications in which it is expected to occur permanent contacts or at leasts
contacts of a significant duration, continuous methods are needed and there are a number of
viscoelastic and viscoplastic models that fit this category (Ref. [6], Ref. [7] ).

Between the large number of formulations of the equations of motion existent (see e.g.
Ref. [8]), the penalty and augmented Lagrangian formulations Ref. [9], Ref. [10] are char-
acterized by transforming the constraints into forces proportional to the constraints violation.
This technique, used along this work, is similar and compatible to that of the continuous force
models for normal contact, which relate the force and deformation of the bodies in contact to
avoid the penetration between them.

It is worth to mention that, up to these days, there is not a universally accepted model to cal-
culate the friction force between bodies under dry conditions. The Coulomb’s friction law is the
most simple model but has the problem that the gradient of the force at null tangential velocity
is infinite. This fact is unacceptable from the numerical point of view, since the motion has to
be solved in discrete time steps and it is not possible to deal with an infinite gradient at null
velocity in these conditions (see e.g. Ref. [11]). The solution is to avoid the discontinuity of the
Coulomb’s model but maintaining that physical characteristics of the friction phenomenon im-
portant for the application to deal with (Ref. [16], Ref. [3]). For this paper a tangential friction
model was developed to deal with the applications tackled, the model includes Coulomb’s fric-
tion and sticktion at low velocities. Including the sticktion is indispensable for applications like
the excavator simulator presented here, since the excavator has to work on its legs and blade,
for example, on slopes.

Related to the contact models, there are two difficult problems to address in real-time appli-
cations, especially when using constant integration time step, which is the case here: the first
one is the fact that the contact takes place in a limited, and sometimes very reduced, number of
time steps, so that the algorithm has to be robust enough to overcome hard impacts; the second
one was mentioned before and is related to the stability of the friction forces at low velocities
and the transition between sliping and sticking.

This work explains the treatment chosen by the authors to address the contact between bodies
in an excavator simulator for training personnel, which is an application that suffer from all the
restrictions mentioned in the last paragraphs. The solution fulfills all the requirements proposed
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in terms of efficiency, robustness, and precision in the physical behavior.

2 DESCRIPTION OF THE MULTIBODY FORMALISM

The multibody formulation chosen for this work, is an index-3 augmented Lagrangian with
projections of velocities and accelerations onto the constraints manifolds. The modelization of
the systems is done in natural coordinates Ref. [8]. The formalism was extensively described in
Ref. [12], for this reason only a brief summary is given here.

The equations of motion are given by the following expressions,

Mq̈ + ΦT
qλ∗ + ΦT

qαΦ = Q (q, q̇) (1)

λ∗
i+1 = λ∗

i + αΦi+1, i = 0, 1, 2, ... (2)

where M and Q are the mass matrix and generalized forces vector, q is the vector of natural
coordinates of the system, Φ and Φq are the constraints vector and its Jacobian matrix respec-
tively and λ is the Lagrange multipliers vector. The scalar α is the penalty factor while the
index i stands for the iteration number.

To integrate the equations of motion, Eq. (1), the single-step trapezoidal rule is going to be
used. Since the mentioned integrator is implicit, establishing the dynamic equilibrium at time
step t + h (being t the simulation time and h the time step) leads to a nonlinear system of
equations in the coordinates q for the time step. In order to obtain the solution of this nonlinear
system, the Newton Raphson method may be applied,

[
∂f (q)

∂q

]i

t+h

Δqi+1
t+h = − [f (q)]it+h (3)

qi+1
t+h = qi

t+h + Δqi+1
t+h (4)

where f (q) and

[
∂f (q)

∂q

]
stand for the residual and tangent matrix of the nonlinear problem

and have the following expressions.

f (q) =
h2

4

(
Mq̈ + ΦT

qλ∗ + ΦT
qαΦ− Q

)
(5)

[
∂f (q)

∂q

]
∼= M +

h

2
C +

h2

4

(
ΦT

qαΦq + K
)

(6)

In Eq. (6) the matrices K and C collect the contributions of the generalized forces vector deriva-
tives to the tangent matrix, and can be thought as stiffness and damping matrices of the system:

K = −∂Q

∂q
(7)

C = −∂Q

∂q̇
(8)

