
 1 Copyright © 2009 by ASME

Proceedings of the ASME 2009 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2009
August 30 - September 2, 2009, San Diego, California, USA

 DETC2009-86274

PARALLEL LINEAR EQUATION SOLVERS AND OPENMP IN THE CONTEXT OF MULTIBODY
SYSTEM DYNAMICS

Francisco González* Alberto Luaces Daniel Dopico Manuel González

Escuela Politécnica Superior, Universidad de A Coruña
Mendizábal s/n, Ferrol, A Coruña, Spain

* PhD student and corresponding author, Phone: (+34) 981337400 ext. 3870, Fax: (+34) 981337410, Email: fgonzalez@udc.es

ABSTRACT
Computational efficiency of numerical simulations is a key

issue in multibody system (MBS) dynamics, and parallel
computing is one of the most promising approaches to increase
the computational efficiency of MBS dynamic simulations.

The present work evaluates two non-intrusive
parallelization techniques for multibody system dynamics:
parallel sparse linear equation solvers and OpenMP. Both
techniques can be applied to existing simulation software with
minimal changes in the code structure; this is a major
advantage over MPI (Message Passing Interface), the de facto
standard parallelization method in multibody dynamics. Both
techniques have been applied to parallelize a starting sequential
implementation of a global index-3 augmented Lagrangian
formulation combined with the trapezoidal rule as numerical
integrator, in order to solve the forward dynamics of a variable
number of loops four-bar mechanism. This starting
implementation represented a highly optimized code, where the
overhead of parallelization would represent a considerable part
of the total amount of elapsed time in calculations.

Several multi-threaded solvers have been added to the
original software. In addition, parallelizable regions of the code
have been detected and multi-threaded via OpenMP directives.
Numerical experiments have been performed to measure the
efficiency of the parallelized code as a function of problem size
and matrix filling ratio. Results show that the best parallel
solver (Pardiso) performs better than the best sequential solver
(CHOLMOD) for multibody problems of large and medium
sizes leading to matrix fillings above 10 non-zeros per variable.
OpenMP also proved to be advantageous even for problems of
small sizes, in despite of the small percentage of parallelizable
workload with respect to the total burden of the execution of
the code. Both techniques delivered speedups above 70% of the
maximum theoretical values for a wide range of multibody
problems.

1 INTRODUCTION
Computational efficiency of numerical simulations is a key

issue in multibody system (MBS) dynamics. When MBS
dynamics is used in Computer Aided Design and Engineering,
faster simulations allow the design engineer to perform what-if-
analyses and optimizations in shorter times, increasing
productivity and interaction with the model. Moreover, some
applications like hardware-in-the-loop settings or human-in-
the-loop devices cannot be developed unless MBS forward
dynamic simulations are performed in real-time. Hence,
computational efficiency is a very active area of research in
multibody systems dynamics.

Parallel computing is one of the approaches to increase the
computational efficiency of MBS dynamic simulations. The
first parallel MBS algorithm was proposed by Kasahara in
1987 [1]; since then, a variety of formulations and simulation
algorithms have been developed to exploit parallel computing
architectures in MBS dynamics ([2-8], among others). Some of
these algorithms apply parallelization directly at the level of
equations of motion, which are formulated in a form that
facilitates the concurrent evaluation of their different terms, see
e.g. Bae [9], Hwang [10] and Avello [11]; most of these
algorithms are based on recursive or semi-recursive
formulations. Other algorithms apply substructuring techniques
to partition the multibody system in disjoint subdomains, which
are solved concurrently taking into account the interconnection
constrains, see e.g. Mukherjee [12] and Quaranta [13]. With
regard to the implementation, the Message Passing Interface
(MPI) [14] has become the de facto standard for the
parallelization of multibody dynamic simulation codes
[8,13,15]. MPI is a message-passing application programmer
interface that provides functionality to enable communication
and synchronization between a set of processes which run
concurrently. Due to its language independence, high
performance, scalability and good portability through

Proceedings of the ASME 2009 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2009
August 30 - September 2, 2009, San Diego, California, USA

DETC2009-86274

 2 Copyright © 2009 by ASME

completely different parallel architectures (from shared-
memory processors to computer clusters), it has been broadly
accepted in the field of parallel MBS dynamics.

The aforementioned parallel methods for MBS dynamics
could be described as intrusive parallelization, since they
introduce major modifications both in formulations and
implementations. Formulations are specifically designed to
obtain highly parallelizable numerical computations, and most
importantly, parallel MPI-based implementations enforce a
particular MPI-oriented code design: the programmer must
explicitly divide tasks in processes and insert message-passing
operations for data transfer and synchronization. As a result,
the structure of a MPI-based parallel code is usually quite
different from its sequential counterpart. These parallelization
methods have proved to attain very good results in terms of
efficiency and scalability in the context of MBS dynamics, as
demonstrated e.g. by Anderson [15] and Quaranta [13].
However, their intrusive character makes them quite difficult to
apply to existing sequential MBS dynamic simulation codes.
Many of these sequential packages, developed by academia,
still have a great value as research tools and they are
successfully used in ongoing industrial applications. Due to
their internal complexity and design dependencies with third-
party software, parallelization of these MBS packages by
intrusive methods like MPI would be very time-consuming and
error-prone. For that reason, most of them remain as sequential
codes which cannot take advantage of today’s almost
ubiquitous availability of parallel computing architectures,
present even in low-cost laptop computers. This limitation will
be accentuated in the future, since trends indicate that
performance of single processors is close to reach its limit and
that multi-core processors are the preferred technology to
increase computing power in the next decade [16].

The goal of this work is to investigate alternative non-
intrusive parallelization methods for MBS dynamics, which do
not require major modifications in existing formulations and
implementations. Although their scalability may be inferior
when compared to intrusive methods, such non-intrusive
methods could be easily applied to parallelize the
abovementioned legacy sequential MBS simulation packages,
and they may also reduce the effort required to develop some
kinds of new parallel formulations and implementations. This
work investigates two non-intrusive parallelization methods for
MBS dynamics: (1) the use of parallel sparse linear equation
solvers, and (2) the OpenMP parallel programming model.

