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ABSTRACT

Kinematic and dynamic modelling of multibody systems requires an initial stage of topological recognition
or structural analysis, in which the analyst must identify the coordinates needed to define the model and to
set the constraint equations which relate them and which will allow the determination of its response. Both
global and recursive formulations require, at the present moment, a high level of training for carrying out
this stage successfully. This initial phase could be solved quickly, safely and automatically, by determining
the kinematic structure of the multibody system; i.e. identifying the basic kinematic chains (Structural
Groups) of which it is composed. On the basis of known graph-analytical methods for structural analysis, an
implemented and evaluated computational method that determines the kinematic structure of a multibody
system by dividing it into a set of structural groups, simply from its adjacency matrix, is developed in
this work. Modelling a multibody system from its kinematic structure allows to choose of any type of
coordinates (relative, natural or reference point) and to employ kinematic and dynamic formulations more
appropriate for the selected coordinates and the kind of problem at hand. The developed algorithm has
been applied to a large number of mechanical systems of different complexity, offering the same kinematic
structure as the obtained through the application of graph-analytical methods.

1 INTRODUCTION

To address the simulation of multibody systems, an initial stage devoted to topological and/or structural
analysis is always required. The topological analysis identifies the number and type of the kinematic pairs
that connect the system bodies. The structural analysis starts from the known topology and, by means
of equations, determines the mechanism kinematic structure. Currently, the structural analysis is used to
identify either rigid kinematic chains and isomorfisms in structural synthesis problems [ 7, 8], as closed
loops and desmodromic chains in kinematic and dynamic analysis problems [ 1, 5].

In global formulations, a simple topological analysis is enough to identify the degrees of freedom that
are constrained by each type of kinematic pair. The dependent coordinates used to define the model (i.e.
[t yB Tc yco 01] in Fig. l.a are then related through the constraint equations due to rigid-body and
kinematic-pair conditions. In recursive formulations, besides the topological analysis, a structural analysis
must be carried out aimed to identify the mechanism closed loops. Once identified, they are opened so as
to yield a tree-like structure of the mechanism (Fig. 1.b). Then, the kinematic relations among bodies due
to the joints connecting them can be defined, along with the loop-closure equations which relate the system
dependent (A2 03) and independent (61) coordinates.

The topological recognition carried out for this basic quadrilateral linkage is quite simple, but it may turn
into a very complicated task in more complex systems, planar and spatial. This process relies on the an-
alyst’s ability to select the appropriate number and type of coordinates to describe the problem, and to
identify and formulate the needed constraint equations to solve it. In this work we propose to apply the
structural analysis methods to automate this initial phase. The computational algorithm divides a multibody
system into simple kinematic chains called Structural Groups (SG-1'y SG-II, Fig. 1.c). Once the division
into SG is obtained, the variables and constraint equations that each SG introduces into the system are de-
termined. In Fig. 1.c, SG-I introduces (61 xp yp); if 61 is known, then (z 5 yp) can be calculated. Now
in SG-1I (x5 yp xp yp) are known and either (x ¢ yc) or (f3 63) can be determined. Both, the variables
and the corresponding constraint equations introduced by each SG can be included in formal kinematic
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Figure 1. Four bar linkage with given input ¢;. b) Tree-like structure and variables. c) Split into
structural groups: SG-I and SG-II.

and dynamic formulations to obtain the response of the whole system. This last step is currently under
development.

In spite of its utility, the use of methods based on kinematic structure has not been deeply explored yet. In
the literature search carried out, there have been found few structural analysis methods applied to structural
synthesis [1, 6], very few to kinematic analysis [1], and none to the dynamic analysis of mechanisms.
Furthermore, none of the reviewed computational methods, either for synthesis or for analysis, considers
higher pairs in the mechanism except gear trains.

To introduce the computational method developed in this work, we first review, in section 2, the graph-
analytic methods for structural analysis that obtain the kinematic structure of planar multibody systems. In
section 3, we present in detail the steps and algorithms needed to implement the proposed method. Section
4, shows the results obtained when applying the graph-analytic and the computational method to a complex
mechanism. Finally, in section 5 the main conclusions of this study are established.