Once the convergence is achieved by Eq. (3) and Eq. (4), the velocities and accelerations
obtained from the Newton-Raphson iteration, which are called here q̇∗

t+h and q̈∗
t+h, are projected
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onto the constraints manifolds to obtain their cleaned counterparts, q̇t+h and q̈t+h, by means of
the following expressions,

[
∂f (q)

∂q

]
q̇ =

(
M +

h

2
C +

h2

4
K

)
q̇∗ − h2

4
ΦT

qαΦt (9)

[
∂f (q)

∂q

]
q̈ =

(
M +

h

2
C +

h2

4
K

)
q̈∗ − h2

4
ΦT

qα
(
Φ̇qq̇ + Φ̇t

)
(10)

being Φt the partial derivatives of the constraints vector with respect to time.

3 DESCRIPTION OF THE CONTACT MODEL

The contact forces approach proposed for this work comprises two different models: the
normal force model and the tangential force model. The two models are presented separately
in subsequent sections. The tangential model presents original contributions while the normal
model is completely taken from previous works.

As will be described later, in the applications tackled in this paper the multibody models
studied are divided in primitive objects (in the majority of the cases spheres) for contact de-
tection purposes, and interact with CAD environments composed of triangular meshes. Under
these circumstances, all the contacts can be approximated as contacts between primitives and
plane surface bodies. For simplicity the case of spheres against plane surface bodies is the only
case that will be explained here.

3.1 Normal force model

In order to choose the normal force model, some tests were done with several continuous
viscoelastic models, like the Hunt-Crossley model, Ref. [4], the Lankarani-Nikravesh model,
Ref. [13], and the Kelvin-Voight model, Ref. [14]. The results shown by the Hunt-Crossley
and Lankarani-Nikravesh models where similar and very satisfactory while the Kelvin-Voight
model suffered from a lack of dissipation in hard impacts that must be solved in few time steps.
Finally, the normal force model chosen for this work was the Hunt-Crossley model Ref. [4].
The model is suited to collisions between massive solids for which the assumption of quasi
static contact holds and it can be supposed that the deformation is limited to a small region of
the colliding bodies while the remainder of them are assumed to be rigid. The expression for
the normal force after some calculations has the following form,

Frad = krad δn

(
1 +

3 (1 − ε)

2

δ̇

δ̇0

)
nfl (11)

where krad is the equivalent stiffness of the contact and depends on the shape and material
properties of the colliding bodies, δ is the indentation, δ̇0 is the relative normal velocity between
the colliding bodies when the contact is detected, ε is the coefficient of restitution, and ·nfl is
the direction of the force (see Fig.( 1)).

The value of krad can be calculated for general colliding paraboloids but, as was mentioned
before, for the applications presented here all the contacts can be approximated as contacts
between spheres and plane surface bodies in which case the expression for the stiffness can be
expressed by (see for example [15]),

krad =
4

3 (σsph + σpln)

√
Rsph (12)
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Figure 1: Normal contact between sphere and plane: isometric and front views.

where Rsph is the radius of the sphere in contact with the plane, and the material parameters of
the sphere and plane, σsph and σpln are given by,

σsph =
1 − ν2

sph

Esph
; σpln =

1 − ν2
pln

Epln
(13)

and ν and E stand for the Poisson’s ratio and the Young’s modulus of each one of the two
materials, represented by the sphere and plane.

3.2 Tangential force model

The tangential force model developed for the dry friction is based on Coulomb’s law includ-
ing sticktion. For the smooth transition between sticking and slipping the total force is divided
in two components coupled by a smooth function, following the ideas proposed in Ref. [16].
The general form of this force is the following,

Froz = κ Fstick + (1 − κ) Fslide (14)

where Fstick and Fslide are the components of the sticktion and slipping forces, κ is a smooth
function of the tangential velocity, vt, which is defined in terms of the central point of the
contact region, pcontact, and the normal vector at the contact,nfl , as follows.

vt = ṗcontact −
(
nT

fl · ṗcontact

)
nfl (15)

The mentioned function, κ, has to match the following conditions,

κ =

{
0; |vt| >> vstick

1; |vt| = 0

}
(16)

where vstick is a parameter of the model accounting for the velocity of the stick-slip transition.
A good choice for the transition function κ was given in Ref. [16] and has the following form.

κ = e−(vT
t vt)/v2

stick (17)
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Figure 2: Tangential contact between sphere and plane.