Linear equation solvers represent an opportunity for non-
intrusive parallelization since the solution of linear equation
systems is a key process in many MBS dynamic simulation
codes. This linear algebra operation is present in almost all
simulation methods except some types of fully recursive
formulations [17], although its weight in the total computation
time of the simulation depends on the type of problem and
formulation. Global formulations, which use a high number of
coordinates and constraint equations to define the position of
the multibody system, lead to comparatively big sparse linear

equation systems whose solution usually consumes around 30-
60% of the total CPU time in a dynamic simulation.
Topological formulations lead to smaller and more compact
linear equation systems, and therefore their weight is reduced
to less than 30% of the total CPU time; however, if flexible
bodies are considered, matrix sizes increase and the solution of
linear equation systems also takes a significant percentage of
the CPU time even for topological formulations. As a result, the
performance of the linear equation solver is critical to the
efficiency of most MBS dynamic simulations. The replacement
of a sequential solver by a parallel solver is considered a non-
intrusive parallelization technique because it only requires
minor changes in the code, provided both solvers use similar
sparse matrix storage formats. Many parallel linear equation
solvers have been developed in the last years, but they are not
considered to be appropriate for MBS dynamics due to the
small matrix sizes involved in this field of computational
mechanics. Comparative studies about their performance have
been published by Gupta [18,19], Tracy [20] and Davis [21];
however, the test problems used in these studies do not fit the
particular features of MBS dynamics, specially in regard to
matrix sizes (in MBS dynamics, typical sizes are at least two
orders of magnitude smaller than in Finite Element Analysis or
Computational Fluid Dynamics), and therefore their
conclusions cannot be extrapolated since parallel solvers will
perform very differently under these circumstances. The first
contribution of this work is the evaluation of the efficiency and
suitability of parallel sparse linear equation solvers in the
context of multibody system dynamics, a subject that has not
been investigated yet.

The second non-intrusive parallelization method explored
in this work is the OpenMP parallel programming model [22].
OpenMP is a standard application programming interface to
support multi-threaded parallel programming. It is scalable and
portable like MPI, but it has two important differences. First,
OpenMP is only targeted at shared-memory multiprocessor
architectures, while MPI supports both shared- and distributed-
memory architectures. However, this OpenMP limitation is not
a severe disadvantage in the field of MBS forward dynamics:
due to the characteristics of the problem, concurrent tasks
running a parallelized simulation must exchange data several
times per integration step (usually in the order of milliseconds),
causing a high communication overhead compared with other
applications. As a consequence, gains obtained from concurrent
computation can be easily outweighed by the high
communication overhead in distributed-memory architectures
like PC clusters [13]. Conversely, the low communication
overhead of shared-memory architectures, supported by
OpenMP, makes them more appropriate to run parallel MBS
simulations. Another advantage of shared-memory
architectures is the availability of low-cost commodity
hardware with 2 or 4 CPU cores, like Intel® Core™ 2 Quad
and AMD Phenom™ X4. The second core difference between
OpenMP and MPI concerns with the programming model:
OpenMP is based on a multi-threaded model simpler to use

 3 Copyright © 2009 by ASME

than the MPI’s multi-process model. This key difference
delivers important advantages when OpenMP is applied to
parallelize a sequential code [23]: (a) the initial design can be
maintained and only minor changes in the code are required,
(b) data transfer and task synchronization are handled
transparently by OpenMP, (c) parallelization can be applied
incrementally. These three advantages make OpenMP a non-
intrusive parallelization method when compared to MPI. On the
other hand, Krawezik [24] demonstrated that OpenMP cannot
achieve the same performance as MPI for some types of
numerical problems and code designs, hence its pros and cons
in a particular domain shall be evaluated before claiming it as a
better technique than MPI. Despite of its potential advantages,
studies about the efficiency of OpenMP in the context of MBS
dynamics have not been published yet, and this subject will be
the second contribution of this work.

The rest of the paper is organized as follows: Section 2
describes the numerical experiments used to evaluate the
efficiency and applicability of the two proposed non-intrusive
parallelization methods: test problem, dynamic formulation,
and parallelization procedures applied to a starting sequential
implementation. Section 3 presents and analyzes the results of
numerical experiments. Finally, Section 4 extracts conclusions
and suggests future work.

2 METHODS

In order to study the efficiency and applicability of the two
proposed non-intrusive parallelization methods, a test problem
will be solved with a given dynamic formulation. This
formulation is initially implemented in a sequential simulation
code, which will be parallelized by means of parallel linear
equation solvers and OpenMP.

This test setup represents a worst-case scenario for
parallelization in terms of problem, dynamic formulation and
implementation, as it will be explained in the following
subsections. With this approach, the obtained performance
results will represent a lower limit when the non-intrusive
parallelization methods investigated in this work are applied to
legacy MBS simulation codes.

2.1 Test problem:
The selected test problem is a 2D one degree-of-freedom

assembly of four-bar linkages with L loops, composed by thin
rods of 1 m length with a uniformly distributed mass of 1 kg,
moving under gravity effects. Initially, the system is in the
position shown in Figure 1 and the velocity of the x-coordinate
of point B0 is +1 m/s. The simulation time is 20 s. This
mechanism has been previously used as a benchmark problem
for multibody system dynamics by Anderson [25] and
González [26,27].

2.2 Dynamic formulation:
The L-four-bar mechanism has been modelled using planar

natural coordinates (global and dependent) [17], leading to
2L+2 variables (the x and y coordinates of the B points), and

2L+1 constraints, associated with the constant length condition
of the rods. The equations of motion of the whole multi-body
system are given by the well known index-3 augmented
Lagrangian formulation in the form:

* *
1 1 , 0, 1, 2, ...

T T

i i i i

α

α+ +

+ + =

= + =

*
q qMq Φ Φ Φ λ Q

λ λ Φ
 (1)

where M is the mass matrix (constant for the proposed test
problem), q are the accelerations, Φq the Jacobian matrix of
the constraint equations, α the penalty factor, Φ the constraints
vector, λ* the Lagrange multipliers and Q the vector of applied
and velocity dependent inertia forces. The Lagrange multipliers
for each time-step are obtained from an iteration process, where
the value of λ0

* is taken equal to the λ* obtained in the previous
time-step.

Figure 1: L-loop four-bar mechanism.

