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ABSTRACT 
Computational efficiency of numerical simulations is a key 

issue in multibody system (MBS) dynamics, and parallel 
computing is one of the most promising approaches to increase 
the computational efficiency of MBS dynamic simulations. 

The present work evaluates two non-intrusive 
parallelization techniques for multibody system dynamics: 
parallel sparse linear equation solvers and OpenMP. Both 
techniques can be applied to existing simulation software with 
minimal changes in the code structure; this is a major 
advantage over MPI (Message Passing Interface), the de facto 
standard parallelization method in multibody dynamics. Both 
techniques have been applied to parallelize a starting sequential 
implementation of a global index-3 augmented Lagrangian 
formulation combined with the trapezoidal rule as numerical 
integrator, in order to solve the forward dynamics of a variable 
number of loops four-bar mechanism. This starting 
implementation represented a highly optimized code, where the 
overhead of parallelization would represent a considerable part 
of the total amount of elapsed time in calculations. 

Several multi-threaded solvers have been added to the 
original software. In addition, parallelizable regions of the code 
have been detected and multi-threaded via OpenMP directives. 
Numerical experiments have been performed to measure the 
efficiency of the parallelized code as a function of problem size 
and matrix filling ratio. Results show that the best parallel 
solver (Pardiso) performs better than the best sequential solver 
(CHOLMOD) for multibody problems of large and medium 
sizes leading to matrix fillings above 10 non-zeros per variable. 
OpenMP also proved to be advantageous even for problems of 
small sizes, in despite of the small percentage of parallelizable 
workload with respect to the total burden of the execution of 
the code. Both techniques delivered speedups above 70% of the 
maximum theoretical values for a wide range of multibody 
problems.  

1 INTRODUCTION 
Computational efficiency of numerical simulations is a key 

issue in multibody system (MBS) dynamics. When MBS 
dynamics is used in Computer Aided Design and Engineering, 
faster simulations allow the design engineer to perform what-if-
analyses and optimizations in shorter times, increasing 
productivity and interaction with the model. Moreover, some 
applications like hardware-in-the-loop settings or human-in-
the-loop devices cannot be developed unless MBS forward 
dynamic simulations are performed in real-time. Hence, 
computational efficiency is a very active area of research in 
multibody systems dynamics. 

Parallel computing is one of the approaches to increase the 
computational efficiency of MBS dynamic simulations. The 
first parallel MBS algorithm was proposed by Kasahara in 
1987 [1]; since then, a variety of formulations and simulation 
algorithms have been developed to exploit parallel computing 
architectures in MBS dynamics ([2-8], among others). Some of 
these algorithms apply parallelization directly at the level of 
equations of motion, which are formulated in a form that 
facilitates the concurrent evaluation of their different terms, see 
e.g. Bae [9], Hwang [10] and Avello [11]; most of these 
algorithms are based on recursive or semi-recursive 
formulations. Other algorithms apply substructuring techniques 
to partition the multibody system in disjoint subdomains, which 
are solved concurrently taking into account the interconnection 
constrains, see e.g. Mukherjee [12] and Quaranta [13]. With 
regard to the implementation, the Message Passing Interface 
(MPI) [14] has become the de facto standard for the 
parallelization of multibody dynamic simulation codes 
[8,13,15]. MPI is a message-passing application programmer 
interface that provides functionality to enable communication 
and synchronization between a set of processes which run 
concurrently. Due to its language independence, high 
performance, scalability and good portability through 
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completely different parallel architectures (from shared-
memory processors to computer clusters), it has been broadly 
accepted in the field of parallel MBS dynamics. 

The aforementioned parallel methods for MBS dynamics 
could be described as intrusive parallelization, since they 
introduce major modifications both in formulations and 
implementations. Formulations are specifically designed to 
obtain highly parallelizable numerical computations, and most 
importantly, parallel MPI-based implementations enforce a 
particular MPI-oriented code design: the programmer must 
explicitly divide tasks in processes and insert message-passing 
operations for data transfer and synchronization. As a result, 
the structure of a MPI-based parallel code is usually quite 
different from its sequential counterpart. These parallelization 
methods have proved to attain very good results in terms of 
efficiency and scalability in the context of MBS dynamics, as 
demonstrated e.g. by Anderson [15] and Quaranta [13]. 
However, their intrusive character makes them quite difficult to 
apply to existing sequential MBS dynamic simulation codes. 
Many of these sequential packages, developed by academia, 
still have a great value as research tools and they are 
successfully used in ongoing industrial applications. Due to 
their internal complexity and design dependencies with third-
party software, parallelization of these MBS packages by 
intrusive methods like MPI would be very time-consuming and 
error-prone. For that reason, most of them remain as sequential 
codes which cannot take advantage of today’s almost 
ubiquitous availability of parallel computing architectures, 
present even in low-cost laptop computers. This limitation will 
be accentuated in the future, since trends indicate that 
performance of single processors is close to reach its limit and 
that multi-core processors are the preferred technology to 
increase computing power in the next decade [16]. 