Eq. (14) showed that the total force is composed of two contributions: the sliding friction
force at high velocities and the sticktion force of the bristles at low velocities. These components
have the expressions given in Eq. (18) and Eq. (19) (see Fig.( 2)).

Fslide =

⎧⎨
⎩

0; |vt| = 0

−μ |Frad| vt

|vt| ; |vt| > 0

⎫⎬
⎭ (18)

Fstick =

⎧⎨
⎩

0; s = 0
fm

stick

s

(
I3 − nfl n

T
fl

)
(pcontact − pstick); s > 0

⎫⎬
⎭ (19)

being μ the friction coefficient, s = |pcontact − pstick| the deformation of the bristles, with pstick

the central point of the bristles which was initially the central point of the contact region in the
instant in which the contact began; I3 is the identity matrix of size 3 × 3; f m

stick is the function
that represents the behavior of the bristles,

fm
stick = −kstick s − cstick ṡ (20)

being kstick and cstick the stiffness and damping coefficients of the sticktion model. Nevertheless
there is a limiting value for the sticktion force.

|Fstick| ≤ μ ξstrib|Frad| (21)

In Eq. (21) ξstrib ( ξstrib ≥ 1) is a coefficient that accounts for the Stribeck effect (decreasing
friction with increasing velocity). In case this limit is exceeded, and Eq. (21) is not fulfilled,
there are two consequences: first, the Eq. (20) is not valid anymore and a different expression
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holds for the behavior of the bristles Eq. (22); and second, the central point of the bristles has
to be updated Eq. (23).

fm
stick =

−μ ξstrib|Frad| s∣∣∣(I3 − nfl nT
fl

)
(pcontact − pstick)

∣∣∣ (22)

pstick = pcontact −
(

ηstick μ |Frad|
kstick

)
vt

|vt| (23)

The coefficient ηstick controls the strain of the bristles when the maximum force is reached.
Phisically the more reasonable value is ηstick = 1, but small variations with ηstick < 1 can
improve the numerical behavior of the model.

4 Contacts detection technique and computational aspects

The methods developed in this work are designed for applications in which contact plays an
important role and moreover the multibody model or models has to interact with complex CAD
environments. This is the case of the simulators of certain kind of machinery and vehicles.

To deal with the kind of applications mentioned, the technique used here is to approximate
the environments and the multibody models by primitive objects: the complex CAD environ-
ments by meshes of triangular faces and the geometry of the multibody systems by spheres of
different sizes (in the majority of the cases) and in some cases by boxes (when the geometry
cannot be approximated by spheres in a satisfactory way). Each face of the CAD environments
has its own normal vector and its own properties of stiffness and friction and each sphere is
characterized also depending on the material properties and curvature of the multibody model.

The first step previous to the evaluation of the forces is to detect which faces of the envi-
ronment collide with geometry of the multibody model. In Fig.( 3) the different possibilities
considered for contacts between primitive spheres and triangular faces are represented. The
case of primitive boxes will not be explained here:

• The primitives are in contact when the distance, s, of the center of the sphere to the plane
of the face is smaller than the radius of the sphere, Rsph, and the projection of its center
on the plane lies inside the triangle (see Fig.( 3.a)). In this case there is a contact between
sphere an plane and the normal vector of the contact nfl is the normal vector of the plane
of the face.

• When the previous conditions are not fulfilled, the primitives can be also in contact when
the distance, s, of the center of the sphere to one of the edges of the face is smaller than
the radius of the sphere, Rsph, and the projection of the center on the edge lies inside
the edge (see Fig.( 3.b)). In this case there is a contact between sphere an edge and the
normal vector of the contact nfl has the direction from the contact point to the center of
the sphere.

• If no one of the previous situations happen, it is considered that the primitives are not in
contact (see Fig.( 3.c) and Fig.( 3.d)). It is important to notice that the collisions between
sphere and vertex are neglected here. This is an acceptable approximation, but can lead
to problems in environments with a lot of sharp points and non-convex geometry.