As integration scheme, the implicit single-step trapezoidal
rule has been adopted. The corresponding difference equations
in velocities and accelerations are:

1 1

1 12 2

2 2ˆ ˆ;

4 4 4ˆ ˆ;

n n n n n n

n n n n n n n

t t

t t t

+ +

+ +

⎛ ⎞= + = − +⎜ ⎟∆ ∆⎝ ⎠
⎛ ⎞= + = − + +⎜ ⎟∆ ∆ ∆⎝ ⎠

q q q q q q

q q q q q q q
 (2)

Dynamic equilibrium can be established at time-step n+1
by introducing the difference Eq. (2) into the equations of
motion (1), leading to a nonlinear algebraic system of equations
with the dependent positions as unknowns:

() ()
1

2 2 2

1 1 1 1
ˆ 0

4 4 4n

T
n n n n n

t t tα
++ + + +

∆ ∆ ∆
= + + − + =qf q Mq Φ Φ λ Q Mq (3)

Such system, whose size is the number of variables in the
model, is solved through the Newton-Raphson iteration

() ()
i

i

∂⎡ ⎤
∆ = − ⎡ ⎤⎢ ⎥ ⎣ ⎦∂⎣ ⎦

i+1

f q
q f q

q
 (4)

using the approximate tangent matrix (symmetric and positive-
definite)

() ()
2

2 4
Tt t α

∂⎡ ⎤ ∆ ∆
≅ + +⎢ ⎥∂⎣ ⎦

q q

f q
M C+ Φ Φ K

q
 (5)

where C and K represent the contribution of damping and
elastic forces of the system (which are zero for the test

B0

A0

B1

A1

B L - 1

A L - 1

BL

AL

Loop 1 Loop L

x

y
g = 9 . 81 N / kg

 4 Copyright © 2009 by ASME

problem). Once convergence is attained into the time-step, the
obtained positions qn+1 satisfy the equations of motion (1) and
the constraint conditions =Φ 0 , but the corresponding sets of
velocities *q and accelerations *q may not satisfy =Φ 0 and

=Φ 0 . To achieve this, cleaned velocities q and accelerations
q are obtained by means of mass-damping-stiffness orthogonal
projections, reusing the factorization of the tangent matrix:

()

() ()

2 2

2 2

2 4 4

2 4 4

T

T
t

t t t

t t t

α

α

∂⎡ ⎤ ⎡ ⎤∆ ∆ ∆
= + −⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦⎣ ⎦

∂⎡ ⎤ ⎡ ⎤∆ ∆ ∆
= + − +⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦⎣ ⎦

*
q q

*
q q

f q
q M C+ K q Φ Φ

q

f q
q M C+ K q Φ Φ q Φ

q

 (6)

All numerical experiments will be performed using a time-
step ∆t of 10-3 seconds and a penalty factor α of 108. This
global method, described in detail in Bayo [28], has proved to
be a very robust and efficient global formulation, see e.g.
Cuadrado [29,30], but it has been designed for sequential
computation and it is not as suitable for parallelization as
topological formulations. For that reason, it nearly represents a
worst-case scenario for parallelization with regard to dynamic
formulations.

The number of loops in the test mechanism can be adjusted
to generate problems of different sizes. In MBS dynamics,
global formulations generate several hundreds of variables
when applied to automotive or railway vehicles made up of
rigid bodies. Topological formulations lead to problems of
smaller size, but when body flexibility needs to be considered,
the number of variables increases even with this kind of
formulations. If flexible bodies are described by component
mode synthesis, as explained by Ambrosio [31] and Cuadrado
[29], multibody models of automobile or railway vehicles can
easily exceed 1000 variables. If non-linear elastic or plastic
behaviour is considered, the number of variables in the problem
is augmented by the degrees of freedom of the finite element
discretization of the flexible bodies, see e.g. García Orden [32]
or Sugiyama [33]; under these circumstances, multibody
models in industrial applications may reach 104 variables. This
number can be considered the upper-level limit in the field of
multibody dynamics, at least during the next decade. For that
reason, the numerical experiments will be performed using a
number of variables N that ranges from 100 to 8000 (generated
by a number of loops L from 49 to 3999).

2.3 Initial sequential implementation:
The dynamic formulation described above has been

implemented in an in-house developed C++ MBS simulation
software. This initial implementation has been heavily
optimized for sequential execution by using efficient BLAS
implementations [34] for dense linear algebra, symbolic pre-
processing of sparse matrix computations, fast access to sparse
storage formats and state-of-the-art sequential lineal equation
solvers, as described by González [27]. These optimizations
reduced CPU times by a factor of 3 compared with more
traditional implementations of the same dynamic formulation.

On the other side, such a highly optimized sequential code
makes it difficult to gain advantage from parallelization: since
computations are performed at higher FLOPS rates (floating
point operations per second) and in shorter times, the relative
weight of the communication overhead associated with
parallelization becomes higher; in addition, some optimization
techniques make fine-grained parallelization unable to be
applied to certain code sections, as it will be explained later.
Again, the described initial implementation represents a nearly
worst-case scenario for parallelization. Indeed, the
parallelization of this code by means of MPI would be very
cumbersome.

Table 1 summarizes the results of a performance analysis
of the initial sequential formulation for tests problems of 1000
and 8000 variables. Both cases show very similar profiling
results, since the use of symbolic pre-processing of sparse
computations through all the code leads to nearly O(N) tasks in
spite of using a dynamic formulation usually classified as
O(N3). This performance analysis will be used to guide the
parallelization described in the next subsections.

Table 1: Performance analysis of the initial sequential
implementation for problems of N variables.

Task Description Eq. % of elapsed time

 N=1000 N=8000

1 Predictor (2) 4.1 4.0
2 Evaluate dynamic terms (3,5) 9.3 9.8
3 Evaluate tangent matrix (5) 11.8 11.8
4 Evaluate residual vector (3) 7.6 7.6
5 Factorize tangent matrix (4) 36.8 36.7
6 Back-substitution (4) 5.9 5.8
7 Project velocities (6) 9.4 9.3
8 Project accelerations (6) 12.3 12.2
9 Other - 2.8 2.8

Total elapsed time (s) 10.0 102.4

2.4 Parallelization with multi-threaded solvers
Table 1 shows that around 54% of the CPU time is

consumed by the solution of linear equation systems: matrix
factorization (task 5, close to 37%) and back-substitutions (task
6 and part of tasks 7 and 8). This high contribution is caused by
the simplicity of the dynamic terms in the proposed test
problem (task 2); in problems with time-consuming force,
constraint and Jacobian evaluations, task 2 can achieve higher
percentages of runtime and reduce the contribution of linear
equation systems. Nevertheless, this operation is a significant
bottleneck in most MBS dynamic simulations and represents an
important opportunity for non-intrusive parallelization.

