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Abstract

Index-3 augmented Lagrangian formulations with projewiof velocities and accelerations represent an efficietit an
robust method to carry out the forward-dynamics simulabbmultibody systems. They are currently used in a wide
variety of applications, ranging from biomechanics to lyemachinery simulators. Existing formalisms, however, are
only able to deal with kinematic constraints whose expogsat the position level is known. When this expression is not
available, e.g. when non-holonomic constraints enteritteng, the constraint reaction forces yielded by theseréyns
are not correct anymore because they are obtained as adinioétine violation of the constraints at position level aon

In this work, a method to determine the constraint reactands from the expression of the projection of velocities
and accelerations is introduced. The method was testea ifottvard-dynamics simulation of a set of simple examples.
Results showed that the proposed strategy can be used todettpacapabilities of the index-3 augmented Lagrangian
algorithms, making them able to tackle kinematic constsailefined at the velocity level and provide the correct ieact
efforts when non-holonomic constraints are used to modedehiamical system.

Keywords: Multibody system dynamics, index-3 augmented Lagrangithad, projections of velocities and accelera-
tions, velocity-level constraints, non-holonomic coaists, reaction efforts

1 Introduction

The motion of mechanical systems subjected to kinematistcaints is often described with a set of differential algéb
equations (DAE’s). Let us assume that a multibody systemesgmted by a set afgeneralized coordinategis restrained
by m constraints that can be expressed in terms of the genat@omrdinates as

®(q,t)=0 1)
Differentiation of Eq. (1) with respect to time yields
(i):q)q(qvt)Q+(I)t(qvt):0 (2)

where®, = 0®/0q is them x n Jacobian matrix of the configuration-level constraints| @p = 0® /0t is anm x 1
array. Let us further assume that there is another sét cbnstraints whose expression is directly given in term$ef t
generalized velocities of the system, as

~

®(q,q,t) = A(q,t)q+b(q,t) =0 3)

whereA is anri x n matrix that will be termed the Jacobian matrix of the velpdééivel constraints, ant is anm x 1
array. Such constraints may be introduced in the modellinth® system for convenience reasons (e.g. a constraint
relating the angular velocities of two rigid bodies, whog@ression at position level may exist but it is not easy to
obtain), or because their configuration-level expressmesdot exist at all. In this latter case, these constraietsalled
non-holonomic.

The constraint equations introduced in the previous pafgare combined with the dynamic equations of the system

MG +c=Q.+ Q. 4)
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to fully describe the motion of the constrained system. In(@y M stands for the: x n mass matrixg is the array of
Coriolis and centrifugal forces, ar@d, andQ.. represent the applied forces and the constraint reactiesgectively.

Together, Egs. (1), (3) and (4) constitute a system of DAEMong the different methods available in the multibody
systems literature to handle such problems, index-3 augpdérmagrangian formulations represent an efficient andlvtdi
way to carry out the forward-dynamics simulation of corisied mechanical systems, and are currently employed in a
wide range of applications (e.g. [1], [2]). Index-3 dynamipiations can be combined with the expressions of a nurherica
integrator to determine the configuration of the system enrbxt time-stepy;; from the values of the generalized
positions at time-ste and their time derivatives, e.g. through a Newton-Raphsemration. Next, the generalized
velocities 11 and accelerationg, 1 at time-stepk + 1 are obtained fromy,,; and the integrator equations. In
this last stage, projecting the obtained arrays onto theesponding constraint manifold is required in order to easu
the satisfaction of the constraints at the velocity and lacagon levels, since only the constraints at positioreleare
enforced in the integration stage.

The index-3 augmented Lagrangian formulation proposebisngaper is based on existing formalisms developed by
Bayo and Ledesma [3] and Cuadrado et al. [4]. These algasithiere originally designed to solely handle holonomic
constraints and they are unable to solve for non-holonoomstraints and to provide correct values of the reactiocef®r
if the expression of the constraints at the configuratioelle/not available.

