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ABSTRACT

Multibody simulations are already used in many industries to speed up the development of new products.
However, improvements in multibody formulations and the continuous increase of computational power
open new fields of applications for the multibody simulations, such as using them as a basis for developing
state observers. This work introduces novel state observers developed by combining a multibody model with
some probabilistic estimators from the family of Kalman filters. Together with other multibody-based state
observers already proposed in the literature, have been benchmarked by applying them to a planar four-bar
linkage with different levels of sensor noise and modeling errors. Then, the accuracy of the estimations as
well as the computational costs are examined. It will be shown that the Discrete Iterated Extended Kalman
filter with perfect measurement, a method applied to multibody state estimation for the first time in this
work, provides one of the best trade-offs between efficiency and accuracy.

1 INTRODUCTION

Being able of performing dynamic analyses of complex Multibody Systems (MBS) before manufacturing
is key in achieving more efficient and competitive industries in sectors such as automotive or aeronautics.
Doing so allows the manufacturer to study the expected dynamic behavior of products before building real
prototypes, boosting the testing and development of associated electronic controllers.

However, simulating the dynamics of MBS has other farther-reaching applications, such as devising state
observers. A state observer is a recursive Bayesian estimator [9] aimed at providing a real-time best estima-
tion of some parameters of a machine or vehicle, by means of integrating a more or less accurate multibody
model with the history of sensor measurements. The parameters of interest typically describe the dynamic
state (position, velocities and accelerations) of an interesting part of the model, as it is the case in the present
study. By employing accurate MBS models, we are able to indirectly infer the state of non-accessible parts
of a mechanism where installing a sensor would not be practical; typical sample results are illustrated in
Figure 1. Examples of this problem are estimating tire-ground interaction forces in vehicle dynamics, or
the parameters (e.g. length, mass) of a poorly-modeled part of the vehicle. In fact, previous works have
already explored the possibility of improving the position and orientation estimate for a real vehicle [3].
These examples demonstrate the potential of state observers and, indeed, require much future research.

In this paper we chose to benchmark the behavior of state observers when used in one particular task
with potential commercial applications: replacing existing complex and bulky devices (e.g. encoders) by
smaller and lightweight sensors (e.g. MEMS gyroscopes). It is worth highlighting that, in spite of absolute
orientations of one part not being directly observable from gyroscopic readings (turning rates), the estimator
fuses the sequence of sensory data with a priori knowledge (the MBS model), thus successfully recovering
absolute orientations. Ideally, we should be able to run a state observer in real-time, simultaneously to the
plant or vehicle operation, such that the estimator takes live sensory data and outputs the sought state which
can then be used by control subsystems.

2 METHODOLOGY

In this paper we address a central question in MBS state observers, namely, deciding which estimation
algorithm is the best choice among the large number of possibilities found in the probabilistic estimation
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Figure 1. (a) Example results for state observer tracking the mechanism motion (θ). Here it is shown
the probabilistic confidence interval (shaded area), the ground truth (thick black), the estimator most
likely outcome (thick blue) and the dynamic simulation without sensor-based correction (thin dashed).
Vertical axis stands for the d.o.f. of the mechanism (radians) while horizontal axis represents time steps.
(b) Scaled image of (a).

literature [1, 9]. Therefore, we built a benchmark consisting of a simple mechanism, a planar four-bar
linkage, shown in Figure 2, and performed a statistical analysis of the accuracy and relative efficiency of
a number of estimators. All results rely on simulations in order to have a ground truth suitable for a fair
comparison among the methods. We selected the orientation of the left-most link, θ in Figure 2, to be the
degree of freedom (d.o.f.) to be estimated by the estimators from the readings of one (noisy) gyroscope
which may be placed in any of the three links. Gravity is the only actuating force.
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Figure 2. The four-bar linkage employed as a testbed in this work.

In order to test the different algorithms against difficulties usually found in practice, we intentionally intro-
duced (i) different noise levels to the sensor outcome, and (ii) errors in the magnitude of actuating forces.
Sensor noise or error is inherent to physical measurements and will always be present in real-world con-
ditions. Thus, it becomes crucial to determine whether some methods tolerate more noise than others or
not. Regarding the introduction of force errors, our intention is to characterize the usage of imperfect MBS
models, something also always found in practice since no model will ever fit exactly real physical system.