The goal of this work is to investigate alternative non-
intrusive parallelization methods for MBS dynamics, which do 
not require major modifications in existing formulations and 
implementations. Although their scalability may be inferior 
when compared to intrusive methods, such non-intrusive 
methods could be easily applied to parallelize the 
abovementioned legacy sequential MBS simulation packages, 
and they may also reduce the effort required to develop some 
kinds of new parallel formulations and implementations. This 
work investigates two non-intrusive parallelization methods for 
MBS dynamics: (1) the use of parallel sparse linear equation 
solvers, and (2) the OpenMP parallel programming model. 

Linear equation solvers represent an opportunity for non-
intrusive parallelization since the solution of linear equation 
systems is a key process in many MBS dynamic simulation 
codes. This linear algebra operation is present in almost all 
simulation methods except some types of fully recursive 
formulations [17], although its weight in the total computation 
time of the simulation depends on the type of problem and 
formulation. Global formulations, which use a high number of 
coordinates and constraint equations to define the position of 
the multibody system, lead to comparatively big sparse linear 

equation systems whose solution usually consumes around 30-
60% of the total CPU time in a dynamic simulation. 
Topological formulations lead to smaller and more compact 
linear equation systems, and therefore their weight is reduced 
to less than 30% of the total CPU time; however, if flexible 
bodies are considered, matrix sizes increase and the solution of 
linear equation systems also takes a significant percentage of 
the CPU time even for topological formulations. As a result, the 
performance of the linear equation solver is critical to the 
efficiency of most MBS dynamic simulations. The replacement 
of a sequential solver by a parallel solver is considered a non-
intrusive parallelization technique because it only requires 
minor changes in the code, provided both solvers use similar 
sparse matrix storage formats. Many parallel linear equation 
solvers have been developed in the last years, but they are not 
considered to be appropriate for MBS dynamics due to the 
small matrix sizes involved in this field of computational 
mechanics. Comparative studies about their performance have 
been published by Gupta [18,19], Tracy [20] and Davis [21]; 
however, the test problems used in these studies do not fit the 
particular features of MBS dynamics, specially in regard to 
matrix sizes (in MBS dynamics, typical sizes are at least two 
orders of magnitude smaller than in Finite Element Analysis or 
Computational Fluid Dynamics), and therefore their 
conclusions cannot be extrapolated since parallel solvers will 
perform very differently under these circumstances. The first 
contribution of this work is the evaluation of the efficiency and 
suitability of parallel sparse linear equation solvers in the 
context of multibody system dynamics, a subject that has not 
been investigated yet. 

The second non-intrusive parallelization method explored 
in this work is the OpenMP parallel programming model [22]. 
OpenMP is a standard application programming interface to 
support multi-threaded parallel programming. It is scalable and 
portable like MPI, but it has two important differences. First, 
OpenMP is only targeted at shared-memory multiprocessor 
architectures, while MPI supports both shared- and distributed-
memory architectures. However, this OpenMP limitation is not 
a severe disadvantage in the field of MBS forward dynamics: 
due to the characteristics of the problem, concurrent tasks 
running a parallelized simulation must exchange data several 
times per integration step (usually in the order of milliseconds), 
causing a high communication overhead compared with other 
applications. As a consequence, gains obtained from concurrent 
computation can be easily outweighed by the high 
communication overhead in distributed-memory architectures 
like PC clusters [13]. Conversely, the low communication 
overhead of shared-memory architectures, supported by 
OpenMP, makes them more appropriate to run parallel MBS 
simulations. Another advantage of shared-memory 
architectures is the availability of low-cost commodity 
hardware with 2 or 4 CPU cores, like Intel® Core™ 2 Quad 
and AMD Phenom™ X4. The second core difference between 
OpenMP and MPI concerns with the programming model: 
OpenMP is based on a multi-threaded model simpler to use 
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than the MPI’s multi-process model. This key difference 
delivers important advantages when OpenMP is applied to 
parallelize a sequential code [23]: (a) the initial design can be 
maintained and only minor changes in the code are required, 
(b) data transfer and task synchronization are handled 
transparently by OpenMP, (c) parallelization can be applied 
incrementally. These three advantages make OpenMP a non-
intrusive parallelization method when compared to MPI. On the 
other hand, Krawezik [24] demonstrated that OpenMP cannot 
achieve the same performance as MPI for some types of 
numerical problems and code designs, hence its pros and cons 
in a particular domain shall be evaluated before claiming it as a 
better technique than MPI. Despite of its potential advantages, 
studies about the efficiency of OpenMP in the context of MBS 
dynamics have not been published yet, and this subject will be 
the second contribution of this work.  

