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EXTENDED ABSTRACT

1 Introduction

In this work we deal with mechanical systems that are capable of rigid botgmbut they have more
constraints than necessary to achieve the kinematic motion specificatiomse8tec constraints are
often associated with additional forces that enhance the structuraliipteigthe mechanical system at
hand. These systems are called overconstrained or redundantlyagoedtiOn the other hand, the issue
of dealing with redundant constraints also comes into play even more fribgirethe development of
multibody system models using generic algorithms. For example, if we build thel mbdéplanar”
four-bar linkage using a general three-dimensional rigid body algotitiem we arrive at a redundantly
constrained model where some of the constraints are unnecessarth&dmematic point of view, as
they are already enforced by other constraints.

Interestingly, the topic of redundant constraints and the algorithms thatbéeeo handle such cases
have received relatively little attention in the literature. An additional issue tsath@dundantly con-
strained system may behave in some cases as a mechanism, i.e. capablebaftygidotion, and in
other cases as a structure. In general, there are two possible wagswitdeedundant constraints. The
first is to relax all or some of the constraints and directly represent th&tradmt forces with penalty
systems, or to use the augmented Lagrangian formulation with artificial penasgemand inertias.
The second possibility is to determine a generalized resultant of all the aiomgorces, where the
components of the resultant correspond to the generalized constnaies fassociated with the gen-
eralized velocities used to parameterize the system. This can be achievedpaalypdecomposing
the generalized forces to parts associated with constrained and admissildasnad the system. In
this paper, we discuss an algorithm that uses both of these conceptseaweaetiicient simulation of
mechanical systems.

2 Methodology

In this work, a single-step, semi-implicit forward Euler stepping scheme [W$ésl to discretize the
equations of motion with a time stépas:
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wherel is an identity matrixM stands for the mass matrix,is a vector containing a set of generalized
velocities,® is the vector of constraint equations,is the Jacobian matrix is the vector of Lagrange
multipliers, andf, andc stand for the vectors of generalized applied forces and Coriolis artidfagal
effects. In the general case, the relation between the generalizediraies of the systemgj and

the set of generalized velocitieg)(is described through velocity transformatién= Nv. Following

a penalty approach, the Lagrange multipliers are assumed to be proplottidha violation of the
constraints. Diagonal matricéSs andBg contain the compliance corresponding to each constraint
and damping terms for the stabilization of the integration.

The use of the above discretization is motivated by the need of performirgintiodation with a mini-
mum computational effort, to enable real-time simulation and animation of the motiar|lces other
features such as contact detection.

2.1 Test Problem

The described formulation was used for the dynamic simulation of a Bricartianem [2], a well-
known, 1-degree of freedom overconstrained system. It is compudsee bars of length = 1 m and
massm = 1 kg, connected by revolute joints. One of the constraint equations caxpbessed as a
linear combination of the others at any moment during motion.

Figure 1:Bricard’s mechanism

Although the Chebychev-Kutzbach-@er criterion predicts zero degrees of freedom for this system,
the particular orientation of the joints allows for a smooth movement without singesarStarting
from the position depicted in Fig. 1 and under gravity effects, pé&intheoretically describes a pe-
riodic movement betweem = 1 m andz = —1 m. However, a 10 s simulation with = 1072 s
showed that the obtained violation of constraintd| @ < 10~ is enough to convert the system of
equations of Eqg. (1) into an incompatible one, turning the mechanism into &usediar certain regions

of its theoretical motion range. Indeed, this also corresponds to the phfait that the existence of
imperfections in the geometry of the rigid joints can prevent the Bricard mesrhdrom moving.

2.2 Corrective Methods and Results

Two methods were developed and tested to overcome the problems stemminthér@mesence of
redundant constraints: (a) the addition of flexibility to the joints and (b) tlestefulfilment of the
constraint equations. First, the kinematic constraints were relaxed; itouasl fthat the addition of
angular compliance to the joints yielded the predicted behaviour of the mechahiernatively, a



second strategy, based on the projection of the positions and velociti@seobbg the stepping scheme
on the subspace of admissible motion (SAM) of the configuration spaced3]used. The integrated
positionsq,,+1 given by Eq. (1) are projected onto the SAM by means of a fixed-poirttiter process:
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with matrixW = L—! (AL*l)T. Matrix L is the result of the Cholesky decompositivh= LTL, and
the symbol’ stands for the pseudo-inverse of a matrix. Velocities are subsequeoghcied, making
use of the projection matriR, = I — WA:

Vit = Pavii (3)
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Figure 2:Coordinate z of point P, and violation of constraints during the motion.

The use of compliant joints led to the motion of the mechanism following its expecésulettical
behaviour, although the violation of the constraints rises slightly with regpettte previous case.
The projection of positions and velocities can reduce the violation of camistta machine error, and
ensures the right behaviour of the system without modifying the physicpepties of the model, at the
cost of higher computational effort. Results are summarized in Fig. 2.
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