In this work we focus exclusively on filtering probabilistic estimators, that is, methods devised to provide
an immediate estimate of the mechanism state with the minimum delay since each sensor reading. Other
possibilities, like fixed-lag smoothers or batch estimators [7] may be addressed in future research. We have
evaluated the continuous and discrete-time versions of the Extended Kalman Filter, denoted CEKF and
DEKF, respectively. The Unscented Kalman Filter (UKF), better suited to cope with strong nonlinearities,
has been also included in the benchmark. In these three cases, which have been separately explored in
previous related works [3, 8], the filter state only comprises independent coordinates. Additionally, we
propose applying to MBS another existing algorithm (the Smoothly constrained Kalman Filter, or SCKF)



n Number of dependent coordinates
m Number of constraints

g = n−m Number of degrees of freedom
z Vector of independent coordinates

q = q(z) Vector of dependent coordinates
Φ(q) = 0 Constraint equations
Φq, Φx Jacobian of Φ with respect to q̂, x̂

M Mass matrix
Q Vector of generalized forces

x, x̂ Real value and estimation of the filter state vector
x̂−k , x̂

+
k Estimation mean at time step k, before and after the update stage

P−k ,P
+
k Estimation covariance at time step k, before and after the update stage

f(·), fx, fq Transition model and its Jacobians w.r.t. x̂ and q̂
h(·),hx,hq Observation (sensor) model and its Jacobians w.r.t. x̂ and q̂

ok Sensor measurements at time step k
ΣP Covariance matrix of system transition ("plant") noise
ΣS Covariance matrix of sensors noise
K Kalman gain matrix
IN The N ×N unit matrix

Table 1. Notation summary.

and introduce new ones, i.e. two variations of an iterated DEKF with dependent coordinates.

3 PROBABILISTIC STATE ESTIMATORS FOR MBS DYNAMICS

Next we introduce the different filtering algorithms that are benchmarked in this work. In spite of all of
them being considered derived methods of the linear Kalman Filter (KF) [6], further method-specific details
are in order due to the variety of subtleties in the different approaches with regard to how they handle
nonlinearities, assumptions about the existence of constraints or not in the state space, etc. The reader can
refer to Table 1 as a summary of the notation employed in the following.

A first fundamental classification of state estimators consists of distinguishing between those whose state
vector comprises the independent coordinates only and those that include a complete set of redundant,
dependent coordinates. The former family of estimators is the largest and comprises the oldest methods,
since most probabilistic estimators proposed in the estimation and control theory literature assume a state
vector in an n-dimensional Euclidean space (q̂ ∈ Rn), free of constraints. The underlying assumption is that
each coordinate is, in principle, totally independent from the rest. It is only thanks to the cross-covariance
terms of the estimate uncertainty and to the model and observation Jacobians that we can indirectly estimate
all variables by means of an arbitrary observation function that depends on a subset of them. On the other
hand, we find dependent coordinate methods, which have been proposed in the literature to handle the
case of intra-state vector dependencies, exactly the situation found in MBS dynamics, i.e. via Φ(q̂) = 0.
We firstly explore the solutions aimed at independent coordinate formulations, then address the dependent
coordinate methods in section 3.2. In all cases we will directly present the equations of each filter as they
should apply to the problem of MBS state estimation.

3.1 Independent coordinates filters

3.1.1 Continuous extended Kalman filter (CEKF)

This formulation was already described in some previous works [2] but will be reproduced here for the
convenience of readers. The main idea under this formulation is to adapt the multibody equations in order
to fit the Kalman filter structure. In its most basic form, the dynamics of a multibody system is described



by the constrained Lagrangian equations:{
Mq̈ + Φq

>λ = Q
Φ = 0

(1)

As the multibody equations are expressed in the form of continuous-time differential equations, they contin-
uous Kalman filter equations must be selected as well. The multibody formalism employed is the R-matrix
formulation [5]. The main idea behind this formulation is to obtain an ODE with dimension g equal to the
number of degrees of freedom, starting with the identity q̇ = Rż, which relates dependent and independent
velocities. Accelerations can be then expressed as follows:

q̈ = Rz̈ + Ṙż (2)

Going back to Eq. (1), premultiplying by the transpose of R, and having in mind that ΦqR = 0,

z̈ =
(
R>MR

)−1 [
R>

(
Q−MṘż

)]
= M̄−1Q̄ (3)

If now the filter state is defined as the vector x> =
{
z>, ż>

}
, it turns out that:{

ż
z̈

}
=

{
ż

M̄−1Q̄

}
⇒ ẋ = f (x) (4)