The rest of the paper is organized as follows: Section 2 
describes the numerical experiments used to evaluate the 
efficiency and applicability of the two proposed non-intrusive 
parallelization methods: test problem, dynamic formulation, 
and parallelization procedures applied to a starting sequential 
implementation. Section 3 presents and analyzes the results of 
numerical experiments. Finally, Section 4 extracts conclusions 
and suggests future work.  

 
2 METHODS 

In order to study the efficiency and applicability of the two 
proposed non-intrusive parallelization methods, a test problem 
will be solved with a given dynamic formulation. This 
formulation is initially implemented in a sequential simulation 
code, which will be parallelized by means of parallel linear 
equation solvers and OpenMP. 

This test setup represents a worst-case scenario for 
parallelization in terms of problem, dynamic formulation and 
implementation, as it will be explained in the following 
subsections. With this approach, the obtained performance 
results will represent a lower limit when the non-intrusive 
parallelization methods investigated in this work are applied to 
legacy MBS simulation codes. 

2.1 Test problem: 
The selected test problem is a 2D one degree-of-freedom 

assembly of four-bar linkages with L loops, composed by thin 
rods of 1 m length with a uniformly distributed mass of 1 kg, 
moving under gravity effects. Initially, the system is in the 
position shown in Figure 1 and the velocity of the x-coordinate 
of point B0 is +1 m/s. The simulation time is 20 s. This 
mechanism has been previously used as a benchmark problem 
for multibody system dynamics by Anderson [25] and 
González [26,27]. 

2.2 Dynamic formulation: 
The L-four-bar mechanism has been modelled using planar 

natural coordinates (global and dependent) [17], leading to 
2L+2 variables (the x and y coordinates of the B points), and  

2L+1 constraints, associated with the constant length condition 
of the rods. The equations of motion of the whole multi-body 
system are given by the well known index-3 augmented 
Lagrangian formulation in the form: 

* *
1 1 , 0, 1, 2, ...

T T

i i i i

α

α+ +

+ + =

= + =

*
q qMq Φ Φ Φ λ Q

λ λ Φ          
   (1) 

where M is the mass matrix (constant for the proposed test 
problem), q  are the accelerations, Φq  the Jacobian matrix of 
the constraint equations, α the penalty factor, Φ the constraints 
vector, λ* the Lagrange multipliers and Q the vector of applied 
and velocity dependent inertia forces. The Lagrange multipliers 
for each time-step are obtained from an iteration process, where 
the value of λ0

* is taken equal to the λ* obtained in the previous 
time-step. 

 
Figure 1: L-loop four-bar mechanism. 

As integration scheme, the implicit single-step trapezoidal 
rule has been adopted. The corresponding difference equations 
in velocities and accelerations are: 
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Dynamic equilibrium can be established at time-step n+1 
by introducing the difference Eq. (2) into the equations of 
motion (1), leading to a nonlinear algebraic system of equations 
with the dependent positions as unknowns: 

( ) ( )
1
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ˆ 0
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Such system, whose size is the number of variables in the 
model, is solved through the Newton-Raphson iteration 

( ) ( )
i

i

∂⎡ ⎤
∆ = − ⎡ ⎤⎢ ⎥ ⎣ ⎦∂⎣ ⎦

i+1

f q
q f q

q
    (4) 

using the approximate tangent matrix (symmetric and positive-
definite) 
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2

2 4
Tt t α

∂⎡ ⎤ ∆ ∆
≅ + +⎢ ⎥∂⎣ ⎦

q q

f q
M C+ Φ Φ K

q
   (5) 

where C and K represent the contribution of damping and 
elastic forces of the system (which are zero for the test 
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problem). Once convergence is attained into the time-step, the 
obtained positions qn+1 satisfy the equations of motion (1) and 
the constraint conditions =Φ 0 , but the corresponding sets of 
velocities *q  and accelerations *q  may not satisfy =Φ 0  and 

=Φ 0 . To achieve this, cleaned velocities q  and accelerations 
q  are obtained by means of mass-damping-stiffness orthogonal 
projections, reusing the factorization of the tangent matrix: 

( )

( ) ( )
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f q
q M C+ K q Φ Φ q Φ

q

  (6) 

All numerical experiments will be performed using a time-
step ∆t of 10-3 seconds and a penalty factor α of 108. This 
global method, described in detail in Bayo [28], has proved to 
be a very robust and efficient global formulation, see e.g. 
Cuadrado [29,30], but it has been designed for sequential 
computation and it is not as suitable for parallelization as 
topological formulations. For that reason, it nearly represents a 
worst-case scenario for parallelization with regard to dynamic 
formulations.  

