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Abstract

Index-3 augmented Lagrangian formulations with projections of velocities and accelerations represent an efficient and
robust method to carry out the forward-dynamics simulationof multibody systems. They are currently used in a wide
variety of applications, ranging from biomechanics to heavy machinery simulators. Existing formalisms, however, are
only able to deal with kinematic constraints whose expression at the position level is known. When this expression is not
available, e.g. when non-holonomic constraints enter the picture, the constraint reaction forces yielded by these algorithms
are not correct anymore because they are obtained as a function of the violation of the constraints at position level alone.

In this work, a method to determine the constraint reaction forces from the expression of the projection of velocities
and accelerations is introduced. The method was tested in the forward-dynamics simulation of a set of simple examples.
Results showed that the proposed strategy can be used to expand the capabilities of the index-3 augmented Lagrangian
algorithms, making them able to tackle kinematic constraints defined at the velocity level and provide the correct reaction
efforts when non-holonomic constraints are used to model a mechanical system.

Keywords: Multibody system dynamics, index-3 augmented Lagrangian method, projections of velocities and accelera-
tions, velocity-level constraints, non-holonomic constraints, reaction efforts

1 Introduction

The motion of mechanical systems subjected to kinematic constraints is often described with a set of differential algebraic
equations (DAE’s). Let us assume that a multibody system represented by a set ofn generalized coordinatesq is restrained
by m constraints that can be expressed in terms of the generalized coordinates as

Φ (q, t) = 0 (1)

Differentiation of Eq. (1) with respect to time yields

Φ̇ = Φq (q, t) q̇ + Φt (q, t) = 0 (2)

whereΦq = ∂Φ/∂q is them × n Jacobian matrix of the configuration-level constraints, and Φt = ∂Φ/∂t is anm × 1
array. Let us further assume that there is another set ofm̂ constraints whose expression is directly given in terms of the
generalized velocities of the system, as

Φ̂ (q, q̇, t) = A (q, t) q̇ + b (q, t) = 0 (3)

whereA is anm̂ × n matrix that will be termed the Jacobian matrix of the velocity-level constraints, andb is anm̂ × 1
array. Such constraints may be introduced in the modelling of the system for convenience reasons (e.g. a constraint
relating the angular velocities of two rigid bodies, whose expression at position level may exist but it is not easy to
obtain), or because their configuration-level expression does not exist at all. In this latter case, these constraints are called
non-holonomic.

The constraint equations introduced in the previous paragraph are combined with the dynamic equations of the system

Mq̈ + c = Qa + Qc (4)
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to fully describe the motion of the constrained system. In Eq. (4), M stands for then × n mass matrix,c is the array of
Coriolis and centrifugal forces, andQa andQc represent the applied forces and the constraint reactions,respectively.

Together, Eqs. (1), (3) and (4) constitute a system of DAE’s.Among the different methods available in the multibody
systems literature to handle such problems, index-3 augmented Lagrangian formulations represent an efficient and reliable
way to carry out the forward-dynamics simulation of constrained mechanical systems, and are currently employed in a
wide range of applications (e.g. [1], [2]). Index-3 dynamicequations can be combined with the expressions of a numerical
integrator to determine the configuration of the system in the next time-stepqk+1 from the values of the generalized
positions at time-stepk and their time derivatives, e.g. through a Newton-Raphson iteration. Next, the generalized
velocities q̇k+1 and accelerations̈qk+1 at time-stepk + 1 are obtained fromqk+1 and the integrator equations. In
this last stage, projecting the obtained arrays onto the corresponding constraint manifold is required in order to ensure
the satisfaction of the constraints at the velocity and acceleration levels, since only the constraints at position level are
enforced in the integration stage.

The index-3 augmented Lagrangian formulation proposed in this paper is based on existing formalisms developed by
Bayo and Ledesma [3] and Cuadrado et al. [4]. These algorithms were originally designed to solely handle holonomic
constraints and they are unable to solve for non-holonomic constraints and to provide correct values of the reaction forces
if the expression of the constraints at the configuration level is not available.

The present work expands the original formulations to coverthe case in which some of the kinematic constraints are
introduced at the velocity level alone. A new expression of the projection of velocities and accelerations is introduced to
impose the satisfaction of the velocity-level constraints, and correct values of the reaction forces associated with them are
obtained at the end of the projection process.