These equations perfectly fit the continuous extended Kalman filter equation, so they can be straightfor-
wardly applied. In particular, the state-space transition matrix is obtained as the linearization:

A =
∂f

∂x
=

 0 I
∂
(
M̄−1Q̄

)
∂z

∂
(
M̄−1Q̄

)
∂ż

 (5)

which can be approximated by:

A '
[

0 I
A21 A22

]
(6a)

A21 = −M̄−1R>
(
K̄R + 2Rq̂Rz̈

)
(6b)

A22 = −M̄−1R>(C̄R + MṘ) (6c)

where K̄ and C̄ are the stiffness and damping matrices, respectively. In this case the size of the problem is
2g. Next, we introduce the CEKF correction stage [9], which fuses the sensor information into the filter,
leading to:

ż− ˆ̇z + K̄z(y − o) = 0 (7a)
M̄z̈− Q̄ + M̄K̄ż(y − o) = 0 (7b)

In order to numerically integrate the result of the filter, the implicit single-step trapezoidal rule has been
selected as integrator:

ˆ̇zn+1 =
2

∆t
ẑn+1 −

(
2

∆t
ẑn + ˆ̇zn

)
(8a)

ˆ̈zn+1 =
2

∆t
ˆ̇zn+1 −

(
2

∆t
ˆ̇zn + ˆ̈zn

)
(8b)

Combining Eq. (7) and Eq. (8) leads to the following nonlinear system,{
g1(x̂n+1) = 0
g2(x̂n+1) = 0

⇒ g(x̂n+1) = 0 (9)

This system can be iteratively solved, e.g. by means of the Newton-Raphson method, employing the fol-
lowing approximate Jacobian matrix:

∂g

∂x
=

 2

∆t
I −I

R>K̄R R>(C̄R + MṘ) +
2

∆t
M̄

+

 K̄zhz K̄zhż

M̄K̄żhz M̄K̄żhż

 (10)

where hz and hż are the position and velocity parts of the sensor Jacobian matrix.



3.1.2 Discrete extended Kalman filter (DEKF)

This is the discrete-time version of CEKF described above. A key difference between CEKF and the rest of
estimators described from now on, which work in discrete time steps, is that the filter formulation clearly
consists of two separated stages: state transition (also called prediction) and state update. The former relies
on the transition model of the system (dynamical equations) while the latter includes the information from
sensors, or observations – this is in contrast to CEKF where both stages are seamlessly fused together.

Each stage comprises differentiated equations for updating the state vector and the covariance matrix. Start-
ing with the prediction stage, the EKF equations in their most generic form are:

x̂−k = f(x̂+
k−1) (11a)

P−k = fxk−1P
+
k−1fx

>
k−1 + ΣP

k−1 (11b)

where f(·) stands for the transition model of the system. By considering now the state vector of a MBS
estimator in independent coordinates, x̂> =

{
ẑ>, ˆ̇z>

}
, and assuming the usage of the Euler method for

numerical integration with time step ∆t, we can put the integrator in a form that fits that required by the
EKF transition function f(·):

x̂−k = f(x̂+
k−1) −→

[
ẑk
ˆ̇zk

]
=

[
ẑk−1 + ∆tˆ̇zk−1
ˆ̇zk−1 + ∆tz̈k−1

]
(12)

Here, the only unknown term is the acceleration vector z̈k−1 for the previous time step, which must be
computed by solving the multibody equations of motions as in Eq. (3). Thus, it follows that the transition
model Jacobian fx has a fairly simple structure:

fx ≡
∂f

∂x̂
=

∂

∂{ẑ, ˆ̇z}

[
ẑ + ∆tˆ̇z
ˆ̇z + ∆tz̈

]
=

[
Ig ∆tIg

0g×g Ig

]
(13)

Regarding the ΣP
k−1 covariance matrix appearing in Eq. (11), it stands for the additional uncertainty of

the new state x̂k, physically attributable to unmodeled forces and errors in the parameterization of the
mechanism (e.g. lengths of bars, inertia values, etc.). Assuming independent and identically distributed
(iid) Gaussian noise for each independent coordinate, its structure becomes:

ΣP
k−1 =

[
σ2
ẑIg 0g×g

0g×g σ2
ˆ̇z
Ig

]
(14)

with the parameters σẑ and σˆ̇z specifying the standard deviations of the assumed noise in position and
velocities, respectively.