The number of loops in the test mechanism can be adjusted 
to generate problems of different sizes. In MBS dynamics, 
global formulations generate several hundreds of variables 
when applied to automotive or railway vehicles made up of 
rigid bodies. Topological formulations lead to problems of 
smaller size, but when body flexibility needs to be considered, 
the number of variables increases even with this kind of 
formulations. If flexible bodies are described by component 
mode synthesis, as explained by Ambrosio [31] and Cuadrado 
[29], multibody models of automobile or railway vehicles can 
easily exceed 1000 variables. If non-linear elastic or plastic 
behaviour is considered, the number of variables in the problem 
is augmented by the degrees of freedom of the finite element 
discretization of the flexible bodies, see e.g. García Orden [32] 
or Sugiyama [33]; under these circumstances, multibody 
models in industrial applications may reach 104 variables. This 
number can be considered the upper-level limit in the field of 
multibody dynamics, at least during the next decade. For that 
reason, the numerical experiments will be performed using a 
number of variables N that ranges from 100 to 8000 (generated 
by a number of loops L from 49 to 3999). 

2.3 Initial sequential implementation: 
The dynamic formulation described above has been 

implemented in an in-house developed C++ MBS simulation 
software. This initial implementation has been heavily 
optimized for sequential execution by using efficient BLAS 
implementations [34] for dense linear algebra, symbolic pre-
processing of sparse matrix computations, fast access to sparse 
storage formats and state-of-the-art sequential lineal equation 
solvers, as described by González [27]. These optimizations 
reduced CPU times by a factor of 3 compared with more 
traditional implementations of the same dynamic formulation. 

On the other side, such a highly optimized sequential code 
makes it difficult to gain advantage from parallelization: since 
computations are performed at higher FLOPS rates (floating 
point operations per second) and in shorter times, the relative 
weight of the communication overhead associated with 
parallelization becomes higher; in addition, some optimization 
techniques make fine-grained parallelization unable to be 
applied to certain code sections, as it will be explained later. 
Again, the described initial implementation represents a nearly 
worst-case scenario for parallelization. Indeed, the 
parallelization of this code by means of MPI would be very 
cumbersome. 

Table 1 summarizes the results of a performance analysis 
of the initial sequential formulation for tests problems of 1000 
and 8000 variables. Both cases show very similar profiling 
results, since the use of symbolic pre-processing of sparse 
computations through all the code leads to nearly O(N) tasks in 
spite of using a dynamic formulation usually classified as 
O(N3). This performance analysis will be used to guide the 
parallelization described in the next subsections. 

Table 1: Performance analysis of the initial sequential 
implementation for problems of N variables. 

Task Description Eq. % of elapsed time 

   N=1000 N=8000

1 Predictor (2) 4.1 4.0
2 Evaluate dynamic terms (3,5) 9.3 9.8
3 Evaluate tangent matrix (5) 11.8 11.8
4 Evaluate residual vector (3) 7.6 7.6
5 Factorize tangent matrix (4) 36.8 36.7
6 Back-substitution (4) 5.9 5.8
7 Project velocities (6) 9.4 9.3
8 Project accelerations (6) 12.3 12.2
9 Other - 2.8 2.8

Total elapsed time (s)  10.0 102.4
 

2.4 Parallelization with multi-threaded solvers 
Table 1 shows that around 54% of the CPU time is 

consumed by the solution of linear equation systems: matrix 
factorization (task 5, close to 37%) and back-substitutions (task 
6 and part of tasks 7 and 8). This high contribution is caused by 
the simplicity of the dynamic terms in the proposed test 
problem (task 2); in problems with time-consuming force, 
constraint and Jacobian evaluations, task 2 can achieve higher 
percentages of runtime and reduce the contribution of linear 
equation systems. Nevertheless, this operation is a significant 
bottleneck in most MBS dynamic simulations and represents an 
important opportunity for non-intrusive parallelization. 

In a previous work [27], the authors measured the 
efficiency of different dense and sparse sequential linear 
equation solvers in the real-time simulation of MBS dynamics; 
the number of variables N in that study ranged from 10 to 100. 
Results demonstrated that current state-of-the-art sparse 
implementations outperform dense implementations even for 
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very small problems (e.g., 20 variables), contradicting a 
widespread conviction in MBS dynamics. Three sequential 
solvers were found to be the most efficient ones, as a function 
of the type of multibody problem and dynamic formulation: 
• CHOLMOD, a left-looking supernodal symmetric 

positive-definite solver [35].  
• KLU, an unsymmetric solver specially designed for circuit 

simulation [36]. 
• WSMP (sequential version), a symmetric indefinite or 

unsymmetric solver [37]. 
In this work, these three top-performing sequential solvers 

will be compared against parallel solvers. Given the large 
number of existing parallel sparse solvers, a selection process 
has been applied to narrow the scope: iterative solvers have 
been discarded, since they have a high communication 
overhead during each iteration, so they work efficiently only 
for very large problems out of the scope of MBS dynamics 
[38]; the same argument applies to out-of-core solvers. From 
the remaining parallel linear equation solvers, three of them 
which have demonstrated good performance for matrix sizes 
close to those found in MBS dynamics [18,19] have been 
selected to evaluate their performance in this field: 
• SuperLU (multi-threaded version), a nonsymmetric solver 

[39]. 
• Pardiso, a symmetric or unsymmetric, positive definite or 

indefinite solver [40]. 
• WSMP (multi-threaded version) [37]. 