2 Expression of the index-3 augmented Lagrangian formulation with the trapezoidal
rule as integrator

Following a Lagrangian approach, the constraint reaction forcesQc in (4) can be expressed as

Qc = −ΦT
qλ − ATλ̂ (5)

whereλ andλ̂ are the Lagrange multipliers corresponding to the position-level and velocity-level constraints, respectively.
Substituting (5) in the dynamic equations (4) results in theexpression

Mq̈ = Q − ΦT
qλ − ATλ̂ (6)

where the termQ = Qa − c groups both the applied forces and the Coriolis and centrifugal terms. The augmented
Lagrangian algorithm described in [3] employs a modified Lagrangian formulation [5], according to which the value of
the Lagrange multipliers is proportional to the violation of the constraints at the configuration, velocity, and acceleration
levels, via the introduction of penalty factors. The formulation was originally developed for holonomic and non-holonomic
constraints. The dynamic equations of the system then become

Mq̈ = Q − ΦT
qα

(
Φ̈ + 2ξωΦ̇ + ω2Φ

)
− ΦT

qλ∗ − ATα̂
(

˙̂
Φ + ξΦ̂

)
− ATλ̂∗ (7)

whereα andα̂ are them×m andm̂×m̂ matrices containing the penalty factors associated with the kinematic constraints,
andλ∗ andλ̂∗ are the Lagrange multipliers of the modified formulation. Terms ξ andω are scalar parameters for the
stabilization of the constraints [6].

Also in [3] the index-3 augmented Lagrangian formulation with projections of velocities and accelerations was de-
veloped for holonomic constraints. Following the same ideas of [3], the original formulation can be extended to non-
holonomic constraints: a modification of the augmented Lagrangian formulation (7) can be proposed and the termsΦ̈,

Φ̇, ˙̂
Φ, andΦ̂ can be dropped from the equation, as they are expected to be eliminated by the projections of velocities

and accelerations onto the corresponding constraint manifolds. Moreover, the removal of the violation of velocity-level
constraints results in the term̂λ∗ being zero as well. Then, Eq. (7) takes the form

Mq̈ + ΦT
qλ∗ + ΦT

qαΦ = Q (8)

and the Lagrange multipliersλ∗ are obtained upon convergence of the iterative process

λ∗
i+1 = λ∗

i + αΦi+1, i = 0, 1, 2, ... (9)
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where subscripti stands for the iteration number.
Index-3 augmented Lagrangian formulations deal with Eqs. (8) and (9) by selecting the configuration of the system

q as the primary variable in the numerical integration process during forward-dynamics simulations. However, only the
accelerations̈q are present in Eq. (8), and the difference equations of a numerical integrator must be used to this end. The
implicit, single-step trapezoidal rule integrator is a common choice in the literature (e.g. [7]) and it is used in this work as
well. Its expression is a particular case of the Newmark family of integrators [8]

q̇k+1 =
γ

βh
qk+1 + ˆ̇qk (10)

q̈k+1 =
1

βh2
qk+1 + ˆ̈qk (11)

ˆ̇qk = −
[

γ

βh
qk +

(
γ

β
− 1

)
q̇k +

(
γ

2β
− 1

)
hq̈k

]
(12)

ˆ̈qk = −
[

1

βh2
qk +

1

βh
q̇k +

(
1

2β
− 1

)
q̈k

]
(13)

whereβ = 0.25 andγ = 0.5, andh stands for the integration time-step. The acceleration at time-stepk + 1 can be found
using Eqs. (10) – (13) as

q̈k+1 =
4

h
qk+1 + ˆ̈qk, with ˆ̈qk = −

(
4

h2
qk +

4

h
q̇k + q̈k

)
(14)

Replacing̈qk+1 in Eq. (8) yields the dynamic equilibrium at time stepk + 1

Mqk+1 +
h2

4
ΦT

q k+1

(
αΦk+1 + λ∗

k+1

)
− h2

4
Qk+1 +

h2

4
Mˆ̈qk = 0 (15)

where a scaling factorh2/4 has been introduced in order to improve the numerical behaviour of the algorithm. Term̂̈qk

comprises only positions, velocities and accelerations attime stepk, and is therefore known. Accordingly, Eqs. (15) and
(9) constitute a nonlinear system of equations in whichqk+1 andλ∗

k+1 are the unknowns. Such a system can be solved
by means of Newton-Raphson iteration

[
∂f (q)

∂q

]

i

(qi+1 − qi) = − [f (q)]i (16)

wherei stands for the iteration number. The right hand side in Eq. (16) is

[f (q)] =
h2

4

(
Mq̈ + ΦqαΦ + ΦT

qλ∗ − Q
)