The second stage of the DEKF method, the update, incorporates the sensor readings to improve the estimate:

ỹk = ok − h(x̂−k ) (15a)

Sk = hxkP
−
k hx

>
k + ΣS

k (15b)

Kk = P−k hx
>
k S−1k (15c)

x̂+
k = x̂−k + Kkỹk (15d)

P+
k = (Ig −Kkhxk)P−k (15e)

where h(·) stands for the observation model of the system, such that ỹk in Eq. (15a) is clearly the error or
mismatch (often called innovation) between the expected sensor readings and their actual values (ok). The
covariance matrix Sk in Eq. (15b), or innovation covariance, represents the uncertainty in the system state
projected via the sensor function (hxkP

−
k hx

>
k ) plus an additional additive Gaussian noise originated in the

sensor itself (ΣS
k ). Small values of Sk mean that the observation introduces useful information to constrain

the estimation of the system state. By evaluating the temporary term known as Kalman gain (Kk) we can
update the estimate mean and covariance, in Eq. (15d) and Eq. (15e), respectively. These values are then
used as the input to the next iteration of this iterative filter in the next time step.



3.1.3 Discrete iterated EKF with virtual acceleration sensor (DIEKF_acc)

The Iterated version of the EKF is more suitable to handle nonlinearities in the system models and also
should provide a more accurate estimation thanks to the reduction in the errors introduced by the first-order
linear approximation of the observation function in the underlying least-squares optimization problem [9].

In this work we propose to exploit this possibility by defining a DIEKF estimator over the entire dynamical
state of the system, including its accelerations, that is x̂> =

{
ẑ>, ˆ̇z>, ˆ̈z>

}
. Then, we will augment the

observation function to include, not only the real sensors, but also a virtual observation of the independent
accelerations as they should be according to the equations of motion. For each time step, the estimator will
then iterate until it finds the state that best matches both the sensor readings and the expected accelerations.

The prediction stage is similar to that of DEKF in Eq. (11), where the transition function and its Jacobian
are slightly modified to account for the acceleration in the state vector. Assuming a constant acceleration
motion model and an Euler integrator, we have: ẑk

ˆ̇zk
ˆ̈zk

 = f(x̂k−1) =

 ẑk−1 + ∆tˆ̇zk−1
ˆ̇zk−1 + ∆tˆ̇zk−1

ˆ̈zk−1

 (16a)

fx ≡ ∂f

∂{ẑ, ˆ̇z, ˆ̈z}
=

 Ig ∆tIg 0g×g
0g×g Ig ∆tIg
0g×g 0g×g Ig

 (16b)

The difference between DEKF and DIEKF comes with the update stage, which now turns into an iterative
evaluation of the terms x̂+

i , Kk,i and Pk,i with i = 0, 1, ... the iteration count. In this case, the update
equations read:

Kk,i = P−k hxk,i
>
(
hxk,iP

−
k hxk,i

> + ΣS
k

)
︸ ︷︷ ︸

Innovation covariance

−1
(17a)

x̂+
k,i = x̂−k + Kki

(
ok − h(x̂+

k,i)
)

︸ ︷︷ ︸
Innovation

(17b)

P+
k = (Ig −Kk,ihxk,i)P

−
k (17c)

Iterations end when the increment in the state vector is below some predetermined threshold. Notice that
Eq. (17c), which is the most costly operation, can be evaluated only once after the end of the iterative
process for the sake of efficiency.

3.1.4 Unscented Kalman filter (UKF)

The Unscented Kalman Filter (UKF) [11] is an evolution of the family of Kalman filters that is better suited
to cope with strong nonlinearities in the transition and observation models. Comprising the same prediction
and update stages than DEKF, the differentiating feature of UKF is the avoidance of the first order Taylor
approximation in the propagation of Gaussian random variables through the transition and observation func-
tions. Instead, a set of samples are deterministically-chosen from the Gaussian distributions, transformed
via the corresponding function, then those samples in the transformed space converted back into a para-
metric distribution, i.e. they are used to compute the mean and covariance of the corresponding Gaussian.
As shown in [11], this approach captures the correct posterior mean and covariance up to the third order
of a Taylor series expansion, in contrast to the first order of DEKF and most other methods. In turn, its
computational cost is in general higher than simpler methods.