The efficiency of a linear equation solver depends on three 
factors: matrix size, sparsity pattern and matrix filling. In this 
study, the effect of matrix size has been analyzed by solving the 
test problem with a number of variables N ranging from 100 to 
8000. The effect of the sparsity pattern has been greatly 
diminished by reordering the tangent matrix: each of the six 
benchmarked solvers supports different fill reducing reordering 
strategies, usually computed by third-party numerical libraries 
like METIS [41] or AMD [42] and its variants, among others; 
all of them have been tested in the symbolic pre-processing 
stage of the simulation code, to select the best one for each 
simulation case. For that reason, the results obtained for the 
proposed test problem will be still valid for other multibody 
problems leading to different sparsity patterns. 

With regard to matrix filling, the described formulation 
applied to the test problem of L loops leads to a tangent matrix 
in Eq. (5) of size N = 2L+2 with 12L+4 structural non-zeros. A 
meaningful matrix filling indicator can be computed as the ratio 
between the number of non-zeros (NNZ) and N. In this case 
NNZ/N ≈ 6, a typical value for global formulations applied to 
problems involving rigid bodies. Nevertheless, other dynamic 
formulations and multibody problems may lead to higher filling 
ratios, as depicted in Table 2.  

 
 
 
 
 

Table  2: Typical matrix filling ratios in multibody 
dynamics (N = number of variables, NNZ = number of 

non-zeros). 

Type of problem and dynamic formulation NNZ/N 

Rigid bodies - Global formulations < 10 

Rigid bodies – Topological formulations 
Flexible bodies - Component mode synthesis 10 – 30 

Flexible bodies – Finite element mesh 30 – 100 

 
Problems involving rigid bodies lead to higher fillings if 

topological or hybrid formulations are used [30]; the same 
filling range applies if the problem involves flexible bodies and 
they are described by component mode synthesis [29,31]. 
Finally, if flexibility is described by introducing the degrees of 
freedom of the finite element discretization in the multibody 
problem [32,33], the filling of the finite element stiffness 
matrix dominates the tangent matrix; in these cases, matrix 
filling ranges from 30 to 100, depending on the type of finite 
element (beam, shell, brick, etc.). In this study, the effect of 
matrix filling has been analyzed by introducing a variable 
number of artificial non-zeros in the sparsity pattern of the 
original tangent matrix. 

Only minor changes were required in the initial sequential 
implementation to incorporate the three proposed parallel 
solvers, because they use the same storage format used by the 
three above mentioned sequential solvers already supported by 
the simulation code (Compressed Column Storage format or 
CCS). This format, also known as the Harwell-Boeing sparse 
matrix format, is quite common in direct sparse linear equation 
solvers. For solvers used in symmetric mode (CHOLMOD, 
WSMP, Pardiso), only the upper or lower triangular part of the 
tangent matrix is computed in Eq. (5), depending on the 
requirements of each solver; for non-symmetric solvers (KLU, 
SuperLU), the whole matrix is evaluated and factorized. 

Some benchmarks for linear equation solvers [18,19] only 
measure factorization and solve (forward and back substitution) 
times. In this work, the total elapsed time for a multibody 
dynamic simulation was measured, since this procedure takes 
into account other important attributes like precision (more 
precise solvers will need less iterations in Eq. (4)) and memory 
footprint (its effect on the behavior of CPU-cache can affect the 
overall performance of the simulation).  

2.5 Parallelization with OpenMP: 
OpenMP [22] is a standard application programming 

interface to support multi-threaded parallel programming in 
shared-memory architectures. It provides a set of directives that 
can be added to a sequential program in Fortran, C, or C++ to 
describe, with minimal modifications in the code, how the work 
is to be distributed among multiple threads that run in parallel. 
A good description of OpenMP is provided by Chapman [23].  
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// Calls 2 functions in parallel
void example1() 
{

#pragma omp parallel sections

#pragma omp section
function1();
#pragma omp section
function2();

}

// '1'-norm of a vector in parallel 
double example2(double v[], int n) 
{

double sum = 0;
#pragma omp for reduction(+:sum)
for (int i=0; i<n; i++) {

sum = sum + v[i];
}
return sum;

}
 

Figure 2: Example of OpenMP directives for 
parallelization. 