The present work expands the original formulations to ctivercase in which some of the kinematic constraints are
introduced at the velocity level alone. A new expressiorhefprojection of velocities and accelerations is introdice
impose the satisfaction of the velocity-level constrgiated correct values of the reaction forces associated igtim are
obtained at the end of the projection process.

2 Expression of theindex-3 augmented L agrangian for mulation with the trapezoidal
ruleasintegrator

Following a Lagrangian approach, the constraint reactiooesQ.. in (4) can be expressed as
Q.= @2 - ATX (5)

whereX and) are the Lagrange multipliers corresponding to the positéwoel and velocity-level constraints, respectively.
Substituting (5) in the dynamic equations (4) results ingkjression

Mg=Q - ®Ix - ATX (6)

where the termQ = Q, — c groups both the applied forces and the Coriolis and ceggifterms. The augmented
Lagrangian algorithm described in [3] employs a modifiedraagian formulation [5], according to which the value of
the Lagrange multipliers is proportional to the violatiditle constraints at the configuration, velocity, and acedien
levels, via the introduction of penalty factors. The foratidn was originally developed for holonomic and non-holmic
constraints. The dynamic equations of the system then becom

Mi = Q - ®a (& + 26w +0?8) - BTN - ATa (B +¢) - AN @

wherea anda are them x m andr x i matrices containing the penalty factors associated wilkithematic constraints,
and\* and\* are the Lagrange multipliers of the modified formulationrmeé andw are scalar parameters for the
stabilization of the constraints [6].

Also in [3] the index-3 augmented Lagrangian formulatiothaprojections of velocities and accelerations was de-
veloped for holonomic constraints. Following the same $def[3], the original formulation can be extended to non-
holonomic constraints: a modification of the augmented aagian formulation (7) can be proposed and the tefms
&, &, and® can be dropped from the equation, as they are expected tonbieagked by the projections of velocities
and accelerations onto the corresponding constraint widsif Moreover, the removal of the violation of velocity«
constraints results in the terit being zero as well. Then, Eq. (7) takes the form

Mg + @ A"+ & ad =Q (8)
and the Lagrange multipliets* are obtained upon convergence of the iterative process

A=A +a®i, i=0,1,2,.. 9)
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where subscript stands for the iteration number.

Index-3 augmented Lagrangian formulations deal with E8satd (9) by selecting the configuration of the system
q as the primary variable in the numerical integration preahging forward-dynamics simulations. However, only the
accelerationgj are presentin Eq. (8), and the difference equations of a ricaéntegrator must be used to this end. The
implicit, single-step trapezoidal rule integrator is a ¢oan choice in the literature (e.g. [7]) and it is used in thiwkvas
well. Its expression is a particular case of the Newmark fiaofiintegrators [8]

Qs = gy i + 4 (10)
it = g + 4 (12)
[ (5 - 1> e (2ﬂ 1) ra ¢

whereg = 0.25 andvy = 0.5, andh stands for the integration time-step. The acceleratiomeg-stepk + 1 can be found
using Egs. (10) — (13) as

N 4 2 . 2 4 4, ..
Qe+1 = 3 Qkt1 +ar,  With  qr = (hgq;e + A+ %) (14)
Replacinggy+1 in Eq. (8) yields the dynamic equilibrium at time step- 1
h . h2 h2 -
Maqy+1 + 1 'I'qk_H (a‘IhH_l + Ak-‘rl) — ZQIH_l + Zqu =0 (15)

where a scaling factor? /4 has been introduced in order to improve the numerical bebawif the algorithm. Terndy,
comprises only positions, velocities and acceleratiorisreg stepk, and is therefore known. Accordingly, Egs. (15) and
(9) constitute a nonlinear system of equations in whigh; and\j, ; are the unknowns. Such a system can be solved
by means of Newton-Raphson iteration

of (a)
dq
wherei stands for the iteration number. The right hand side in E@) i€l

2
[f(q)] = % (Mg + @qa® + ;2" — Q) (17)

| (@ -a) =~ (16)

and the approximated tangent matrix

[af (q) h . R

7q 5C+ 7 (230®4 +K) (18)