(17)

and the approximated tangent matrix
[
∂f (q)

∂q

]
≈ M +

h

2
C +

h2

4

(
ΦT

qαΦq + K
)

(18)

where

K = −
(

∂Q

∂q

)
; C = −

(
∂Q

∂q̇

)
(19)

are the so-called stiffness and damping matrices and they represent the contribution of the forces to the derivatives of
the residual of Eq. (17). The Lagrange multipliersλ∗ in Eq. (9) are also updated during the Newton-Raphson iteration
for efficiency reasons. Upon convergence, the iterative process will yield a set of generalized coordinatesqk+1 that will
satisfy the position-level constraint equations (1), and the values of the reaction forces that correspond to them,λ∗.

3 Projections onto the subspace of admissible motion

The algorithm described in the previous section also provides as a result a set of generalized velocitiesq̇∗
k+1 and another

of accelerations̈q∗
k+1. However, these do not necessarily verify the velocity-level constraint equations (2) and (3) nor their

time derivatives. In fact, the velocity-level constraintsin Eq. (3) have not been imposed at all by the described algorithm.
A mass-orthogonal projection method for velocities and accelerations was proposed in [3] to ensure the fulfilment of the
velocity and acceleration-level constraint equations. The original method was solely intended to deal with holonomic
constraints, and it is expanded in the following sections tohandle velocity-level constraints as well. It will be shownthat
the Lagrange multipliers associated with these represent the reaction forces introduced by the velocity-level constraints.
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3.1 Projection of velocities

A set of generalized velocitieṡq that verifies the velocity-level constraints (2) and (3) canbe obtained by solving the
following minimization problem

min V =
1

2
(q̇ − q̇∗)T P (q̇ − q̇∗) (20)

s.t : cΦ̇ (q, q̇, t) = c (Φqq̇ + Φt) = 0

cΦ̂ (q, q̇, t) = c (Aq̇ + b) = 0

whereP is a symmetric and positive definite projection matrix andc is a scalar constant used to weigh the constraint
equations. A way to solve this problem is using an augmented Lagrangian formulation to transform the constrained
minimization problem (20) into an equivalent unconstrained one

min
q̇

V ∗ =
1

2
(q̇ − q̇∗)T P (q̇ − q̇∗) +

1

2
cΦ̇TαΦ̇ + Φ̇Tσ +

1

2
cΦ̂Tα̂Φ̂ + Φ̂Tσ̂ (21)

whereσ and σ̂ are the Lagrange multipliers of the minimization problem associated with the holonomic and non-
holonomic constraints respectively. The same penalty matricesα andα̂ of Eq. (7) have been used in Eq. (21), although
different values could be used. The necessary condition to obtain the minimum can be expressed as follows

∂V ∗

∂q̇
= P (q̇ − q̇∗) + cΦ̇T

q̇αΦ̇ + ΦT
qσ + cATα̂Φ̂ + ATσ̂

= P (q̇ − q̇∗) + cΦT
qα (Φqq̇ + Φt) + ΦT

qσ + cATα̂ (Aq̇ + b) + ATσ̂ = 0 (22)

Expression (22) is a nonlinear system of equations that can be solved via fixed-point iteration
(
P + cΦT

qαΦq + cATα̂A
)
q̇i+1 = Pq̇∗ − cΦT

qαΦt − ΦT
qσi+1 − cATα̂b − ATσ̂i+1 (23)

σi+1 = σi + cαΦ̇ (24)

σ̂i+1 = σ̂i + cα̂Φ̂ (25)

yielding the set of velocitieṡq.

3.2 Projection of accelerations

The set of accelerations̈q∗ can be projected onto the subspace of admissible motion following a similar approach. The
problem to solve for the accelerations is the following one

min V =
1

2
(q̈ − q̈∗)T P (q̈ − q̈∗) (26)

s.t : cΦ̈ (q, q̇, q̈, t) = c
(
Φqq̈ + Φ̇qq̇ + Φ̇t

)
= 0

c
˙̂
Φ (q, q̇, q̈, t) = c

(
Aq̈ + Ȧq̇ + b

)
= 0

whereq̈ is a set of accelerations that fulfills the time derivatives of constraint equations (2) and (3). The use of the
augmented Lagrangian method transforms the constrained problem (26) into

min
q̈

V ∗ =
1

2
(q̈ − q̈∗)TP (q̈ − q̈∗) +

1

2
cΦ̈TαΦ̈ + Φ̈Tκ +

1

2
c

˙̂
Φ

T

α̂
˙̂
Φ +

˙̂
Φ

T

κ̂ (27)

whereκ andκ̂ are the Lagrange multipliers of the minimization problem for the position-level and velocity-level con-
straints, respectively. Imposing the condition for the existence of a minimum