Fig. 2 shows a couple of examples of parallelization with 
OpenMP: the first one calls two code sections in parallel, while 
the second one splits a for loop into several non-overlapping 
fragments to traverse them in parallel and accumulate the 
results. These directives are understood by OpenMP compilers, 
which deal with the burden of working out the communication 
and synchronization details of the parallel program. The 
directives look like comments to regular, non OpenMP-aware 
compilers, which will generate sequential code. In this way, the 
same source code can be used in both sequential and parallel 
versions; this feature can simplify the maintenance of MBS 
simulation codes that are used to run simulations in both 
desktop PCs (suitable for parallel execution) and embedded 
microprocessors (which only support sequential execution) like 
automotive Electronic Control Units (ECUs). 

Coarse-grained parallelization, in which large program 
regions are executed concurrently, can be easily achieved with 
OpenMP. An analysis of the profiling results in Table 1 and the 
sequence of calculations in Eqs. (2) to (6) evidences that two 
pairs of tasks (3-4 and 7-8) can be executed concurrently, as 
shown in Fig. 3. On the other hand, tasks 1 and 2 cannot be 
scheduled in parallel because the second one is inside the 
Newton-Raphson iteration of Eq. (4). 

In addition, some of the optimizations implemented in the 
initial sequential version make not possible to apply fine-
grained parallelization. For example, the Jacobian evaluation, 
which represents around 80% of Task 2, has been optimized for 
fast write operations to matrix data stored in CCS format [27]. 
This optimization reduced the evaluation time by a factor of 3 
but it requires a sequential traversing of the involved for loop, 
which cannot be split like in Fig. 2. 
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Figure 3: Distribution of computational load in (a) the 
initial sequential version and (b) the proposed parallel 

version. 

2.6 Test environment and implementation details: 
Simulations have been run in a desktop PC with a dual-

core Intel Core Duo E6300 CPU (1.86 GHz clock speed in 
each core, 64 Kb L1 cache, 2 Mb L2 cache) and 1 Gb of RAM, 
running Linux OS kernel 2.6.24 in 64 bit mode. Two compiler 
toolchains have been used: the GNU Compiler Collection (gcc 
version 4.3) and the Intel C/C++ Compiler (icc version 10.1); 
both of them support OpenMP. 

A parallel computer with only two CPUs has been used 
because the tested dynamic formulation, heavily oriented to 
sequential execution, will deliver poor scalability since the 
fraction of parallelizable code will be relatively small. The goal 
of this work is to test whether the proposed non-intrusive 
parallelization methods can increase the efficiency of MBS 
dynamic simulations; if they can, the scalability of the speedups 
will greatly depend on the multibody problem and dynamic 
formulation.  

 
3 RESULTS AND DISCUSSION 

The following subsections present numerical results for the 
two abovementioned non-intrusive parallelization methods. 

3.1 Multi-threaded linear equation solvers: 
Fig. 4 shows the elapsed times for dynamic simulations 

with a number of variables N ranging from 100 to 4000 and 
three representative values of the matrix filling ratio according 
to Table 2 (NNZ/N = 6, 20, 50). Sequential single-threaded (st) 
solvers are represented in dashed lines, while parallel multi-
threaded (mt) solvers are represented in solid lines.  
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Figure 4: Performance of linear equation solvers as a 

function of problem size and matrix filling. 

Elapsed times for N in the range 4000 – 8000 follow the 
tendencies indicated on the right side of the figures, so they 
have not been represented. Fig. 4a evidences that parallel 
solvers are not competitive for problems with low filling ratios: 
in these circumstances, KLU (unsymmetric solver) and 

CHOLMOD (symmetric positive definite solver) perform better 
than any other. The efficiency of KLU is outstanding in this 
case, taking into account that, due to its unsymmetric nature, 
the whole tangent matrix is evaluated and factorized during the 
simulation. The explanation for this excellent behaviour is that 
KLU is a sparse LU factorization algorithm specially designed 
for use in circuit simulation problems, which have a typical 
filling ratio NNZ/N of 7-8; however, this feature is also an 
important penalty for filling ratios above 10. For medium (Fig. 
4b) and high (Fig. 4c) filling ratios, Pardiso emerges as the best 
solver for problems of large size. For medium size problems, 
CHOLMOD continues to be the most efficient solver under 
these circumstances. 

In order to gain insight into the most favourable conditions 
for each solver, numerical experiments similar to those 
represented in Fig. 4 have been run with a matrix filling ratio 
within a range from 6 to 100.  
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Figure 5: Best solver, as a function of problem size and 

matrix filling. 