In a previous work [27], the authors measured the
efficiency of different dense and sparse sequential linear
equation solvers in the real-time simulation of MBS dynamics;
the number of variables N in that study ranged from 10 to 100.
Results demonstrated that current state-of-the-art sparse
implementations outperform dense implementations even for

 5 Copyright © 2009 by ASME

very small problems (e.g., 20 variables), contradicting a
widespread conviction in MBS dynamics. Three sequential
solvers were found to be the most efficient ones, as a function
of the type of multibody problem and dynamic formulation:
• CHOLMOD, a left-looking supernodal symmetric

positive-definite solver [35].
• KLU, an unsymmetric solver specially designed for circuit

simulation [36].
• WSMP (sequential version), a symmetric indefinite or

unsymmetric solver [37].
In this work, these three top-performing sequential solvers

will be compared against parallel solvers. Given the large
number of existing parallel sparse solvers, a selection process
has been applied to narrow the scope: iterative solvers have
been discarded, since they have a high communication
overhead during each iteration, so they work efficiently only
for very large problems out of the scope of MBS dynamics
[38]; the same argument applies to out-of-core solvers. From
the remaining parallel linear equation solvers, three of them
which have demonstrated good performance for matrix sizes
close to those found in MBS dynamics [18,19] have been
selected to evaluate their performance in this field:
• SuperLU (multi-threaded version), a nonsymmetric solver

[39].
• Pardiso, a symmetric or unsymmetric, positive definite or

indefinite solver [40].
• WSMP (multi-threaded version) [37].

The efficiency of a linear equation solver depends on three
factors: matrix size, sparsity pattern and matrix filling. In this
study, the effect of matrix size has been analyzed by solving the
test problem with a number of variables N ranging from 100 to
8000. The effect of the sparsity pattern has been greatly
diminished by reordering the tangent matrix: each of the six
benchmarked solvers supports different fill reducing reordering
strategies, usually computed by third-party numerical libraries
like METIS [41] or AMD [42] and its variants, among others;
all of them have been tested in the symbolic pre-processing
stage of the simulation code, to select the best one for each
simulation case. For that reason, the results obtained for the
proposed test problem will be still valid for other multibody
problems leading to different sparsity patterns.

With regard to matrix filling, the described formulation
applied to the test problem of L loops leads to a tangent matrix
in Eq. (5) of size N = 2L+2 with 12L+4 structural non-zeros. A
meaningful matrix filling indicator can be computed as the ratio
between the number of non-zeros (NNZ) and N. In this case
NNZ/N ≈ 6, a typical value for global formulations applied to
problems involving rigid bodies. Nevertheless, other dynamic
formulations and multibody problems may lead to higher filling
ratios, as depicted in Table 2.

Table 2: Typical matrix filling ratios in multibody
dynamics (N = number of variables, NNZ = number of

non-zeros).

Type of problem and dynamic formulation NNZ/N

Rigid bodies - Global formulations < 10

Rigid bodies – Topological formulations
Flexible bodies - Component mode synthesis 10 – 30

Flexible bodies – Finite element mesh 30 – 100

Problems involving rigid bodies lead to higher fillings if

topological or hybrid formulations are used [30]; the same
filling range applies if the problem involves flexible bodies and
they are described by component mode synthesis [29,31].
Finally, if flexibility is described by introducing the degrees of
freedom of the finite element discretization in the multibody
problem [32,33], the filling of the finite element stiffness
matrix dominates the tangent matrix; in these cases, matrix
filling ranges from 30 to 100, depending on the type of finite
element (beam, shell, brick, etc.). In this study, the effect of
matrix filling has been analyzed by introducing a variable
number of artificial non-zeros in the sparsity pattern of the
original tangent matrix.

Only minor changes were required in the initial sequential
implementation to incorporate the three proposed parallel
solvers, because they use the same storage format used by the
three above mentioned sequential solvers already supported by
the simulation code (Compressed Column Storage format or
CCS). This format, also known as the Harwell-Boeing sparse
matrix format, is quite common in direct sparse linear equation
solvers. For solvers used in symmetric mode (CHOLMOD,
WSMP, Pardiso), only the upper or lower triangular part of the
tangent matrix is computed in Eq. (5), depending on the
requirements of each solver; for non-symmetric solvers (KLU,
SuperLU), the whole matrix is evaluated and factorized.

Some benchmarks for linear equation solvers [18,19] only
measure factorization and solve (forward and back substitution)
times. In this work, the total elapsed time for a multibody
dynamic simulation was measured, since this procedure takes
into account other important attributes like precision (more
precise solvers will need less iterations in Eq. (4)) and memory
footprint (its effect on the behavior of CPU-cache can affect the
overall performance of the simulation).

2.5 Parallelization with OpenMP:
OpenMP [22] is a standard application programming

interface to support multi-threaded parallel programming in
shared-memory architectures. It provides a set of directives that
can be added to a sequential program in Fortran, C, or C++ to
describe, with minimal modifications in the code, how the work
is to be distributed among multiple threads that run in parallel.
A good description of OpenMP is provided by Chapman [23].

 6 Copyright © 2009 by ASME

// Calls 2 functions in parallel
void example1()
{

#pragma omp parallel sections

#pragma omp section
function1();
#pragma omp section
function2();

}

// '1'-norm of a vector in parallel
double example2(double v[], int n)
{

double sum = 0;
#pragma omp for reduction(+:sum)
for (int i=0; i<n; i++) {

sum = sum + v[i];
}
return sum;

}

Figure 2: Example of OpenMP directives for
parallelization.