∂V ∗

∂q̈
= P (q̈ − q̈∗) + cΦ̈T

q̈αΦ̈ + ΦT
qκ + cATα̂

˙̂
Φ + ATκ̂ (28)

= P (q̈ − q̈∗) + cΦT
qα

(
Φqq̈ + Φ̇qq̇ + Φ̇t

)
+ ΦT

qκ

+ cATα̂
(
Aq̈ + Ȧq̇ + ḃ

)
+ ATκ̂ = 0
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and solving with fixed-point iteration
(
P + cΦT

qαΦq + cATα̂A
)
q̈i+1 = Pq̈∗ − cΦT

qα
(
Φ̇qq̇ + Φ̇t

)
− ΦT

qκi+1 − cATα̂
(
Ȧq̇ + b

)
− ATκ̂i+1 (29)

κi+1 = κi + cαΦ̈ (30)

κ̂i+1 = κ̂i + cα̂
˙̂
Φ (31)

yields the set of accelerationsq̈.

3.3 Selection of the projection matrix

There is a number of possibilities to select the projection matrix P and the scalar constantc. The choice strongly affects
the behaviour of the projection algorithm. In the case of thevelocity projections, the selection has a useful physical
meaning in terms of energy dissipation, as it was described in [9]. Two alternatives have been explored in this work:

1. The original projections introduced by Bayo and Ledesma [3]: P = M, c = 1. It was proved in [9] that this
selection introduces unconditional dissipation to any incompatible velocity field in the velocity projections, which
produces a very stable behaviour.

2. The modified projections of Cuadrado et al. [4]:P = M + h/2 C + h2/4 K, c = h2/4. This choice was
intended to make the leading matrix of the projections of velocities and accelerations in Eqs. (23) and (29) equal to
the approximate tangent matrix of the Newton-Raphson iteration (18). Therefore, the factorization of the tangent
matrix, carried out to solve system (16) could be used duringthe projection step. The consideration of velocity-
level constraints, however, introduces a new termcATα̂A in the leading matrix of the projections that needs to be
accounted for.

4 Calculation of the constraint reactions from the projection stage

The projection step described in Section 3 modifies the velocities and accelerations yielded by the Newton-Raphson
iteration in order to make them fulfil the sets of constraints(2) and (3). For those constraints with a readily available
expression at the position level (1), the projection step removes the violation of the constraints at velocity and acceleration
levels that arises due to inaccuracies in the integration method. The Newton-Raphson iteration (16), however, takes care
of imposing the constraints at the position level, and so thereaction forces associated with them are represented by the
Lagrange multipliersλ∗ of the iterative process. This is not the case of those constraints defined only at the velocity-level
(3), which are enforced by the projection step alone. The reaction forces associated with these constraints can be obtained
either from the projection of velocities or from the projection of accelerations.

The projection step transforms the set of accelerations of the system̈q∗ into q̈. This is equivalent to exerting a force

Qproj = M (q̈ − q̈∗) (32)

on the system. For the Bayo and Ledesma projections(P = M, c = 1), Eqs. (29)–(31) corresponding to the projection of
accelerations take the form

(
M + ΦT

qαΦq + ATα̂A
)
q̈ = Mq̈∗ − ΦT

qα
(
Φ̇qq̇ + Φ̇t

)
− ΦT

qκi+1 − ATα̂
(
Ȧq̇ + b

)
− ATκ̂i+1 (33)

κi+1 = κi + αΦ̈ (34)

κ̂i+1 = κ̂i + α̂
˙̂
Φ (35)

The reaction force introduced by the projections can be obtained from Eqs. (32) and (33) as

Qproj = −ΦT
qα

(
Φqq̈ + Φ̇qq̇ + Φ̇t

)
− ΦT

qκi+1 − ATα̂
(
Aq̈ + Ȧq̇ + b

)
− ATκ̂i+1

= −ΦT
q

(
αΦ̈ + κi+1

)
− AT

(
α̂

˙̂
Φ + κ̂i+1

)
(36)