() e ()

are the so-called stiffness and damping matrices and th@gsent the contribution of the forces to the derivatives of
the residual of Eq. (17). The Lagrange multiplixsin Eq. (9) are also updated during the Newton-Raphson iiterat
for efficiency reasons. Upon convergence, the iterativegs® will yield a set of generalized coordinatgs ; that will
satisfy the position-level constraint equations (1), dr@values of the reaction forces that correspond to tlem,

}%M—&—

where

3 Projections onto the subspace of admissible motion

The algorithm described in the previous section also pesik a result a set of generalized velocitigs, and another

of accelerationsgy; , ;. However, these do not necessarily verify the velocityel@onstraint equations (2) and (3) nor their
time derivatives. In fact, the velocity-level constraiiit€Eq. (3) have not been imposed at all by the described akgori

A mass-orthogonal projection method for velocities ancemations was proposed in [3] to ensure the fulfilment of the
velocity and acceleration-level constraint equationse dhginal method was solely intended to deal with holonomic
constraints, and it is expanded in the following sectionisandle velocity-level constraints as well. It will be shotiat

the Lagrange multipliers associated with these reprebeneiaction forces introduced by the velocity-level caists.
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3.1 Projection of velocities

A set of generalized velocitie§ that verifies the velocity-level constraints (2) and (3) t&nobtained by solving the
following minimization problem

mmV—§<q &) P (4 - a) (20)
st: c®(q,q,t) =c(Pqq+P:) =0
®(q,9,t) =c(Ag+b) =0

whereP is a symmetric and positive definite projection matrix anid a scalar constant used to weigh the constraint
equations. A way to solve this problem is using an augmentegtdngian formulation to transform the constrained
minimization problem (20) into an equivalent unconstrdinee

minV* =

1 (a-q)"P(a—q)+ §C¢Taq>+q>Ta+ 2c¢»Ta<I>+<I>T (21)

N =

whereo and o are the Lagrange multipliers of the minimization problensaasated with the holonomic and non-
holonomic constraints respectively. The same penaltyicestex anda of Eq. (7) have been used in Eq. (21), although
different values could be used. The necessary conditiobtmthe minimum can be expressed as follows

V™
0q

=P(q—-q")+ ci’gai’ + <I>ga' +cATad + ATe
=P(q—q") + cPia(Pqq+ P) + B0 +cATa(Aq+Db)+ATe =0 (22)

Expression (22) is a nonlinear system of equations that eaolved via fixed-point iteration

(P +c®)a®qy+ cATGA) qiy1 = PG — c®la®, — .o —cATab— Ao, (23)
Oi+1 = O0; + C(Xé (24)
01 =0;+ cad (25)

yielding the set of velocitie§.

3.2 Projection of accelerations

The set of acceleratiorg® can be projected onto the subspace of admissible motioowfwify a similar approach. The
problem to solve for the accelerations is the following one

(@-a)" " P@a—a (26)

4.6,8) = ¢ (Pad + e + &) =0

C‘i’(qu,d,t) =c(Ad+Aq+b) =0

minV =

1
2
st: ¢®(q

whereq is a set of accelerations that fulfills the time derivativésanstraint equations (2) and (3). The use of the
augmented Lagrangian method transforms the constraimddigon (26) into
=T

1
min V* = 5(@1 —q)"P (- + 2c<I>Ta<I> +®Tk + 20@ ad+d R (27)
q

wherek andk are the Lagrange multipliers of the minimization problemtfee position-level and velocity-level con-
straints, respectively. Imposing the condition for theststce of a minimum
ov*
oq

