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Abstract

This paper discusses the use of Sub-System Global Modaimegeezation (SS-GMP) reduced multibody models in
an augmented discrete extended Kalman filter (A-DEKF) tcegatie a general formalism for online coupled state/input
estimation in mechanisms. The SS-GMP approach is propaseztitice a general multibody model of a mechanical
system into a real-time capable model without considenalsiein accuracy. An exponential integration scheme is used
to discretize the model in order to be compatible with digctane filters. Finally, the augmented approach is used for
the estimation, in which the unknown external forces aresictered as additional states to be estimated. The proposed
approach is validated numerically and compared to threerdifkering approaches. The validation demonstrates teat t
proposed approach provides accurate results while stilitaiaing real-time performance.
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1 Introduction

In many mechanical applications, there is a large need twkhe current state of the system: for control purposes it
is crucial to take appropriate action, for health monitgrthe condition of the system has to be known, ... The most
straightforward approach to this problem is the direct raemment of the state of interest. Quite often however, this
is not feasible. Measurement locations can be hard to reaeisors can be prohibitively expensive or no sensor might
even exist for the variable of interest. In order to addraisissue, state estimators have made a huge rise over the las
decades. This rise was kickstarted by the introduction@talman filter [1], and many variations of this approach have
been presented over the years [2]. The main strength of thikad is that it optimally leverages the a-priori knowledge
of a system, by the use of a model, and the measurements.

State-estimators generally require an accurate modetleréo provide good results. Multibody simulation provides
general framework to develop high fidelity models for megbalrsystems [3]. Ideally these models would also be applied
for state-estimation [4, 5]. Unfortunately this last apgb leads to models which cannot be run in real-time togstier
an extended Kalman filter for systems with multiple degreegeedom (DOFs). In order to obtain real-time capable
multibody models, this paper proposes the Sub-System GMbdal Parameterization (SS-GMP) [6]. This method is
a system-level model reduction technique for multibodyteays. Whereas the original GMP approach [7, 8] did not
perform well in the case of multiple DOFs, SS-GMP allows thesibn of a mechanism into multiple submodels which
can be efficiently reduced by GMP and can then be connectddtbgether [9]. In this work the SS-GMP approach is
proposed for systems consisting of rigid bodies and loedliorce elements. A brief summary of the methodology is
provided in Sec. 2.

The second issue for many mechanical systems is the fachthatput-forces are not known. Regular state estimators
assume that the inputs to the system are known, but in peatiiis rarely the case. This typically leads to bias-eroor
the state estimates and degraded performance. In mechsystams it is often of special interest to obtain an esémat
of the external loads to a system as well. This is clearly #eedn vehicle applications where the friction coefficient
[10, 11] and vertical displacement of the road is usuallynovin but crucial for proper control. However this issue can
be extended to many other domains like mechatronics [12]14]3and biomechanics. Several variations of the regular
Kalman filter have been proposed to perform combined staténguut estimation [15, 16, 17]. These approaches can be
categorized undarmknown input observef48] and have the advantage of providing a simultaneousiasitin of states
and forces.
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Figure 1: Reduced coordinates for a SS-GMP

In this work, the augmented Kalman filter, which has beeniagpkith success to linear [19] and nonlinear [10]
mechanical systems, is chosen in order to take the unknguutdiinto account [15]. The augmented approach is applied
to an extended Kalman filter due to the nonlinear equatiomsaifon for the multibody system. Moreover, in order to
maximize real-time performance the filter is described mdiscrete time domain, which is more suitable for efficient
implementation [6]. The resultant filtering approach isaargmented discrete extended Kalman fi{lg&fDEKF). The
algorithm for this filter is discussed in Sec. 3. In order ttedidiscrete time equations from the continuous time equast
of motion for the multibody system, an exponential disaagion [20] is applied.

Finally the proposed approach is validated numericallyan.3. The proposed A-DEKF approach coupled with an
SS-GMP model is shown to be real-time capable through areimghtation in FORTRAN.

2 Connected Sub-System Global Modal Parameterization

In this work the Sub-System Global Modal Parameterizat®®(GMP) approach is proposed as model reduction method
to create models for mechanical systems for use in stat@atstis. This approach was first introduced in the frame of
real-time simulation of flexible multibody systems [9] assdhpplied to rigid mechanisms in this work.