2 STRUCTURAL ANALYSIS

The structural analysis is the study of the nature of connection among the members of a mechanisms and
its mobility [4]. It is concerned with the fundamental relationships between the degrees of freedom, the
number and type of joints, and the number of links of a mechanism. These relationships can be employed
to identify kinematic chains in a mechanical system under different topological criteria. Other authors refer
to structural analysis as the division of a mechanisms into basic kinematic chains called Structural Groups.
A Structural Group (SG) is a kinematic chain whose number of independent chain inputs n . coincides with
the number of degrees of mobility L., (n. = L.), and that cannot be splitted into SG of smaller number
of links [3]. Under this condition and using the Griibler criteria to determine the mobility of a kinematic
chain, the analytical condition that a kinematic chain must satisfy to be SG is obtained (Eq. 1). In Eq. 1, S,
indicates the number of degrees of freedom allowed by the P kinematic pairs formed by their IV ,,, mobile
links.

Se—ne=3-(P—Np) (1)

Graph-analytical methods for structural analysis use Eq. 1 to obtain the kinematic structure of a mechanism
with the help of its structural graph: a graph associated with the mechanism that uses the elements of graph
theory to show its topology [3, 4, 6]. In the structural graph, vertices corresponds to links and edges to
kinematic pairs. The number of edges connecting two vertices corresponds to the mobility of the kinematic
pair and equals the degrees of freedom (DOF) or relative movements allowed between them. A number of
these edges equal to n ¢, independent movements defined between the links of the kinematic pair, become
bold lines, referred to as root edges. The Figures 2.a and 2.b show the four-bar linkage’s kinematic graph
and its corresponding structural graph. The lower pair (1 — 2) joins vertices 1 and 2 with only one edge. As



there is an input movement ¢; defined between them, this is a root edge. Among the other kinematic pairs
of the mechanism there are not input movements and all pairs are grade I (lower pairs), therefore all of them
are joined with a single edge.

The general sequence of the graph-analytical method used in this work to determine the kinematic structure
(Fig. 2.b-g) of a mechanism is described by applying it to the four-bar linkage, and is useful as a basis for
the computational method proposed in this work. In this method, we call external pairs those in a kinematic
chain which can be used to attach one link of the kinematic chain to a link pertaining to another kinematic
chain or to the frame. An internal kinematic pair joins two links of the same kinematic chain. In Figure 1.c,
links 2 and 3 form a kinematic chain which is a structural group (SG-II). The rotational joint B joins link
3 to the external link 2, so (2 — 3) is an external pair. The rotation joint C' joins links 3 and 4 of the same
kinematic chain, so (3 — 4) is an internal pair.

1. Frame isolation and DOF assignment. (Fig. 2.c). The frame 1 is isolated. The DOF allowed by each
pair in which the frame participates are assigned to the links that form kinematic pair with the frame.
This assignment of degrees of freedom is represented in the graph by an assignment arrow directed
to the link that receives the DOF (directed edge). Here, the chassis assigns DOF to the links 2 and 4.
The links that receive DOF from the frame become candidate to be a SG.

2. Search for SG from shorter to larger length. Each of the candidates is checked to satisfy Eq. 1. Here,
link 2 is selected (Fig. 2.d). The kinematic pairs P are accounted as the internal pairs and, from the
external pairs, only those with a directed edge (a DOF has been assigned). Thus, for this body we
find:

e Kinematic pairs: P = 1. Only the external pair (1 — 2),
e DOF allowed by kinematic pairs: S. = 1; lower pair (1 — 2),

Input movements: n. = 1; q1,

e Movable links: V,,, = 1. Body 2 is only taken into consideration.

Replacing these values in Eq. 1 results: 1 —1 = 3 - (1 — 1). The condition is satisfied and this link is
SG.

3. Re-assign DOF. If a kinematic chain forms SG, the DOF of its external pairs are assigned to the
corresponding external links. In the example, body 2 is SG, and assigns the DOF (2 — 3) to the body
3, which is now a new candidate (Fig. 2.e). There are no more assignments.

4. Turn to Step 2. Links 3 and 4 are candidates. Starting from one candidate, i.e. link 3, the parameters
of this kinematic chain are: S, = 1; n. = 0; N,, = 1; P = 1. After susbtituting in Eq. 1, link 3
shows not to be SG. Link 4 has the same parameters than link 3 so it is not SG either.

As it is not possible to form a SG with a single link, larger chains have to be considered. Starting
from a candidate, i.e. link 3, the chain is expanded by selecting another link that forms kinematic
pair with the candidate. The chain 3 — 4, whose parameters are: S. = 3;n. = 0; N,, = 2; P =3
satisfies equation Eq. 1, and therefore is SG. Finally, the obtained group is marked with a dashed line
(Fig. 2.1).