Results are synthesized in Fig. 5, which represents the 
regions where each solver delivers the best performance, as a 
function of the number of variables N and the filling ratio 
NNZ/N. The blue solid line draws up the boundary between the 
parallel and the sequential solvers, and the red dashed lines 
draw up the boundary between different sequential solvers. 
This figure serves as a decision tool to identify which solver is 
best suited for a particular multibody simulation. Fig. 5 shows 
that, contrary to general beliefs, parallel solvers can increase 
simulation efficiency for a wide range of problems in MBS 
dynamics. Pardiso dominates the region of parallel solvers, 
since the multi-threaded version of WSMP is only better in a 
small, non-representative region. On the other hand, 
CHOLMOD dominates the region of sequential solvers, while 
KLU and single-threaded WSMP are only competitive for 
small problems under 200 variables; these last results fully 
agree with the recommendations given in [27] for problems 
under 100 variables.  
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Figure 6: Speedup of Pardiso compared with the best 

sequential solver. 

Since Pardiso has been demonstrated to perform better 
than sequential solvers for many multibody problems, it is 
important to quantify the speedups that it can deliver. Fig. 6 
represents the speedups achieved by Pardiso, as a function of 
the filling ratio NNZ/N and the number of variables N; the 
speedup S is relative to the best sequential solver in each point 
of the figure: 

sequential

parallel

elapsed time
S

elapsed time
=

 
 

    (7) 

Table 3 shows the maximum speedup that can be achieved 
by a parallel solver in the tested implementation, for three 
typical values of the filling ratio; the values have been obtained 
from profiling results and Amdahl’s law: for a program with a 
parallel fraction f running on P processors, the maximum 
speedup is: 

( )max

1

1
S P

f fP

=
+ −

    (8) 

Table 3: Maximum speedup for 2 processors due to 
parallelization of the linear equation solver in the tested 
implementation, as a function of the matrix filling ratio 

NNZ/N. 

NNZ/N Factorizations and backsubstitutions Max. speedup

6 52% 1.35
20 69% 1.53
50 68% 1.52

 
The information given in Fig. 6 and Table 3 is important in 

order to correctly interpret the results in Fig. 5. While Pardiso 
performs better for N < 1000 in a significant region of Fig. 5, 
the delivered speedups are very small compared with the best 

sequential solver (CHOLMOD), specially for NNZ/N > 50. 
Pardiso only delivers significant speedups for N > 1000, and it 
achieves the maximum performance for NNZ/N in the range 
from 10 to 30. In some cases, the speedups exceed 70% of the 
maximum values predicted by Amdahl’s law in Table 3. 

With regard to the effect of the compiler toolchain on the 
simulation efficiency, it has been observed that the two tested 
toolchains (GNU and Intel) can increase or decrease the 
elapsed times for the tested solvers in a factor up to 34%, 
depending on matrix size and filling ratio. However, in the 
conditions where each solver performs better (according to Fig. 
5) the effect of the compiler is diminished, as shown in Table 4. 
In general, icc gives slightly better results than gcc, specially 
for Pardiso. 

Table 4: Effect of compiler toolchain on the efficiency of 
linear equation solvers in the region where each solver 

performs best. 

Linear equation solver Best compiler Min. gain Max. gain

Pardiso icc 7% 18%
Cholmod icc 1% 8%
WSMP (st) icc/gcc -2% 2%
KLU icc -1% 7%

 

3.2 OpenMP: 
Fig. 7 shows the elapsed times for dynamic simulations 

with the OpenMP parallel version of the code, for a number of 
variables ranging from 100 to 8000 and a filling ratio NNZ/N ≈ 
6 (no artificial non-zeros were added to the tangent matrix).  
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Figure 7: Speedup of the OpenMP parallel 

implementation. 

The simulations have been run using CHOLMOD as linear 
equation solver. Since most of the burden of OpenMP 
parallelization is carried out by the compiler, results for both 
compiler toolchains (GNU and Intel) have been represented. 
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Taking into account the profiling data in Table 1, the task 
schedule shown in Fig. 3b can deliver a maximum speedup of 
1.20. Results indicate that the compiler has a significant effect 
on the performance of the OpenMP parallel version. Intel 
OpenMP implementation, with a lower communication 
overhead, delivers speedups greater than one even for small 
problems of 100 variables, and it achieves the optimum 
conditions for around 500 variables. The GNU implementation 
needs more than 200 variables to become advantageous, and 
delivers the maximum values for 2000 variables; however, the 
speedups of GNU are higher, reaching the 95% of the 
maximum theoretical value (1.20).  