In this section, equations are presented for the planarfoasiee sake of clarity, but results can be easily extended to
the spatial case as presented by Naets [9] for flexible system

The SS-GMP modeling approach consists of two steps [9]:

e Preprocessingduring this phase, the model is split up into sub-modelsivizian be reduced separately. Subse-
quently the reduction, according to the GMP approach [7is§jerformed.

e Processingduring the simulation, the equations of motion for each-swdulel are evaluated based on the interpo-
lation of the stored system matrices and the equations mpexs@ereafter. After each sub-model is evaluated, the
redundant DOFs are eliminated and the equations of motiotméofull system are evaluated.

2.1 Dividing model into sub-models

The SS-GMP is developed specifically for mechanical systghish are the assembly of multiple sub-mechanisms with
closed kinematic loops (Fig. 1). The SS-GMP approach isthasehe division of a complex system into smaller systems
with unconnected independent DOFs except for a common méeshattached frame (MAF), as shown in Fig. 1.

Once the model of the full system is split into sub-modelesthsub-models are reduced according to the GMP
approach such that their behavior can be represented byiae@dinconstrained formulation with a minimal number of
DOFs.

Irrespective of the original model formulation (Cartesiamordinates, natural coordinates, . . .) the reduced gkredta
coordinateg) for one sub-modalare:

Xo

gi= [Pol- 1)
6

The reduced sub-model is described by the posiipand orientatiorpg of its moving reference frame and the relative
mechanism motion with respect to this frame, denoted by anmailset of coordinate§;, as shown in Fig. 1.
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Through a nonlinear transformation, the unreduced DOFssobasystenx; can be obtained from the reduced coor-
dinates:

X = X+R(po)p(6), )
3)

Due to the use of the MAF, a rotation matipp) is required, which transforms the coordinates expresst#drespect
to the local frame to the global frame. In these equatioresntinlinear transformation functigy( ) is defined, which
relates the unreduced coordinates with respect to the MAsHhinimal set of reduced coordinat@s The derivative of
this nonlinear function is defined’as

po =W @)

which is a set of projection modes which are also dependeft.dn the GMP formalism, these nonlinear functions are
determined by sampling the configuration of the system oypeedetermined grid of possible configurations. These con-
figurations are stored and during simulation an Overhaunsergolation is used on this grid, which provides a contiraio
function between the sampling points up to the first denreati

2.2 Equations of motion for sub-models

This section briefly reviews the equations of motion for a-sudel. It is important to notice that these equations are
the same, irrespective of the original modeling approadtis i a major advantage because it implies that the proposed
filtering formalism can be used to generate a KF for any oalginultibody modeling approach without the necessity to
perform any additional derivations of the model to obtain id KF-eligible form.

In this section only the final equations are provided, for ladarivation of these equations the reader is referred to
[9, 6]. The forces which make up the equations of motion casgi¢ into: inertial forces, internal forces and external
forces.

Inertial forces The inertial forces constitute the velocity dependent ggopic forces and the acceleration dependent
forces.
An additional projection matri is required in order to evaluate the inertial forces:

D— {R(po)T 0 ] . (5)

0 Iy me

This transformation matrix transforms the sub-system dioatesy; to the MAF, withm? the number of minimal mech-
anism coordinates. With this projection matrix the subteysmass-matrix is:

M; = D" Mc(8)D. (6)

In this equationM¢(6) is the reduced mass-matrix with respect to the MAF, whictejsathdent on the configuration of
the systen®; with respect to the MAF. The reduced mass-matrix is obtabyeprojecting the unreduced mass-matrix as
described by Naets [9], such that the online computatioasratependent of the unreduced number of DOFs. For the
gyroscopic forces, the derivatives of the mass-matix,, M; g are required [6]. The gyroscopic forces on DQEan
then be computed as:

M3z

Ei

AV .
ayr = (Mi{kqg() G — Eq;rMi,jCIi- (7)

Py
1

1

Internal forces Even though the current work focuses on rigid multibodyeyst, internal forces can still be present due
to the presence of force elements (eg. springs) in the mddhel.reduced internal forc qit are obtained by projecting
the unreduced (nonlinear) internal forde$ onto the reduced DOFs, similar to the process describedLin [2

Fo = o (8)

Fie = O, (9)
T

e = (W) Ru(e(8)). (10)