Similarly, for the projection of velocities of Eqs. (23)–(25)
(
M + ΦT

qαΦq + ATα̂A
)
q̇ = Mq̇∗ − ΦT

qαΦt − ΦT
qσi+1 − ATα̂b − ATσ̂i+1 (37)

σi+1 = σi + αΦ̇ (38)

σ̂i+1 = σ̂i + α̂Φ̂ (39)
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The following relation between velocities and accelerations holds for the trapezoidal rule used as integrator

q̇k+1 = q̇k +
h

2
(q̈k + q̈k+1) (40)

Substituting Eq. (40) in Eq. (37)

(
M + ΦT

qαΦq + ATα̂A
) (

q̇k +
h

2
(q̈k + q̈k+1)

)
=

M

(
q̇k +

h

2

(
q̈k + q̈∗

k+1

))
− ΦT

qαΦt − ΦT
qσi+1 − ATα̂b − ATσ̂i+1 (41)

and so it is possible to obtain the forces introduced by the projection from the velocity-level expression as

Qproj = M (q̈ − q̈∗) = − 2

h

(
ΦT

q

(
αΦ̇ + σi+1

)
+ AT

(
α̂Φ̂ + σ̂i+1

))
(42)

Finally, the total constraint reaction force acting on the system, considering the contribution of both the Newton-
Raphson iteration and the projection step is given by the following expression

Qc = ΦT
q

(
αλ∗

i+1

)
+ Qproj (43)

where the termQproj can be obtained from either Eq. (36) or (42).

5 Numerical examples

The method to evaluate the constraint reaction forces described in Section 4 was assessed in the forward-dynamics simu-
lation of a set of simple examples with known analytical solutions.

The first test problem consisted of two point masses linked bya velocity constraint that specifies their relative velocity
in thex direction, shown in Fig. 1.

x

y m2
f

m1

l

Figure 1. Velocity constraint in thex direction acting between two point masses

If the constraint establishes that the relative velocity between the two point masses is zero(ẋ1 − ẋ2 = 0), then the
value of the reaction forcefc exerted by the constraint can be evaluated as

fc =
fm2

m1 + m2
(44)

The original algorithms described in [3] and [4] correctly determine the value of the reaction force if the constraint is
expressed at the position level(x1 −x2 − l = 0). However, they are unable to provide the value offc when the constraint
is defined at the velocity level; as no position-level constraints exist, there are no Lagrange multipliersλ∗ in Eq. (8). The
general formulation introduced in this work was used to obtain the reaction force from Eq. (43). A 5 s forward-dynamics
simulation was carried out selecting as particular values of the parameters of the systemm1 = 7 kg, m2 = 5 kg, l = 3 m,
andf = 2 N. The projection matrix was set toP = M, the coefficientc = 1, and the penalty factor for the constraint
equation wasα = 106. The integration time-step was set toh = 10−3 s and the limit of iterations for both the Newton-
Raphson convergence and the projections was fixed to 10. Withthese parameters, the reaction force was computed with
Eq. (43), either using the reaction forcesQproj yielded by the projection of accelerations with Eq. (36) or the ones from
the projection of velocities with Eq. (42). In both cases, the result wasfc = 0.833 N, which is the value theoretically
predicted with (44).

The second example consisted of two point masses moving on the xy plane (Fig. 2). The motion of this system was
described with four generalized coordinatesxA, yA, xB , andyB . In this case, the velocity of the mass at pointA is
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Figure 2. Non-holonomic constraint restraining the velocity of massA to be collinear with segmentA − B

constrained to be pointing towardsB at every instant by the velocity-level constraint(yB − yA) ẋA − (xB − xA) ẏA = 0.
It can be shown that this constraint is non-holonomic, sinceno equivalent position-level expression can be found for it.
Both masses are initially moving with constant velocityẋA = ẋB = 1 m/s, whileẏA = ẏB = 0. A force fB = 2 N
is acting in the vertical direction on point massB. A 5 s long forward-dynamics simulation was carried out withthe
described system of masses, using two different methods to solve the dynamic equations. The first one was the direct
solution of the system resulting from expressing Eq. (4) with a Lagrangian formulation, establishingQc = −ATλ̂

[
M AT

A 0

] [
q̈

λ̂

]
=

[
Q

−Ȧq̇ − 2ξωΦ̂

]
(45)

The trapezoidal rule was used as integrator, with an integration time-steph = 10−3 s.
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Figure 3. Reaction forces acting on massA in the x andy directions due to the non-holonomic constraint in the second example,
computed with direct solution (Eq. (45)) and with the index-3 formulation withprojections

Second, the simulation was repeated with the same parameters using the index-3 augmented Lagrangian formulation
with P = M andc = 1. The reaction forces associated with the non-holonomic constraint were evaluated using the
results of the projection process as described in Section 4.Results are shown in Fig. 3. The direct solution method and
the augmented Lagrangian formulation yielded the same constraint reaction forces. Moreover, the obtained results with
the Lagrangian formulation were the same, regardless of whether the reaction forces were obtained from the projection of
accelerations with Eq. (36) or from the projection of velocities with Eq. (42).