Fig. 2 shows a couple of examples of parallelization with
OpenMP: the first one calls two code sections in parallel, while
the second one splits a for loop into several non-overlapping
fragments to traverse them in parallel and accumulate the
results. These directives are understood by OpenMP compilers,
which deal with the burden of working out the communication
and synchronization details of the parallel program. The
directives look like comments to regular, non OpenMP-aware
compilers, which will generate sequential code. In this way, the
same source code can be used in both sequential and parallel
versions; this feature can simplify the maintenance of MBS
simulation codes that are used to run simulations in both
desktop PCs (suitable for parallel execution) and embedded
microprocessors (which only support sequential execution) like
automotive Electronic Control Units (ECUs).

Coarse-grained parallelization, in which large program
regions are executed concurrently, can be easily achieved with
OpenMP. An analysis of the profiling results in Table 1 and the
sequence of calculations in Eqs. (2) to (6) evidences that two
pairs of tasks (3-4 and 7-8) can be executed concurrently, as
shown in Fig. 3. On the other hand, tasks 1 and 2 cannot be
scheduled in parallel because the second one is inside the
Newton-Raphson iteration of Eq. (4).

In addition, some of the optimizations implemented in the
initial sequential version make not possible to apply fine-
grained parallelization. For example, the Jacobian evaluation,
which represents around 80% of Task 2, has been optimized for
fast write operations to matrix data stored in CCS format [27].
This optimization reduced the evaluation time by a factor of 3
but it requires a sequential traversing of the involved for loop,
which cannot be split like in Fig. 2.

2 3 4 5 6 7 8 9

2 3

4

5 6 8

7

Tasks that can be executed simultaneously

Overhead due to thread management

(a)

(b)

1

1 9

Figure 3: Distribution of computational load in (a) the
initial sequential version and (b) the proposed parallel

version.

2.6 Test environment and implementation details:
Simulations have been run in a desktop PC with a dual-

core Intel Core Duo E6300 CPU (1.86 GHz clock speed in
each core, 64 Kb L1 cache, 2 Mb L2 cache) and 1 Gb of RAM,
running Linux OS kernel 2.6.24 in 64 bit mode. Two compiler
toolchains have been used: the GNU Compiler Collection (gcc
version 4.3) and the Intel C/C++ Compiler (icc version 10.1);
both of them support OpenMP.

A parallel computer with only two CPUs has been used
because the tested dynamic formulation, heavily oriented to
sequential execution, will deliver poor scalability since the
fraction of parallelizable code will be relatively small. The goal
of this work is to test whether the proposed non-intrusive
parallelization methods can increase the efficiency of MBS
dynamic simulations; if they can, the scalability of the speedups
will greatly depend on the multibody problem and dynamic
formulation.

3 RESULTS AND DISCUSSION

The following subsections present numerical results for the
two abovementioned non-intrusive parallelization methods.

3.1 Multi-threaded linear equation solvers:
Fig. 4 shows the elapsed times for dynamic simulations

with a number of variables N ranging from 100 to 4000 and
three representative values of the matrix filling ratio according
to Table 2 (NNZ/N = 6, 20, 50). Sequential single-threaded (st)
solvers are represented in dashed lines, while parallel multi-
threaded (mt) solvers are represented in solid lines.

 7 Copyright © 2009 by ASME

NNZ /N = 6

1

10

100

0 1000 2000 3000 4000
Number of variables N

El
ap

se
d

tim
e

(s
)

SuperLU mt WSMP mt
Pardiso mt WSMP st
KLU st CHOLMOD st

NNZ /N = 20

1

10

100

1000

0 1000 2000 3000 4000
Number of variables N

El
ap

se
d

tim
e

(s
)

NNZ /N = 50

1

10

100

1000

0 1000 2000 3000 4000
Number of variables N

El
ap

se
d

tim
e

(s
)

(a)

(b)

(c)

Figure 4: Performance of linear equation solvers as a

function of problem size and matrix filling.

Elapsed times for N in the range 4000 – 8000 follow the
tendencies indicated on the right side of the figures, so they
have not been represented. Fig. 4a evidences that parallel
solvers are not competitive for problems with low filling ratios:
in these circumstances, KLU (unsymmetric solver) and

CHOLMOD (symmetric positive definite solver) perform better
than any other. The efficiency of KLU is outstanding in this
case, taking into account that, due to its unsymmetric nature,
the whole tangent matrix is evaluated and factorized during the
simulation. The explanation for this excellent behaviour is that
KLU is a sparse LU factorization algorithm specially designed
for use in circuit simulation problems, which have a typical
filling ratio NNZ/N of 7-8; however, this feature is also an
important penalty for filling ratios above 10. For medium (Fig.
4b) and high (Fig. 4c) filling ratios, Pardiso emerges as the best
solver for problems of large size. For medium size problems,
CHOLMOD continues to be the most efficient solver under
these circumstances.

In order to gain insight into the most favourable conditions
for each solver, numerical experiments similar to those
represented in Fig. 4 have been run with a matrix filling ratio
within a range from 6 to 100.

100

1000

10000

0 20 40 60 80 100

NNZ /N

N
um

be
r o

f v
ar

ia
bl

es
 N

Pardiso

CHOLMOD

WSMP (st)KLU

WSMP (mt)

Figure 5: Best solver, as a function of problem size and

matrix filling.

Results are synthesized in Fig. 5, which represents the
regions where each solver delivers the best performance, as a
function of the number of variables N and the filling ratio
NNZ/N. The blue solid line draws up the boundary between the
parallel and the sequential solvers, and the red dashed lines
draw up the boundary between different sequential solvers.
This figure serves as a decision tool to identify which solver is
best suited for a particular multibody simulation. Fig. 5 shows
that, contrary to general beliefs, parallel solvers can increase
simulation efficiency for a wide range of problems in MBS
dynamics. Pardiso dominates the region of parallel solvers,
since the multi-threaded version of WSMP is only better in a
small, non-representative region. On the other hand,
CHOLMOD dominates the region of sequential solvers, while
KLU and single-threaded WSMP are only competitive for
small problems under 200 variables; these last results fully
agree with the recommendations given in [27] for problems
under 100 variables.