Lthe derivative of a matrisa with respect to a variable is denoted agp,
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External forces The external forces are assumed as acting on the unreducetirtesx. In order to get the effect on
the reduced DOFs, they should be projected on the derivatike. (2):

Fekt = X,Tqi Fo (11)
In order to be able to evaluate the KF properly, also the dévigs of these forces are required:
Fotar = X0 Fowt T X FoxtoXai - (12)

All force contributions, except for the acceleration degiemt forces, can be consolidated into a generalized forcirve
gi for sub-model:

9i (i, G, Féx) = —Fint () — Foyr(ai, &) — X,Tzqi Foxt (13)
such that the equations of motion for a sub-model can beanrét:
Midi = 0i(di, Gi, Fex)- (14)

2.3 First order system equations of motion

In order to evaluate the full system, a back-transformagioninating the redundant DOFs for the MAFs of the different
sub-models has to be performed. This can be obtained by iagmylinear projectiors onto the coordinates of the
sub-models, such that no additional constraints need tothedto solve the equations of motion [6]:

01
Sqg=|...|. (15)
On
The full mass-matrix and force vector for the full model isrqmosed from the matrices of the sub-models as:
M1 ... O
M = S0 ... 0]S (16)
0 ... My
_ : [91(a1,G1, F)
9(0,9,Fex) = S e . (17)
| On (O, Gn, F)

With this projection, the equations of motion for all the ssystems can be combined into the non-redundant equations
of motion for the full system:
Mg = g(Qa o} Fext)- (18)
In previous works the equations of motion have always beesgmnted in second-order form. The formulations

for state-estimators are however usually derived for brslier systems (exceptions are eg. presented in the work by
Hernandez [22]). Therefore, the equations of motion havetaritten as:

W= f(w,Fext), (29)
with
19
we M . (20)

The nonlinear system equatidrfor the case of these mechanical systems is:

M~g(q, G, Fext)
Furthermore, both the discretization scheme and the KFmethe derivative matri¥ of this equation:
F = [f (W, Fext) g f(w, Fext)-d] . (22)

With these equations, the system can be discretized andtbieded Kalman filter can be evaluated. Even though the
above derivation was made for the planar case (only ondéontparameter), these results can easily be generalizéé to t
spatial case. In the following section these equationsheilexploited to create a coupled state/input-estimator.

FFen) = |1 10 Fo | (21)
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3 Augmented discrete extended Kalman filter

In this work the augmented Kalman filter is used, in which th&nown forcesa are added as additional states to be
estimated. This leads to the augmented state vegtor

W= M | (23)

a
The model for the forces is a random walk model [6]:
a=r,. (24)

In this equatiorr, is continuous time noise, which indicates that the rate ahge is expected to be a random process.
The zeroth order model employed here allows good versdfiitdifferent input forces at a minimal computational load

3.1 Discretization of equations of motion

The discrete extended Kalman filter is most suitable for-tiea¢ purposes because it is specifically developed fotaligi
implementation and allows iteration-less integration. ohder to be able to apply the DEKF to the continuous time
equations of motion of multibody systems, the equationsation need to be discretized.

With the inclusion of the augmented states for the unknoweef®, the continuous time system equations are:

M _ {f(W, Fext+ saa>] N [0] , (25)

a 0 ra

In this equatiorg; is a projection matrix which projects the unknown forcesdabtimated to the corresponding location
in the full force-vector and, is the noise-vector which determines the rate of changesaitiknown forces. This equation
can be summarized as:

W = f*(\Aﬁ‘,Fext)+rW. (26)

This augmented function also has a new derivative méttix

F* — f*(V\ﬁ,FeXt),W*a (27)
M1y T
- ['; M Oxﬁq } (28)

In order to perform the discretization many approachest.exis this work a nonlinear exponential solver, more
specifically the Exponentially Fitted Euler solver, is @pgl[20, 6]. At a given time this method provides a solution for
the states af;:

A,
Wia =W+ [ €00 (0 For) (29)
Moreover, also the derivativigy of this function with respect to the states has to be complotethe Kalman filter [6].
Besides the regular equations of motion, also the diseetiehavior of the expected noise on the model has to be

considered. In this work, the noise on the continuous timkibody model is assumed to be zero and all noise is assumed
on the unknown force, with covarian&. The covariance matrix for the discretized time stigsis:

R =~ F§Ra (F$)" . (30)
In generalR, is not exactly known and is used as a tuning parameter forlteeifi order to get a satisfactory trade-off
between the model and the measurements [19, 6].
3.2 A-DEKF algorithm

The augmented discrete extended Kalman filter (A-DEKF)dppsed in this work to provide a coupled estimation of the
states and inputs to a mechanical system.
The system equations of motion are complemented by theifream) measurement equations:

Yk = (Wi, Fext) +y. (31)



396 F. Naets, R. Pastorino, J. Cuadrado, W. Desmet

5
rloo . 1r.
X

Figure 2: Half-car modeled used for validation.

In this equatiory, contains the sensor measurements obtained by the (nanlimeasurement equatidrwith measure-
ment noiseay with covariancer,.
For the above described set of equations the DEKF-algoriitinm timestegk becomes [2]:

R = FRR R +Rw, (32)
Wy = fa(Wgy,Fex), (33)
Ke = PHT(HR HT+R) ™, (34)
Wt = w4+ Ki(Yk — h(W,~,Fex)), (35)
PY = (I-KH)R, (36)
with
Foa = fa(Wi 1,Fext)w, (37)
H = hW,Fex)w- (38)

In this DEKF approach, first an estimate of the states and-emoariance is computed in Eg. (32)-(33). Based on these
estimates, the Kalman gaky is computed which is used to correct the initial estimatesetiaon the measurements in
Eq. (35)-(36). Itis interesting to notice that the estimatdf the inputs is fully integrated in the regular Kalmarefiltthe
changes are included in the model.

4 Numerical validation

In order to validate the proposed approach, a numericalatdin of the A-DEKF with an SS-GMP model is performed
[6]. The validation is performed in Matlab and the proposppraach is compared to three different approaches to show
consistently superior results. In order to validate the potational efficiency of the A-DEKF with an SS-GMP model,
this method is also implemented in FORTRAN.

Firstly the model used is described. Next the differentrfiltg methods are briefly discussed and finally the simulation
results are shown.

4.1 Model description

In this work a half-car system, shown in Fig. 2, is used todatk the proposed coupled state/input-estimation approac
The system consists of a car-body and a four-bar suspensitiredeft and right side. The properties of each body are
summarized in Table 1.

The suspension is controlled by a spring at each side. Thes&ys each have a constant stiffness dtMOm and
have a linear force-displacement behavior. No dampersdatechin this example.

As external loading, a known gravitational load and vettigdaeel forces, which need to be estimated, are applied.

Five measurements: two accelerometer measurements doenped on the horizontal and vertical position of the
body. These accelerometers are attached to the car-bodiandrovide accelerations in the frame attached to the:body

Furthermore, three gyroscopic measurements are perfoonedneasurement on the angular velocity of the car body
and two measurements for the relative angular velocitiekefower suspension arms. These measurements are chosen
because they present a realistic option since they can berped by low-cost MEMS sensors. For the noise on the
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Table 1: Properties of the different bodies of the half-car

masgkg] rot.iner.kgn?f] b[m  h[m]|
car-body 400 100 0.5 2
beam 1 5 1 0.5 /
beam 2 3 0.7 0.3 /
beam 3 6 1.3 0.5385 /
beam 4 5 1 0.5 /
beam 5 3 0.7 0.3 /
beam 6 6 1.3 0.5385 /

Table 2: Sensor covariances
acc.xp | 0.8m/s”
acc.yp | 0.8m/¢
gyr. po | 0.2rad/s
gyr. 6; | 0.2rad/s
gyr. 6, | 0.2rad/s

measurements, normal white noise is assumed with realsies for MEMS sensors. The covariance for the sensors is
provided in Table 2.

It is important to notice that these measurements do notttead observable system. Over time this will lead to a
divergence of the estimated covariance and the Kalman fiitedeteriorate [23].

A sampling frequency ofHzis used in this work for the measurements and the time-iategrfor the filters is run
at the same frequency so there is a measurement for eacindjlstep.

Reference model The reference model is expressed in Cartesian coordiramtéssf center of gravity for each body. The
constraints on the multibody-system are taken into acctiunugh an R-projection approach [24]. The equations of
motion are integrated with a generalizeesolver [25] with timestep thsand spectral radius, = 0.8.