The structure of a mechanism is graphically represented by its structural diagram (Fig. 2.g). It is composed
by as many circles as SG which have been obtained plus one, corresponding to the frame, which is identified
with the number 0. Two parameters are written inside each circle (IV,,, n.) corresponding to the number of
movable links and input movements of the SG. A directed arrow joins the circles if any of their links forms
a kinematic pair. The arrows are directed in the same way that the DOF have been assigned. This direction
indicates in which order the different SG have been obtained, and defines the sequence to be followed to
solve, recursively, the kinematics of the complete system.
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Figure 2. Four-bar linkage. a) Kinematic graph. b) Structural graph. c) to f) steps to perform a structural
analysis through its structural graph. g) Structural diagram.

M (%, ) | Type of kinematic pair | Number of inputs
0 No pair -
1 Grade I (lower) 0
2 Grade II (higher) 0
3 Grade I (lower) 1
4 Grade II (higher) 1
5 Grade II (higher) 2

Table 1. Code for topological kinematic pairs and input movements identification.

3 COMPUTATIONAL STRUCTURAL ANALYSIS METHOD AND ALGORITHMS

In the previous section a graph-analytical method has been used to divide a mechanical system into SG and
determine the order for their kinematic analysis. This section explains the computational method imple-
mented to obtain the kinematic structure of any planar mechanism. The main program has been divided
into seven steps shown in Fig. 3. The description of the steps will be presented later, together with the
algorithm’s details listed in their corresponding figures.

Step 1: Data provided by the user

The user introduces the adjacency matrix A (symmetric) that collects the topology of the mechanism with
N bodies. This matrix, usually used to recognize different closed loops in mechanisms [ 6, 4], is slightly
modified here in order to obtain their structure. Table 1 sets the values to be introduced in M (i, j) for two
bodies i, j that form a kinematic pair, and their meaning. This numbering is easy to modify and extend to
include new types of pairs, spatial mechanisms or special situations that allow to expand the possibilities of
the described algorithm (i.e. pure rolling, multi-revolute joints, etc.), and that are currently under study.

Step 2: Structural transformation

One of the advantages of topological methods in computational dynamic analysis is that they allow the
selection of the most appropriate set of independent coordinates to describe the behaviour of the mechanical
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Figure 3. Computational structural analysis algorithm flow chart.

system throughout its cycle of operation [9]. A change in the set of independent coordinates represents a
structural transformation and, therefore, the kinematic structure of the system is modified. The proposed
method includes the routine AMPLIACION .m (optional), which evaluates the AnNum possible structural
transformations of the system to analyse, and stores their corresponding adjacency matrixes in the data
structure Result(k).M . For each adjacency matrix, its structural analysis (steps 3 to 7) and the results are
saved in the data structure Result(k).Res. Evaluating the different structural transformations obtained,
the analyst could select the most advantageous for kinematic and dynamic analyses. For example, the
kinematic structure which best allows the parallelization of the calculations, or the one that will avoid
singular positions, could be used.

Step 3: Arrays initialization

The variables and arrays needed for computational structural analysis are initialized. The vectors of N
dimension (vpr, vps, vrg) indicate, respectively, the number of lower, higher pairs and input movements
that each link participates in. Vector vgq indicates the bodies that belongs to any structural group, and
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Algorithm 1: Assign links and search for candidates

Result: vsgcand

forc=2:Ndo
if Result(k).M(1,c) ~= 0 then
| Result(k).Res(c,1) = 1;
end
end

ESLCAND.m;

Algorithm 2: Search for Single SG (BSGIND.m)

while 3 new SgCand do
forall the SgCand do
foreach j € (Result.Res(j, SgCand) ~= 0) do
/% identifies link j that assigns DOF to SgCand */
(N, Se, P, n.)=PARSGNIND; /% Calc. param. to evaluate Eq.l =/
end
(Result.Res, vs4cand)=CONSGIND; /x Eval Eq.l. Look for new candidates
*/
end
end

VsgCand indicates which bodies are candidates to be SG. Arrays of (N x N) dimension: a pr, aps, aLG
indicate if its elements (7, j) form a lower pair, higher pair or if they have any input movements. Results. M
contains each of the adjacency matrices obtained in Step 2 and Result. Res will store their corresponding
kinematic structure.

Step 4: Kinematic pairs and input movements identification

The upper diagonal of the adjacency matrix Results(k).M is analysed. Depending on the value of its
elements (first column in Table 1), the arrays apy, apg and ar g are generated.