=P@-4")+ c‘iﬁa@ + ‘I’gﬁ +cATad + ATk (28)
—P (4 )+ c@la (Qqq g+ <i>t) + o1k

+cATq (Aq+Aq+b) +ATR =0
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and solving with fixed-point iteration
(P + c®lady + cATaA) 4,41 = PG — c®lax (<i>qq + «i>t) — @k — cATa (Aq n b) ~ AR (29)
Kit1 = K; + ca'i) (30)
Riii = Ry + cad 31)

yields the set of acceleratiokis

3.3 Selection of the projection matrix

There is a number of possibilities to select the projectiatrim P and the scalar constant The choice strongly affects
the behaviour of the projection algorithm. In the case of\uacity projections, the selection has a useful physical
meaning in terms of energy dissipation, as it was describg®]i Two alternatives have been explored in this work:

1. The original projections introduced by Bayo and LedesBjaP = M, ¢ = 1. It was proved in [9] that this
selection introduces unconditional dissipation to anpimpatible velocity field in the velocity projections, which
produces a very stable behaviour.

2. The modified projections of Cuadrado et al. [8: = M + h/2 C + h?/4 K, ¢ = h?/4. This choice was
intended to make the leading matrix of the projections obeities and accelerations in Egs. (23) and (29) equal to
the approximate tangent matrix of the Newton-Raphsontiterg18). Therefore, the factorization of the tangent
matrix, carried out to solve system (16) could be used dutiegprojection step. The consideration of velocity-
level constraints, however, introduces a new tedrT @A in the leading matrix of the projections that needs to be
accounted for.

4 Calculation of the constraint reactions from the projection stage

The projection step described in Section 3 modifies the Wtédscand accelerations yielded by the Newton-Raphson
iteration in order to make them fulfil the sets of constraif@sand (3). For those constraints with a readily available
expression at the position level (1), the projection stepaes the violation of the constraints at velocity and agredion
levels that arises due to inaccuracies in the integratiotnoge The Newton-Raphson iteration (16), however, takes ca
of imposing the constraints at the position level, and sadaetion forces associated with them are represented by the
Lagrange multipliers\* of the iterative process. This is not the case of those cainstrdefined only at the velocity-level
(3), which are enforced by the projection step alone. Theti@aforces associated with these constraints can benautai
either from the projection of velocities or from the projectof accelerations.

The projection step transforms the set of accelerationlseo$ystendi* into g. This is equivalent to exerting a force

Q" =M(4-4q") (32)

on the system. For the Bayo and Ledesma projectifns: M, ¢ = 1), Egs. (29)—(31) corresponding to the projection of
accelerations take the form

(M + ®Tad, + ATaA) § = Mg" — ®2a (<i>qq n <i>t) ~ @k, - ATa (Aq + b) “ATR (33)
Kit1 = ki + a® (34)
Riil =R+ ad (35)
The reaction force introduced by the projections can beidtsfrom Egs. (32) and (33) as

Q" = -dla (<I>q(':'1 +Bgq - <i>t) — 0Tk - ATa (Aq +Aq+ b) — AR

=] (ab+r) - AT (a<f> = (36)

Similarly, for the projection of velocities of Egs. (23)5)2
M+ @,a®q+ATaA)q=Mq" — 2 a®, — ® o1 — ATab - A"5, (37)
o1 =0; +adP (38)

Giy1 = 0; + 0P (39)
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The following relation between velocities and acceleraibolds for the trapezoidal rule used as integrator

Qit1 = qx + 5 (Gr + Ar+1) (40)

Substituting Eqg. (40) in Eq. (37)

A . h . .
(M + @, a®, +ATaA) (% T3 (ar + Qk+1)> =

) hoo. . A ~
M <Qk t3 (ar + Qk+1)> - ®ja®, — @ 01 —ATab- Ao, (41)

and so it is possible to obtain the forces introduced by tbhgption from the velocity-level expression as

Q=M@ = (] (ad o) + AT (3% 1 7)) (42)

Finally, the total constraint reaction force acting on tlyetem, considering the contribution of both the Newton-
Raphson iteration and the projection step is given by tHeviahg expression

Qe = @4 (aX7,) + Q" (43)

where the ternQP"°/ can be obtained from either Eq. (36) or (42).