SS-GMP model The SS-GMP reduced model consists of 2 sub-models, as simowig.il. The MAF is attached at the
center of gravity of the car body for each sub-model. For tw@ameterization of the relative mechanism motthrthe
angle between the car-body and the lower-suspension arhogen in each model. With these choices each sub-model
has four DOFs and the full model has five DOFs. The possiblégumations span the randge= [—0.4,0.63rad with a
discretization step o6 = 2mrad. The storage of the reduced model requir<B.

4.2 Filters for comparison

In order to create some frame of reference for the proposBIEKF, this method is compared to three other methods:

Separate Kalman filtering with model inversiomn this approach each DOF is filtered separately and the festimates
are obtained through a model inversion. This approachésned to as th®KF method in this paper.

A-DKF with linearized model The second estimator which is considered, is the linear aa¢gd discrete Kalman filter
(A-DKF). In this approach the system equations are appratechby a linearization of the multibody equations around
the initial configuration of the system. This approach ignefd to as thé-DKF method in this paper.

DEKF with model inversion In this case a discrete extended Kalman filter (DEKF) is a&gitid the nonlinear SS-GMP
model. For this estimator the states are not augmentediéthrtknown input forces and all forces are assumed constant.
This approach is referred to as th&KF method in the the remainder of this chapter.
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Figure 3: Tracking of measured variables.

A-DEKF Finally the proposed method in this paper is applied. Therarged discrete extended Kalman filter is applied
to the nonlinear SS-GMP model as described in the previai®ss with the two unknown external forces as augmented
states. The uncertainty concentrated in the rate of chahthe ainknown input-forces and their covariance after tgnin
is set atR, = 1e6(N/s)2. This model is also implemented in FORTRAN in order to vetifg real-time capability. This
approach is referred to as tAeDEKF method in this paper.

4.3 Simulation results

First of all, the tracking behavior for the measurementoimpared. Fig. 3 shows the time history of the measurements
and their filtered counterparts. All methods provide rekd§i good results for the tracking of the measured variatileg
strength of the Kalman filtering approach is immediatelyappt when considering the evolution of tiienieasurement.
Fig. 3b shows the A-DKF approach is not able to properly trdek behavior ofy because this motion is caused by
nonlinear couplings in the model which are not present ifitiearized model. The DEKF approach also clearly leads to
bigger errors than the A-DEKF approach because the unknowurt typically leads to biases in the results of the filter.

Furthermore also the behavior of the estimates of the vanian the input forces has to be considered. Fig. 4 shows
the course of the two estimated forces. Fig. 4 further eefotice conclusion that the A-DEKF approach is able to deliver
accurate results. All three model based approaches (A-DIEKF and A-DEKF) however seem to provide relatively
accurate results whereas the DKF method clearly proviggiorfperformance. This is mainly due to the poor tracking of
6, and 8, by the DKF approach and these variables are crucial for thiegsfforces.

The above results clearly demonstrate that the A-DEKF aapraelivers consistently superior results to the other
approaches. The FORTRAN simulation of the A-DEKF estimatith the SS-GMP model only takesd® seconds for
0.4 seconds of simulatioh

2All simulations are performed on an Intel C@ Duo E6550 2.33GHz processor without exploitation of mihiteading
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Figure 4: Estimated input forces.

5 Conclusion

In this paper a methodology is proposed to use Sub-Systetra@todal Parameterization (SS-GMP) reduced multibody
models in an augmented discrete extended Kalman filter (K¥E)Eo generate a general formalism for online coupled
state/input estimation for mechanical systems. The usbeSIS-GMP approach allows generating real-time capable
models from high fidelity multibody models of a mechanicadteyn.

In many mechanical applications it is essential to providestimation of the external input forces since these might
be very difficult, if not impossible, to determine in advanbeorder to allow simultaneous state and input estimaton,
augmented Kalman approach is adopted in which the unknormedare added as additional states to be estimated. A
discrete version of the filter is employed because this allfiw a more efficient implementation. An additional novelty
is the use of an exponential discretization scheme for tdimear SS-GMP equations of motion in order to match the
model to the filter. Through a numerical validation the aacyrof the proposed A-DEKF filter with SS-GMP model is
shown and the FORTRAN implementation of this formalism ikedb run faster than real-time on a standard PC.
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