The last test problem is a three-dimensional rigid wheel rolling on a horizontal plane (Fig. 4). This system was
modelled using a set of 12 natural coordinates [10], restrained by a set of constraint equations, defined both at the position
and the velocity levels. The set of natural coordinates comprised thex, y andz coordinates of the center of the wheel
(P ) and three unit vectors~u, ~v, and ~w that form the local reference frame of the wheel. At timet = 0 s, vectors~u, ~v,
and ~w are aligned with the inertial reference framex, y, z. Six kinematic constraints were introduced to enforce that
the set of coordinates behaves as a rigid body. The norm of vectors~u, ~v, and ~w was constrained to be 1, and the angles
between them were made constant during motion. Moreover, the wheel was constrained to roll on the ground plane via
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Figure 4. Wheel rolling on a plane

the introduction of four kinematic constraints. The first one was a configuration-level constraint to keep constant the
distance between pointP and the ground. If the equation of the ground plane in the inertial reference frame is given by
nax + nby + ncz + nd = 0, this is achieved with the constraint

|narpx + nbrpy + ncrpz + nd| − r
√

n2
a + n2

b + n2
c = 0 (46)

whererpx, rpy, andrpz are thex, y, andz components of the position vector of pointP , rP , andr is the wheel radius.
Moreover, defining the3 × 3 matrix

X =
[

u v w
]

(47)

whereu, v, andw are the arrays of generalized coordinates associated with vectors~u, ~v, and ~w, allows writing the
skew-symmetric matrix associated with the angular velocity of the wheel as [11]

ω̃ = ẊXT (48)

The rolling condition for the wheel when the camber angle is 0can be expressed as

ṙP − rẊXTn = 0 (49)

wheren is the normal to the ground plane. Eq. (49) introduces three velocity-level equations in the set of kinematic
constraints, which in general cannot be reduced to an equivalent configuration-level expression.

The wheel moves under gravity effects and the action of a horizontal force of magnitudef acting on the positive
direction of they axis. The resultant motion is a planar rolling contained in the zy plane. The imposition of rolling
introduces two reaction forces with magnitudesfn and ft in the normal and tangent directions at the contact point,
respectively. While the normal force can be obtained with traditional index-3 formulations, as it is introduced by the
position-level constraint (46), reactionft is generated by the rolling condition (49) and it cannot be found with the
existing algorithms.

A 5 s forward-dynamics simulation of the motion of the wheel was carried out selecting as particular values for the
wheel parametersm = 2.5467 kg, r = 0.175 m, andIxx = 0.045224 kgm2. The value of the applied force was set to
f = 2 N betweent = 1.5 s andt = 2.5 s, and tof = 0 N during the rest of the motion. With these values, the reaction
forceft can be determined using the free body diagram of the wheel. Its value isft = 0.734 N betweent = 1.5 s and
t = 2.5 s, andft = 0 N otherwise. Eqs. (36) and (42) were used to evaluateft during the simulation.

Figure 5 shows the value offt obtained with the projection method. The results obtained from the projection of
accelerations and velocities were almost identical, and the difference between the two of them remained smaller than
3 · 10−6 N.

6 Conclusions

Existing index-3 augmented Lagrangian formalisms were notdesigned to tackle kinematic constraints defined at the
velocity level alone. In particular, the calculation of thereaction forces associated with this kind of constraints was not
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Figure 5. Tangent reaction forceft during motion of the single wheel.

possible, as the Lagrange multipliers in these algorithms depend only on the violation of constraints at the configuration
level. In this work, a simple and efficient technique to obtain the reaction forces introduced by velocity-level constraints
was presented. Such reaction forces are computed via a modification of the projection of velocities and accelerations onto
the subspace of admissible motion, a step that was already present in the original algorithms. Results obtained from the
forward-dynamics simulation of simple examples showed that the method is able to yield correct values of the reaction
forces associated with velocity-level constraints, including non-holonomic ones.
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