At each time step, the contact conditions have to be detected in a fast way. This involves to
check all the spheres against all the faces and their edges. These are a lot of calculations per time
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Figure 3: Colision detection between sphere and triangular face.

step when the environments are realistic. In order to speed up this process the algorithm uses
an octree based hierarchical decomposition of the entire scene mesh Ref. [17]. The bounds of
the polygon soup are calculated through an Axis Aligned Bounding Box (AABB) to generate
a tree-based hierarchical structure that is used to quickly reject the polygons not involved in
potential collisions, in order to reduce the number of polygons tested against contact with the
primitive objects that represent the models geometry. The depth of the tree has to be empirically
optimized for speed.

In addition, also in order to save computational time, all the calculations necessary for com-
puting the detections are reduced to the minimum. In this sense many calculations are pre-
computed like: all the equations of the planes of the meshes, certain constant expressions used
to decide if a point belonging to a plane is as well contained in the triangle of the face, the
equations of the semi-infinite straight lines of the edges, and so on.

All the mentioned techniques are not enough for real-time purposes. As was described in
section 2, an implicit integrator is used with the aim of improving the stability of the integration
and consequently the algorithm is iterative, what means that if all the calculations related to the
contact detection were carried out in each iteration, the cost of the detection would rise in an
uncontrollable manner as the number of iterations grow. The consequences of this rise could
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be disastrous, because when the integration is more difficult the number of iterations grows and
consequently both the computational cost of the dynamics and contact detection would grow
as well. This is completely unacceptable. To avoid the testing of the whole tree of faces in
each iteration, the faces susceptible of collision are selected after the prediction stage of the
integrator and kept during the whole time step, this means once per time step instead once per
iteration, what helps to maintain the computational cost per time step more constant. Depending
on the number of primitives present in the multibody model, the parallelization of the contact
detection must be considered also.

5 NUMERICAL EXAMPLES

The formulation with the contact model proposed is tested in two different applications:
the first one is the simulation of a spring-mass system with Coulomb’s friction, which is an
academic problem with known analytical solution; the second application is the simulation of
the whole model of a hydraulic excavator Liebherr A924, implemented as part of an excavator
simulator, which is a realistic example that gives an idea of the capabilities of the method and
the behavior of the simulations.

5.1 Mass-spring system with Coulomb’s friction

The first system to be simulated is the mass-spring system with Coulomb’s friction shown
in Fig.( 4), which is a very simple example with known analytical solution but at the same
time interesting, to test the tangential contact model proposed, and to compare it with known
theoretical results.

m=1 kg

k=variable

l0=1.5 m

=0.02

Figure 4: Mass-spring system with Coulomb’s friction.

The simulation total time is 13 seconds and the time step h = 0.01 seconds. The system
undergoes the influence of the gravity forces g = 9.81m/s2. The numerical values of the
parameters are: the mass m = 1 kg, the Coulomb’s friction coefficient μ = 0.02 the natural

spring lenght l0 = 1.5 m, the stiffness coefficient of the spring is k =

{
1 N/m; t < 10 s
10 N/m; t ≥ 10 s

}
,

being t the integration time. The change on the spring stiffness is motivated to force the stick-
slip transition when the simulation time reaches t = 10 s, just before this instant the mass was
stuck to the plane and the change in the spring stiffness forces the mass to move.

The rest of the parameters for the tangential contact model described in section 3.2 have the
following values: vstick = Nμgh, kstick = m/(Nh)2, cstick = 2

√
kstickm, ηstick = 1. The

parameter N allows to estimate the rest of parameters of the model. Intends to be the number of
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time steps to stop the mass once the sticktion is acting, and is set to N = 5 for this application.
Excessively low values lead to numerical problems.
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Figure 5: Response of the system (spring distance and velocity): theoretical vs. numerical.

The theoretical responses of the system vs. the numerical responses are shown in Fig.( 5),
the magnitudes represented are the spring distance and velocity. The coincidence between the
theoretical and numerical responses is quite good, and the slip-stick and stick-slip transitions
are also satisfactory.

5.2 Liebherr A 924 excavator

The modeled machine is a Liebherr A924 Litronic, a medium-size wheeled excavator. It has
been modeled with 14 rigid bodies and 13 revolute joints, shown in Fig.( 6).Elements crucial for
stability like the front stabilizer blade and the left and right lateral outriggers (rear retractable
legs) have been included in the model. Hydraulic cylinders have been modeled as kinematic
constraints, since the dynamics of the hydraulic circuit has not been considered in this version
of the simulator.