 8 Copyright © 2009 by ASME

0

0,5

1

1,5

0 20 40 60 80 100
NNZ /N

Sp
ee

du
p

100 variables 200 variables
500 variables 1000 variables
2000 variables 4000 variables

Figure 6: Speedup of Pardiso compared with the best

sequential solver.

Since Pardiso has been demonstrated to perform better
than sequential solvers for many multibody problems, it is
important to quantify the speedups that it can deliver. Fig. 6
represents the speedups achieved by Pardiso, as a function of
the filling ratio NNZ/N and the number of variables N; the
speedup S is relative to the best sequential solver in each point
of the figure:

sequential

parallel

elapsed time
S

elapsed time
=

 (7)

Table 3 shows the maximum speedup that can be achieved
by a parallel solver in the tested implementation, for three
typical values of the filling ratio; the values have been obtained
from profiling results and Amdahl’s law: for a program with a
parallel fraction f running on P processors, the maximum
speedup is:

()max

1

1
S P

f fP

=
+ −

 (8)

Table 3: Maximum speedup for 2 processors due to
parallelization of the linear equation solver in the tested
implementation, as a function of the matrix filling ratio

NNZ/N.

NNZ/N Factorizations and backsubstitutions Max. speedup

6 52% 1.35
20 69% 1.53
50 68% 1.52

The information given in Fig. 6 and Table 3 is important in

order to correctly interpret the results in Fig. 5. While Pardiso
performs better for N < 1000 in a significant region of Fig. 5,
the delivered speedups are very small compared with the best

sequential solver (CHOLMOD), specially for NNZ/N > 50.
Pardiso only delivers significant speedups for N > 1000, and it
achieves the maximum performance for NNZ/N in the range
from 10 to 30. In some cases, the speedups exceed 70% of the
maximum values predicted by Amdahl’s law in Table 3.

With regard to the effect of the compiler toolchain on the
simulation efficiency, it has been observed that the two tested
toolchains (GNU and Intel) can increase or decrease the
elapsed times for the tested solvers in a factor up to 34%,
depending on matrix size and filling ratio. However, in the
conditions where each solver performs better (according to Fig.
5) the effect of the compiler is diminished, as shown in Table 4.
In general, icc gives slightly better results than gcc, specially
for Pardiso.

Table 4: Effect of compiler toolchain on the efficiency of
linear equation solvers in the region where each solver

performs best.

Linear equation solver Best compiler Min. gain Max. gain

Pardiso icc 7% 18%
Cholmod icc 1% 8%
WSMP (st) icc/gcc -2% 2%
KLU icc -1% 7%

3.2 OpenMP:
Fig. 7 shows the elapsed times for dynamic simulations

with the OpenMP parallel version of the code, for a number of
variables ranging from 100 to 8000 and a filling ratio NNZ/N ≈
6 (no artificial non-zeros were added to the tangent matrix).

0,8

0,9

1,0

1,1

1,2

0 2000 4000 6000 8000

Number of variables N

Sp
ee

du
p

GNU gcc

Intel icc

Figure 7: Speedup of the OpenMP parallel

implementation.

The simulations have been run using CHOLMOD as linear
equation solver. Since most of the burden of OpenMP
parallelization is carried out by the compiler, results for both
compiler toolchains (GNU and Intel) have been represented.

 9 Copyright © 2009 by ASME

Taking into account the profiling data in Table 1, the task
schedule shown in Fig. 3b can deliver a maximum speedup of
1.20. Results indicate that the compiler has a significant effect
on the performance of the OpenMP parallel version. Intel
OpenMP implementation, with a lower communication
overhead, delivers speedups greater than one even for small
problems of 100 variables, and it achieves the optimum
conditions for around 500 variables. The GNU implementation
needs more than 200 variables to become advantageous, and
delivers the maximum values for 2000 variables; however, the
speedups of GNU are higher, reaching the 95% of the
maximum theoretical value (1.20).

Fig. 7 also shows that OpenMP speedups start to fall for N
> 2000. This fact does not agree with the normal behaviour of
parallel programs: both the communication overhead due to
parallelization and the maximum speedup do not depend on N
and should be constant (the overhead of thread creation and
destruction depends only on the number of threads, and Table 1
demonstrates that the relative elapsed times of the parallelized
tasks do not depend on N). Therefore, the maximum speedup
Smax = 1.20 should be a horizontal asymptote for the curve
S(N), as it happens in MPI parallel codes [15]. This weird
behaviour may be produced by adverse effects in the cache
memory, because tasks scheduled in parallel in Fig 3b share
part of the data: both tasks 3 and 4 operate with the mass
matrix, Jacobian matrix and constraint vector, and both tasks 7
and 8 operate with the tangent matrix factorization and other
common terms. Since each CPU has its own private cache,
common data terms must be transferred twice from memory to
cache, and for large problem sizes the memory bandwidth
becomes a bottleneck [23]. This phenomenon is not frequent in
MPI parallel implementations, since MPI processes operate in
private, unshared data. Adverse effects of cache can be
diminished with a proper allocation and distribution of data, as
explained in [23]. However, these techniques can enforce major
changes in existing sequential MBS simulation codes, and their
effect highly depends on the computer architecture and the
compiler toolchain; therefore, they cannot be considered as
non-intrusive or easy to implement.

Nevertheless, results demonstrate that OpenMP is
advantageous even for small problems and that it can deliver
speedups above 80% of the maximum theoretical value for a
wide range of problem sizes (from 500 to 3500 variables),
provided the appropriate compiler toolchain is selected. Given
the simplicity of its application to sequential codes, it is a
valuable tool for non-intrusive parallelization of existing MBS
simulation packages. The attainable speedups depend on the
simulation characteristics; for example, Lugrís [43] describes
two formulations for flexible multibody dynamics that spend
up to 82% of the elapsed time in computing matrix terms
associated with flexible bodies; the parallelization of this task
with OpenMP would be straightforward, and speedups above 2
could be easily achieved on a quad-core processor. Problems
with very time-consuming force evaluations (e.g. collision

forces between complex geometries) can also achieve high
improvements due to OpenMP parallelization.

4 CONCLUSIONS

Two non-intrusive parallelization techniques, parallel
linear equation solvers and OpenMP, have been used to
parallelize a starting sequential implementation of an MBS
dynamic simulation software, in order to investigate their
efficiency and suitability in the field of multibody dynamics.
Both techniques are usually considered not appropriate for
MBS dynamics due to the small sizes of matrix computations
involved in this field.