5 Numerical examples

The method to evaluate the constraint reaction forces itestin Section 4 was assessed in the forward-dynamics simu-
lation of a set of simple examples with known analytical §ols.
The first test problem consisted of two point masses linkea ¥iocity constraint that specifies their relative velpcit

in thex direction, shown in Fig. 1.
Iy m, m, —
X

Figure 1. Velocity constraint in the: direction acting between two point masses

If the constraint establishes that the relative velocitiween the two point masses is zdig — @2 = 0), then the
value of the reaction forcgé. exerted by the constraint can be evaluated as

J— (44)
mi + mo

The original algorithms described in [3] and [4] correctlgteirmine the value of the reaction force if the constraint is
expressed at the position level; — x5 — I = 0). However, they are unable to provide the valug/ .oivhen the constraint
is defined at the velocity level; as no position-level camistis exist, there are no Lagrange multipliarsin Eq. (8). The
general formulation introduced in this work was used to iolitiae reaction force from Eq. (43). A 5 s forward-dynamics
simulation was carried out selecting as particular valdéseparameters of the system, = 7 kg, mo = 5kg,/ =3 m,
and f = 2 N. The projection matrix was set B = M, the coefficient: = 1, and the penalty factor for the constraint
equation wasy = 10°. The integration time-step was set#toc= 10~2 s and the limit of iterations for both the Newton-
Raphson convergence and the projections was fixed to 10. tiiétde parameters, the reaction force was computed with
Eq. (43), either using the reaction ford®8"°/ yielded by the projection of accelerations with Eq. (36)le bnes from
the projection of velocities with Eq. (42). In both case® thsult wasf. = 0.833 N, which is the value theoretically
predicted with (44).

The second example consisted of two point masses movingeoiythlane (Fig. 2). The motion of this system was
described with four generalized coordinates, v4, xg, andyg. In this case, the velocity of the mass at paihis
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Figure 2. Non-holonomic constraint restraining the velocity of masw be collinear with segmemt — B

constrained to be pointing towardksat every instant by the velocity-level constraips — ya) ¥4 — (g — 24) §a = 0.

It can be shown that this constraint is non-holonomic, smzequivalent position-level expression can be found for it
Both masses are initially moving with constant velocity = g = 1 m/s, whileg4, = yg = 0. A force fg = 2 N

is acting in the vertical direction on point mags A 5 s long forward-dynamics simulation was carried out vifie
described system of masses, using two different methodsl¥e the dynamic equations. The first one was the direct
solution of the system resulting from expressing Eq. (4hwit.agrangian formulation, establishif)y. = —ATX

M AT |[4]_ Q
[A OHX]_{—Aq—%w@} “9)

The trapezoidal rule was used as integrator, with an integréime-steph = 1073 s.
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Figure 3. Reaction forces acting on massin the x andy directions due to the non-holonomic constraint in the second example,
computed with direct solution (Eqg. (45)) and with the index-3 formulation yithjections

Second, the simulation was repeated with the same parametieig the index-3 augmented Lagrangian formulation
with P = M andc¢ = 1. The reaction forces associated with the non-holonomicttaimt were evaluated using the
results of the projection process as described in Sectid®edults are shown in Fig. 3. The direct solution method and
the augmented Lagrangian formulation yielded the sameti@nsreaction forces. Moreover, the obtained resulté wit
the Lagrangian formulation were the same, regardless ofhehéhe reaction forces were obtained from the projectfon o
accelerations with Eq. (36) or from the projection of velies with Eq. (42).