Kinematics of the multibody system has been modeled with natural coordinates, Ref. [8]),
plus some distance and angular coordinates. The resulting excavator model has 154 coordinates
(including 6 distances and 7 angles) and 154 constraints (10 of them are redundant). All the
technical parameters of the real machine were taken from information provided by the manu-
facturer, Ref. [19]). The time step chosen for the simulator is 5 miliseconds and the number
of iterations of the implicit integrator is limited to 11 to guarantee the real-time performance,

Figure 6: Topology diagram of the excavator and virtual excavator in its environment.
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Figure 7: Using the arm for descending a steep slope and terrain excavation.

Figure 8: Interacting with movable objects: breaking down fences and digging.

although this limit is rarely reached.
The excavator model has 17 degrees of freedom (DOF), shown in Table 1: 7 DOF are con-

trolled by the operator, while the remaining 10 DOF are free. At this moment, the actuated
DOF are kinematically guided because the dynamics of the hydraulic actuator circuit has not
been modeled yet; therefore, the operator controls the position of actuated DOF without any
delay or inertial effects. However, a simplified dynamics has been implemented and the values
of the Lagrange multipliers are verified to limit the force available in the hydraulic actuators
according to the torques and lift capacities given by the manufacturer. Also the velocities and
accelerations of these kinematically guided DOFs have been adjusted to match the technical
specifications of the real machine. The motion of the non-actuated DOF is determined by the
forces applied to the model:

1. Weight of the machine parts and the bucket load.

2. Tire contact forces, which consist of linear spring and damper elements for the normal
forces, and the magic formula tire model for the tangential forces Ref. [18].

3. Tire torques applied with the accelerator and brake pedals.

4. Contact forces originated from the collision of the excavator with the terrain or the sur-
rounding objects; the contact model was described in section 3.

The excavator is placed in a working environment (in Fig.( 6) standing on its legs and blade),
where the operator can perform different training exercises: maneuvering, digging, material
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Figure 9: Excavator rollover.

Motion No.
Actuated degrees of freedom

Boom, stick and bucket hydraulic cylinders 3
Uppercarriage rotation 1
Steering 1
Stabilizer blade 1
Outriggers 1
TOTAL 7

Non-actuated degrees of freedom
Undercarriage free motion 6
Wheel rotation 4
TOTAL 10

Table 1: Degrees of freedom in the excavator model.

handling, etc. The excavator interacts with the environment in two ways (see Fig.( 7)): a)
collisions with the scene objects and the terrain, which generate contact forces; and b) terrain
excavation and loading with the bucket.

Some scene objects are fixed (e.g. buildings, terrain) while others are movable (e.g. fences)
as can be seen in Fig.( 8). In order to compute the dynamics of movable objects, they are
introduced in/removed from the simulation only when the excavator approaches to/moves away
from them; this technique makes possible to simulate in real-time working environments with a
large number of movable objects.

The selected contact model delivers very realistic behavior and is able to simulate common
events in the daily work of real excavators: slipping on slope terrains, stabilizing the machine
with the blade and the outriggers, Fig.( 6), using the arm for support or impulsion, Fig.( 7),
moving objects with the bucket or blade, Fig.( 8), etc. or even other dangerous events not so
common in the daily work, like rolling the excavator over Fig.( 9), etc.

6 CONCLUSIONS

• An integral solution to address contacts between solids in human-in-the-loop applications
was described.

• The algorithm presented to integrate the equations of motion uses constant time-step and
implicit integration, avoiding difficult and cumbersome detections of the precise instant
of contact, modifications of the time step and re-starts of integration process.
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• The previous strategy of constant time step is very demanding for the integration algo-
rithm since the algorithm has to overcome all the impacts and specially difficult situations
present in the simulation without modifying the time step. The strategy has many advan-
tages because of its simplicity but the main drawback is that the precission of the solution
is not constant along the simulation.

• The proposed contact algorithm was tested in an academic example, showing that it ob-
serves the physical laws of the phenomenon and the performance of the algorithm is
acceptable.

• The complete solution to address contacts was implemented in a real-time multibody
model of a hydraulic excavator which is part of an excavator simulator, showing a won-
derful behavior in the most common operation events of the daily work.

• The contact detection technique and computational aspects were taken into account along
this work, which demonstrated to be crucial to achieve real-time performance.
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