Regarding the efficiency and suitability of parallel sparse
linear equation solvers, the following conclusions can be
established:
• Parallel solvers are advantageous for two types of

multibody problems: (a) problems with more than 2000
variables leading to matrix filling ratios NNZ/N from 10 to
30 (the case for rigid multibody problems with topological
formulations or flexible multibody body problems solved
by component mode synthesis), and (b) problems with more
than 2000 variables leading to matrix filling ratios NNZ/N
above 30 (the case for flexible multibody body problems
solved by introducing the finite element discretization in the
formulation). Out of these two regions, sequential solvers
(especially CHOLMOD) are more efficient.

• Pardiso is the most efficient parallel solver in the
abovementioned conditions among the three tested parallel
linear equation solvers (SuperLU, Pardiso and WSMP).

• The speedups delivered by Pardiso in the abovementioned
conditions exceed 70% of the maximum theoretical value
predicted by Amdahl’s law for matrix filling ratios in the
range from 10 to 30. Beyond that point, speedups fall
gradually. In addition, the speedups get higher as the
problems increase their size.
Regarding the efficiency and suitability of the non-

intrusive OpenMP parallel programming model, the following
conclusions can be established:
• The parallelization of several tasks of an existing

sequential dynamic simulation software was very easy to
implement with OpenMP.

• The OpenMP parallel version proved to be advantageous
even for small problems of 100 variables, and the speedups
exceeded 80% of the maximum theoretical value predicted
by Amdahl’s law for problem sizes in the range from 500 to
3500 variables.

• Beyond a certain problem size (2000 variables), the
speedups fall gradually. This abnormal behaviour could be
caused by adverse effects in the CPU’s cache memories.

• The compiler toolchain has a significant effect on the
efficiency of OpenMP: Intel icc performs better for
problems of less than 1000 variables, while GNU gcc
performs better for larger problems.

 10 Copyright © 2009 by ASME

Although both parallelization techniques cannot deliver
high absolute speedups due to their non-intrusive character,
their application is straightforward and therefore they are very
appropriate to achieve partial parallelization of existing
sequential multibody simulation codes with minimal effort. In
addition, the good performance and ease-of-use of OpenMP
suggests that it could be a substitute of MPI in the development
and implementation of new formulations specially targeted to
parallel execution; this topic represents an open line for future
work.

ACKNOWLEDGMENTS
This research has been sponsored by the Spanish MEC

(grant No. DPI2006-15613-C03-01 and the F.P.U. Ph.D.
fellowship No. AP2005-4448).

REFERENCES
[1] Kasahara, H., Fujii, H., and Iwata, M., 1987, "Parallel

Processing of Robot Motion Simulation," Munich,
Germany.

[2] Eichberger, A., Fuhrer, C., and Schwertassek, R., 1993,
"The Benefits of Parallel Multibody Simulation and Its
Application to Vehicle Dynamics," Advanced multibody
system dynamics: simulation and software tools, pp. 107-
126.

[3] Fisette, P., and Peterkenne, J. M., 1998, "Contribution to
Parallel and Vector Computation in Multibody
Dynamics," Parallel Computing, 24(5-6), pp. 717-728.

[4] Cuadrado, J., Cardenal, J., Morer, P., and Bayo, E., 2000,
"Intelligent Simulation of Multibody Dynamics: Space-
State and Descriptor Methods in Sequential and Parallel
Computing Environments," Multibody System Dynamics,
4(1), pp. 55-73.

[5] Critchley, J., and Anderson, K. S., 2003, "On Parallel
Methods of Multibody Dynamics," ASME 2003 Design
Engineering Technical Conferences (DECT '03), Chicago,
Illinois (USA).

[6] Critchley, J. H., and Anderson, K. S., 2004, "A Parallel
Logarithmic Order Algorithm for General Multibody
System Dynamics," Multibody System Dynamics, 12(1),
pp. 75-93.

[7] Anderson, K. S., and Oghbaei, M., 2005, "A State-Time
Formulation for Dynamic Systems Simulation Using
Massively Parallel Computing Resources," Nonlinear
Dynamics, 39(3), pp. 305-318.

[8] Anderson, K., Mukherjee, R., Critchley, J., Ziegler, J.,
and Lipton, S., 2007, "POEMS: Parallelizable Open-
Source Efficient Multibody Software," Engineering with
Computers, 23(1), pp. 11-23.

[9] Bae, D. S., Kuhl, J. G., and Haug, E. J., 1988, "A
Recursive Formulation for Constrained Mechanical
System Dynamics .3. Parallel Processor Implementation,"
Mechanics of Structures and Machines, 16(2), pp. 249-
269.

[10] Hwang, R. S., Bae, D. S., Kuhl, J. G., and Haug, E. J.,
1990, "Parallel Processing for Real-Time Dynamic
System Simulation," Journal of Mechanical Design,
112(4), pp. 520-528.

[11] Avello, A., Jimenez, J. M., Bayo, E., and Dejalon, J. G.,
1993, "A Simple and Highly Parallelizable Method for
Real-Time Dynamic Simulation-Based on Velocity
Transformations," Computer Methods in Applied
Mechanics and Engineering, 107(3), pp. 313-339.

[12] Mukherjee, R. M., Anderson, K. S., and Ziegler, J., 2005,
"Multigranular Molecular Dynamics Simulations of
Polymer Melts Using Multibody Algorithms," Long
Beach, California, USA.

[13] Quaranta, G., Masarati, P., and Mantegazza, P., 2002,
"Multibody Analysis of Controlled Aeroelastic Systems
on Parallel Computers," Multibody System Dynamics,
8(1), pp. 71-102.

[14] Argonne National Laboratory, 2008, "MPI," http://www-
unix.mcs.anl.gov/mpi/.

[15] Anderson, K. S., and Duan, S., 1999, "A Hybrid
Parallelizable Low-Order Algorithm for Dynamics of
Multi-Rigid-Body Systems: Part I, Chain Systems,"
Mathematical and Computer Modelling, 30(9-10), pp.
193-215.