Fig. 7 also shows that OpenMP speedups start to fall for N 
> 2000. This fact does not agree with the normal behaviour of 
parallel programs: both the communication overhead due to 
parallelization and the maximum speedup do not depend on N 
and should be constant (the overhead of thread creation and 
destruction depends only on the number of threads, and Table 1 
demonstrates that the relative elapsed times of the parallelized 
tasks do not depend on N). Therefore, the maximum speedup 
Smax = 1.20 should be a horizontal asymptote for the curve 
S(N), as it happens in MPI parallel codes [15]. This weird 
behaviour may be produced by adverse effects in the cache 
memory, because tasks scheduled in parallel in Fig 3b share 
part of the data: both tasks 3 and 4 operate with the mass 
matrix, Jacobian matrix and constraint vector, and both tasks 7 
and 8 operate with the tangent matrix factorization and other 
common terms. Since each CPU has its own private cache, 
common data terms must be transferred twice from memory to 
cache, and for large problem sizes the memory bandwidth 
becomes a bottleneck [23]. This phenomenon is not frequent in 
MPI parallel implementations, since MPI processes operate in 
private, unshared data. Adverse effects of cache can be 
diminished with a proper allocation and distribution of data, as 
explained in [23]. However, these techniques can enforce major 
changes in existing sequential MBS simulation codes, and their 
effect highly depends on the computer architecture and the 
compiler toolchain; therefore, they cannot be considered as 
non-intrusive or easy to implement.  

Nevertheless, results demonstrate that OpenMP is 
advantageous even for small problems and that it can deliver 
speedups above 80% of the maximum theoretical value for a 
wide range of problem sizes (from 500 to 3500 variables), 
provided the appropriate compiler toolchain is selected. Given 
the simplicity of its application to sequential codes, it is a 
valuable tool for non-intrusive parallelization of existing MBS 
simulation packages. The attainable speedups depend on the 
simulation characteristics; for example, Lugrís [43] describes 
two formulations for flexible multibody dynamics that spend 
up to 82% of the elapsed time in computing matrix terms 
associated with flexible bodies; the parallelization of this task 
with OpenMP would be straightforward, and speedups above 2 
could be easily achieved on a quad-core processor. Problems 
with very time-consuming force evaluations (e.g. collision 

forces between complex geometries) can also achieve high 
improvements due to OpenMP parallelization. 

 
4 CONCLUSIONS  

Two non-intrusive parallelization techniques, parallel 
linear equation solvers and OpenMP, have been used to 
parallelize a starting sequential implementation of an MBS 
dynamic simulation software, in order to investigate their 
efficiency and suitability in the field of multibody dynamics. 
Both techniques are usually considered not appropriate for 
MBS dynamics due to the small sizes of matrix computations 
involved in this field. 

Regarding the efficiency and suitability of parallel sparse 
linear equation solvers, the following conclusions can be 
established: 
• Parallel solvers are advantageous for two types of 

multibody problems: (a) problems with more than 2000 
variables leading to matrix filling ratios NNZ/N from 10 to 
30 (the case for rigid multibody problems with topological 
formulations or flexible multibody body problems solved 
by component mode synthesis), and (b) problems with more 
than 2000 variables leading to matrix filling ratios NNZ/N 
above 30 (the case for flexible multibody body problems 
solved by introducing the finite element discretization in the 
formulation). Out of these two regions, sequential solvers 
(especially CHOLMOD) are more efficient. 

• Pardiso is the most efficient parallel solver in the 
abovementioned conditions among the three tested parallel 
linear equation solvers (SuperLU, Pardiso and WSMP). 

• The speedups delivered by Pardiso in the abovementioned 
conditions exceed 70% of the maximum theoretical value 
predicted by Amdahl’s law for matrix filling ratios in the 
range from 10 to 30. Beyond that point, speedups fall 
gradually. In addition, the speedups get higher as the 
problems increase their size.  
Regarding the efficiency and suitability of the non-

intrusive OpenMP parallel programming model, the following 
conclusions can be established: 
• The parallelization of several tasks of an existing 

sequential dynamic simulation software was very easy to 
implement with OpenMP. 

• The OpenMP parallel version proved to be advantageous 
even for small problems of 100 variables, and the speedups 
exceeded 80% of the maximum theoretical value predicted 
by Amdahl’s law for problem sizes in the range from 500 to 
3500 variables. 

• Beyond a certain problem size (2000 variables), the 
speedups fall gradually. This abnormal behaviour could be 
caused by adverse effects in the CPU’s cache memories. 

• The compiler toolchain has a significant effect on the 
efficiency of OpenMP: Intel icc performs better for 
problems of less than 1000 variables, while GNU gcc 
performs better for larger problems. 
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Although both parallelization techniques cannot deliver 
high absolute speedups due to their non-intrusive character, 
their application is straightforward and therefore they are very 
appropriate to achieve partial parallelization of existing 
sequential multibody simulation codes with minimal effort. In 
addition, the good performance and ease-of-use of OpenMP 
suggests that it could be a substitute of MPI in the development 
and implementation of new formulations specially targeted to 
parallel execution; this topic represents an open line for future 
work. 
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