The last test problem is a three-dimensional rigid whedinglon a horizontal plane (Fig. 4). This system was
modelled using a set of 12 natural coordinates [10], rewthby a set of constraint equations, defined both at theigosit
and the velocity levels. The set of natural coordinates ewag thex, y andz coordinates of the center of the wheel
(P) and three unit vectorg, ¥, andw that form the local reference frame of the wheel. At time 0 s, vectorsi, v,
and are aligned with the inertial reference framey, z. Six kinematic constraints were introduced to enforce that
the set of coordinates behaves as a rigid body. The norm ¢bngag v, andw was constrained to be 1, and the angles
between them were made constant during motion. Moreovervtteel was constrained to roll on the ground plane via
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Figure 4. Wheel rolling on a plane

the introduction of four kinematic constraints. The firseomas a configuration-level constraint to keep constant the
distance between poirit and the ground. If the equation of the ground plane in theiadeeference frame is given by
nax + mpy + nez + ng = 0, this is achieved with the constraint

[NaTpe + MoTpy + Nelps + ngl — ry/n2 +n2 +n2 =0 (46)

wherer,,, r,y, andr,. are thex, y, andz components of the position vector of poifit r », andr is the wheel radius.
Moreover, defining th8 x 3 matrix

X:[uvw} 47

whereu, v, andw are the arrays of generalized coordinates associated wétorsi, ¥, andw, allows writing the
skew-symmetric matrix associated with the angular veyagithe wheel as [11]

o =XX" (48)
The rolling condition for the wheel when the camber angleésa® be expressed as
irp —rXXTn=0 (49)

wheren is the normal to the ground plane. Eq. (49) introduces thedecity-level equations in the set of kinematic
constraints, which in general cannot be reduced to an dguiveonfiguration-level expression.

The wheel moves under gravity effects and the action of azbotal force of magnitudg acting on the positive
direction of they axis. The resultant motion is a planar rolling containedhia 4y plane. The imposition of rolling
introduces two reaction forces with magnitudgsand f; in the normal and tangent directions at the contact point,
respectively. While the normal force can be obtained witlitienal index-3 formulations, as it is introduced by the
position-level constraint (46), reactiofy is generated by the rolling condition (49) and it cannot bantb with the
existing algorithms.

A 5 s forward-dynamics simulation of the motion of the wheelsvearried out selecting as particular values for the
wheel parameters: = 2.5467 kg, » = 0.175 m, andl,, = 0.045224 kgm?. The value of the applied force was set to
f =2 Nbetweent = 1.5 sandt = 2.5 s, and tof = 0 N during the rest of the motion. With these values, the reacti
force f; can be determined using the free body diagram of the wheelialtie isf; = 0.734 N betweery = 1.5 s and
t = 2.5 s, andf; = 0 N otherwise. Eqgs. (36) and (42) were used to evalfiathuring the simulation.

Figure 5 shows the value gf, obtained with the projection method. The results obtairrethfthe projection of
accelerations and velocities were almost identical, aeddifference between the two of them remained smaller than
3-107°N.

6 Conclusions

Existing index-3 augmented Lagrangian formalisms weredsstigned to tackle kinematic constraints defined at the
velocity level alone. In particular, the calculation of tleaction forces associated with this kind of constraints net
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Figure5. Tangent reaction forcg, during motion of the single wheel.

possible, as the Lagrange multipliers in these algorithepedd only on the violation of constraints at the configorati
level. In this work, a simple and efficient technique to obtiie reaction forces introduced by velocity-level conatsa
was presented. Such reaction forces are computed via a oatiifi of the projection of velocities and acceleration®on
the subspace of admissible motion, a step that was alreadgmtrin the original algorithms. Results obtained from the
forward-dynamics simulation of simple examples showed e method is able to yield correct values of the reaction
forces associated with velocity-level constraints, idahg non-holonomic ones.
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