[16] Gorder, P. F., 2007, "Multicore Processors for Science
and Engineering," Computing in Science & Engineering,
9(2), pp. 3-7.

[17] García de Jalón, J., and Bayo, E., 1994, Kinematic and
Dynamic Simulation of Multibody Systems - The Real-
Time Challenge, Springer-Verlag, New York.

[18] Gupta, A., 2002, "Recent Advances in Direct Methods for
Solving Unsymmetric Sparse Systems of Linear
Equations," ACM Transactions on Mathematical
Software, 28(3), pp. 301-324.

[19] Gupta, A., 2007, "A Shared- and Distributed-Memory
Parallel General Sparse Direct Solver," Applicable
Algebra in Engineering Communication and Computing,
18(3), pp. 263-277.

[20] Tracy, F. T., Oppe, T. C., and Gavali, S., 2007, "Testing
Parallel Linear Iterative Solvers for Finite Element
Groundwater Flow Problems," Pittsburgh, PA, USA.

[21] Davis, R. L., Henz, B. J., and Shires, D. R., 2003,
"Performance Evaluation of Parallel Sparse Linear
Equation Solvers for Positive Definite Systems," Las
Vegas, Nevada, USA.

[22] OpenMP Architecture Review Board, 2008, "OpenMP,"
http://openmp.org.

[23] Chapman, B., Jost, G., van der Pas, R., and Kuck, D. J.,
2007, Using OpenMP: Portable Shared Memory Parallel
Programming, The MIT Press.

[24] Krawezik, G., and Cappello, F., 2006, "Performance
Comparison of MPI and OpenMP on Shared Memory
Multiprocessors," Concurrency and Computation-Practice
& Experience, 18(1), pp. 29-61.

 11 Copyright © 2009 by ASME

[25] Anderson, K. S., and Critchley, J. H., 2003, "Improved
'Order-N' Performance Algorithm for the Simulation of
Constrained Multi-Rigid-Body Dynamic Systems,"
Multibody System Dynamics, 9(2), pp. 185-212.

[26] González, M., Dopico, D., Lugrís, U., and Cuadrado, J.,
2006, "A Benchmarking System for MBS Simulation
Software: Problem Standardization and Performance
Measurement," Multibody System Dynamics, 16(2), pp.
179-190.

[27] González, M., González, F., Dopico, D., and Luaces, A.,
2008, "On the Effect of Linear Algebra Implementations
in Real-Time Multibody System Dynamics,"
Computational Mechanics, 41(4), pp. 607-615.

[28] Bayo, E., and Ledesma, R., 1996, "Augmented
Lagrangian and Mass-Orthogonal Projection Methods for
Constrained Multibody Dynamics," Nonlinear Dynamics,
9(1-2), pp. 113-130.

[29] Cuadrado, J., Gutierrez, R., Naya, M. A., and Morer, P.,
2001, "A Comparison in Terms of Accuracy and
Efficiency Between a MBS Dynamic Formulation With
Stress Analysis and a Non-Linear FEA Code,"
International Journal for Numerical Methods in
Engineering, 51(9), pp. 1033-1052.

[30] Cuadrado, J., Dopico, D., González, M., and Naya, M.,
2004, "A Combined Penalty and Recursive Real-Time
Formulation for Multibody Dynamics," Journal of
Mechanical Design, 126(4), pp. 602-608.

[31] Ambrosio, J. A. C., and Goncalves, J. P. C., 2001,
"Complex Flexible Multibody Systems With Application
to Vehicle Dynamics," Multibody System Dynamics, 6(2),
pp. 163-182.

[32] García Orden, J. C., and Goicolea, J. M., 2000,
"Conserving Properties in Constrained Dynamics of
Flexible Multibody Systems," Multibody System
Dynamics, 4(3), pp. 225-244.

[33] Sugiyama, H., and Shabana, A. A., 2004, "Application of
Plasticity Theory and Absolute Nodal Coordinate
Formulation to Flexible Multibody System Dynamics,"
Journal of Mechanical Design, 126(3), pp. 478-487.

[34] NIST, 2006, "Basic Linear Algebra Subprograms,"
http://www.netlib.org/blas/.

[35] Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam,
S., 2006, "Algorithm 8xx: CHOLMOD, Supernodal
Sparse Cholesky Factorization and Update/Downdate,"
http://www.cise.ufl.edu/~davis/techreports/cholmod/tr06-
005.pdf.

[36] Davis, T. A., and Stanley, K., 2004, "KLU: a Clark Kent
Sparse LU Factorization Algorithm for Circuit Matrices,"
http://www.cise.ufl.edu/~davis/techreports/KLU/pp04.pdf

[37] Gupta, A., Joshi, M., and Kumar, V., 1998, "WSSMP: A
High-Performance Serial and Parallel Symmetric Sparse
Linear Solver," Applied Parallel Computing, 1541, pp.
182-194.

[38] Saad, Y., 2003, Iterative Methods for Sparse Linear
Systems, SIAM, Philadelphia.

[39] Demmel, J. W., Gilbert, J. R., and Li, X. Y. S., 1999, "An
Asynchronous Parallel Supernodal Algorithm for Sparse
Gaussian Elimination," Siam Journal on Matrix Analysis
and Applications, 20(4), pp. 915-952.

[40] Schenk, O., Gartner, K., Fichtner, W., and Stricker, A.,
2001, "PARDISO: a High-Performance Serial and
Parallel Sparse Linear Solver in Semiconductor Device
Simulation," Future Generation Computer Systems,
18(1), pp. 69-78.

[41] Karypis, G., and Kumar, V., 1999, "A Fast and High
Quality Multilevel Scheme for Partitioning Irregular
Graphs," Siam Journal on Scientific Computing, 20(1),
pp. 359-392.

[42] Amestoy, P. R., Davis, T. A., and Duff, I. S., 1996, "An
Approximate Minimum Degree Ordering Algorithm,"
Siam Journal on Matrix Analysis and Applications, 17(4),
pp. 886-905.

[43] Lugris, U., Naya, M. A., González, F., and Cuadrado, J.,
2007, "Performance and Application Criteria of Two Fast
Formulations for Flexible Multibody Dynamics,"
Mechanics Based Design of Structures and Machines, 35,
pp. 381-404.