Step 5: Frame isolation and DOF assignment to bodies

The main script performs this function and its operation is shown in Algorithm 1. The first row of the
adjacency matrix is analysed. All the bodies joined to the frame receive the corresponding DOF from the
later. Then, the function ESL.CAND . m finds the bodies candidate to be SG, i.e. those which have received
any DOF and do not already belong to any structural group v . The result is saved in the vector vgycand-
After this DOF assignment, the main script enters in a loop while — end while (Fig. 3), which will not
stop until all bodies are assigned to some SG. During this loop, the steps 6 and 7 are executed to find the
SG of different length.

Step 6: Search for single groups

The vector vs4cana contains the rigid-bodies that are candidates to become single SG. This step runs the
loop for — end to determine whether any candidate link is SG. Calling the script BSGIND . m, whose detail
is shown in Fig. 3, performs the evaluation. In case of finding a SG, the own script will return to assign
DOF to the external links and update the vector v s4cand. Before leaving step 6, it checks if there are new



3.1:
3.2:
3.3:

34:

3.5:
3.6:

3.7:

3.8:

39:
3.10:
3.11:
3.12:
3.13:
3.14:
3.15:
3.16:
3.17:

Algorithm 3: Search for Extended SG (BSGGR.m)

lengthSG=1;
while 3 SgCand ¢ LFSG do
lengthSG = lengthSG + 1

(SGgroup)=BKCH [Result(k).M, Result(k).Res, SgCand)]
/+ search for kinematic chains with lengthSG elements. At least one

SgCand must be no SG %/
forall the SGgroup do
/+ identifies and counts the type of DOF between links %/
(N, Se, P, n.)=PSGGR,; /% Calc. parédm. y evaluate Eq.l x/

if SGgroup € LFSG then

(Result.Res, Vsgcand)=PSGGR; /% Search for new candidates =/
Search for single SG;
else
| Clean link assingment between each solids € SGgroup;
end
end
end

Result(k).Res

candidates and, if so, this step 6 is still running. The script BSGIND.m, that checks if a candidate is SG,
calls to two other scripts, PARSGIND .m and CONSGIND.m, as seen in Algorithm 2.

The script PARSGIND.m calculates the parameters of Eq. 1 from arrays apr, aps, arc. It counts the
internal and external pairs and input movements between the candidate link ¢ and the external link j. With
these values, the script CONSGIND.m evaluates if the candidate is SG (Eq. 1). If so, it includes the
candidate as SG in vgi(i) = 1, writes the results matrix Result(k).Res, and updates the counter of the
order of formation of SG.

Step 7: Search for extended SG

The last step of the root script STRUCTURAL _ANALYSIS.mis to form new SG by progressively increasing
the length of the kinematic chains. The script BSGGR . m performs this task, calling two other functions,
BKCH.m and PSGGR . m, with a similar structure than those used for single groups, but considerably more
complex. Its operation is shown in Algorithm 3.

The script BKCH . m searches, for each candidate link, kinematic chains of length lengthSG. Then, it calls
routine PSGGR . m to verify if any of them satisfies Eq. 1. Only the kinematic chains that do not contain any
link that already pertains to any SG are verified.

The script PSGGR . m checks if any of these chains is SG. To do so, it identifies the type of DOF that exists
between each kinematic pair and calculates the group parameters, as shown for single groups. Then, Eq. 1
is checked. If it is verified, the variables v s and Result(k).Res are modified and the DOF assigned to the
links of the external pairs. After this, the search for single SG begins again, always looking for SG of the
lowest length. If the chain does not satisfy Eq. 1, another chain stored in SGgroup array is then verified.
If no chain of array SGgroup is SG, the control returns to the script BSGGR .m to search for SG with one
additional link.



Figure 4. a) System with epicyclic gear train, cam-follower and open kinematic chain. b) Structural
graph showing its division into SG and how the DOF have been assigned to the links. c) Structural

diagram showing the kinematic structure of the mechanism.

4 RESULTS

The computational method presented in the previous section and all the algorithms described in detail have
been implemented in the MATLAB programming environment. This section provides the results of its
application to a mechanism composed by lower and higher kinematic pairs. Figure 4.a shows the kinematic
graph of the mechanism. Bodies 3 and 4 are articulated to the frame 1 through lower rotation kinematic
pairs. The wheel 1 is fixed. Wheel 2 and arm 3 form an epicyclic gear train. Arm 3 forms a cam-follower
pair with link 4. Link 5 is articulated to link 4. The set of coordinates [¢1, ¢2] are considered as independent
DOF and they represent the rotation of the wheel 2 with respect to the fixed frame and the rotation of
link 5 relative to link 4. Equation 2 shows the adjacency matrix Result(1).M provided by the user for
computational analysis.

Applying the graph-analytical method described in Section 2, we obtain the structural graph (Fig. 4.b) and
the structural diagram (Fig. 4.c) of the mechanism. It can be seen that this mechanism is composed by three
structural groups: SG-I:{2, 3}, SG-1:{4}, SG-III:{5}. Applying the computational method presented in
this work we obtain the same kinematic structure, represented by its matrix of results Result(1).Res (Eq.
2).

Result(1).M = Result(1).Res = ()

O = = RO
OO = O
O N O ==
W o N O
S W o oo
O R R = O
OO OO
OO O
N O OO N
OO OO W

The first row in matrix Result(1).Res shows the SG to which each link (column) belongs to in the order in
which the SG have been obtained. The value 1 in elements (1, 2) and (1, 3) means that links 2 and 3 form
SG-I. Value 2 in element (1,4) means that link 4 forms the second SG, and so on.

If we consider than the input movement ¢ is applied to the kinematic pair {1, 2} instead of being applied
to links {1, 3}, then the first structural transformation is obtained. Applying the routine AMPLIACION .M
the corresponding adjacency matrix is obtained. This adjacency matrix, Result(2).M, is shown in Eq. 3.
The structural graph and the structural diagram corresponding to this structural transformation are shown in
Fig. 5.a and Fig. 5.b.

It can be seen that the kinematic structure of this structural transformation obtained by both graph-analytical
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Figure 5. a) and b) Structural graph and diagram of the mechanism with adjacency matrix
Result(2).M; ¢) and d) Structural graph and diagram of the mechanism with adjacency matrix
Result(3).M.

(Fig. 5.b) and computational methods (Result(2).Res, in Eq. 3) are exactly the same. This kinematic
structure is easier to analyse than the previous one, because as it has a higher number of SG which are
necessarily simpler.

Result(2).M = Result(2).Res = (3)

O = W o
OO = O N
OO = W
WO N O =
SO W o oo
O R == O
SO OO
O N O o=
W o oo
S OO oW

Finally, another structural transformation can be obtained, considering the input ¢ ; as the absolute rotation
of body 4 with respect to the chassis. The new structural graph and the structural diagram obtained by
graph-analytic methods are shown in Fig. 5.c and Fig. 5.d. The adjacency matrix Result(3).M of this
structural transformation and the computational result Result(3).Res are shown in Eq. 4. Once again, the
kinematic structure obtained by both methods is the same. In addition, this new kinematic structure is very
similar to the previous structural transformation and does not introduce any improvement on it.

Result(3).M = Result(3).Res = 4)

O W N O
OO~ O N
ON O ==
WO NO W
S W o oo
O R = = O
SO OO =
OO O W w
DO N O -
OO OO N

5 CONCLUSIONS

The computational method presented in this work allows to obtain the kinematic structure of planar multi-
body systems with lower and higher pairs, closed and open kinematic chains, and with one or several
degrees of freedom. The only information required from the user is the adjacency matrix of the system
to be analized. This matrix is easy to obtain: only the recognition of the types of kinematic pairs and the
input movements defined on their links are required. From the adjacency matrix, the method obtains new
structural transformations, and for each of them it also determines its kinematic structure automatically. The
following developments of this study will identify the variables that each structural group introduces into the
system and the constraint equations which relate them, in order to completely automate the kinematic and
dynamic analysis of multibody systems from its kinematic structure. This paper introduces the first stage of
a new completely autonomous method of kinematic and dynamic analysis based on the kinematic structure
of mechanisms. This first stage could provide the following advantages over other methods currently in use:

o Automatization of the initial phase of topological and structural analysis.



Allows the selection of the structural transformation that best suit the problem at hand (parallelization,
avoidance of non-programmed groups or groups suffering from singular positions, etc.)

Solution of the structural synthesis and the kinematic and dynamic analyses in one single application.

Automatic selection of the constraint equations for each SG based on the mechanism adjacency ma-
trix, thus limiting the options of making mistakes in this task.

Open selection of coordinates (absolute, relative, natural o mixed) that best suit the problem to be
solved and tthe model definition. The application would make use of the constraint equations pro-
grammed for each SG according to the type of selected coordinates.

Although the proposed method is limited to planar systems, it can be extended to spatial mechanisms and
can also address other features, still to be explored in structural analysis, like pure rolling, multi-revolute
joints and additional degrees of freedom (those found in systems with higher mobility than that correspond-
ing to their topology, due to special geometric configurations).
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