For the present benchmark, the state vector of UKF comprises the independent coordinates and their veloc-
ities, that is, x̂> =

{
ẑ>, ˆ̇z>

}
. As mentioned above, each filter iteration comprises the same two steps than

DEKF, so only the differences will be highlighted here. Denoting the dimensionality of the state space |x̂|
as L, a total of 2L + 1 deterministic samples (or sigma points) χi with i = 0, ..., 2L are generated from



the mean x̂+
k−1 and covariance P+

k−1, each with a different weight Wi. Then, the samples are transformed
with a forward Euler transition function identical to that of previous filters, and the predicted mean x̂−k
and covariance P−k estimated from them. A similar process apply to the propagation of the uncertainty in
observations, taking into account both the uncertainty in the system state and the sensor noise (refer to the
two terms in the innovation covariance of DEKF above). The reader is referred to the original work [11] for
the filter equations, not reproduced here for the sake of conciseness.

3.2 Dependent coordinates filters

One problem of the previous filters is that we have a direct estimate of the value and uncertainty of only
the independent coordinates of the multibody system. This implies the need to solve position and velocity
problems at every time step, which is time consuming. For this reason it may be desirable to have the
multibody constraints inside the observer equations, although they do not fit Kalman filter equations in an
obvious way. Next we explore two different alternatives to achieve it.

3.2.1 Smoothly constrained Kalman filter (SCKF)

This filter is based in the algorithm described in [4]. In this filter, the state x̂ is build with the whole
multibody coordinates and velocities vectors q̂ and ˆ̇q. The SCKF transition function is built assuming the
forward Euler integrator:

x̂−k = f(x̂+
k−1) −→

[
q̂k
ˆ̇qk

]
=

[
q̂k−1 + ∆tˆ̇qk−1
ˆ̇qk−1 + ∆tˆ̈qk−1

]
(18)

Thus, the transition model Jacobian is as follows:

fx ≡
∂f

∂{q̂, ˆ̇q}
=

[
In ∆tIn

0n×n In

]
(19)

and the covariance matrix is updated as:

P−k = fxP+
k−1fx

> + ΣP (20)

After the time update, the measurement update is undertaken, but taking into account only the measurements
coming from the sensors:

Kk = P−h>(hP−h> + ΣS)−1 (21)

x̂+
k,0 = x̂−k + Kk(ok − h(x̂−k )) (22)

Up to now, this is the algorithm of a conventional EKF, but at this moment the states are not expected to fit
the constraints, so an iterative process is started. First the weakening matrix is calculated as follows:

ξ0 = αΦxP+
k,0Φ

>
x (23)

where α is a tuning parameter. This weakening matrix contains virtual noise to be added to the multibody
constraints in order to ease the convergence of the problem. The iterative update is as follows:

K = P+
k,iΦx + (ΦxP+

k,iΦ
>
x + ξi)

−1 (24)

x̂+
k,i+1 = x̂+

k,i −K

[
Φ(x̂+

k,i)

Φ̇(x̂+
k,i)

]
(25)

P+
k,i+1 = (I−KΦx)P+

k,i(I−KΦx)> + Kk,iξiK
>
k,i (26)

ξi+1 = ξie
−β (27)

being β another tuning parameter. This iterative process is performed until the position constraints Φ, and
velocity constraints Φ̇ fit the desired tolerance.



3.2.2 Discrete iterated extended Kalman filter with perfect measurements (DIEKF_pm)

Another approach to expand a standard DIEKF to cope with constraints in its state space is employing so-
called perfect measurements [10]. The key idea consists of augmenting the vector of observations h(x) to
include virtual observations that reflect the fulfillment of the kinematics constraints in both position and
velocities. The augmented observation function h′(x) is strongly nonlinear, hence the application in this
case of an iterated estimator, capable of reducing the linearization errors to acceptable levels.

For the benchmark at hand, the state vector of this estimator comprises the multibody model coordinates
and their derivatives, that is, x̂> =

{
q̂>, ˆ̇q>

}
. We define the augmented observation model h′(x̂) as

the concatenation of the real sensors h(x) and the kinematic constraints in position and velocity, such as
h′(x)> = [h(x)> Φ(x)> Φ̇(x)>]. This affects the calculation of the innovation (or "residual"), which
must compare the actual sensor readings and current constraint errors with their predictions. For all time
steps k and iteration index i, the predicted values of the constrains are always zero, i.e.

yk,i =

[
ok

02n×1

]
− h′(x̂k,i) =

ok − h(x̂k,i)
−Φ(x̂k,i)

−Φ̇(x̂k,i)

 (28)

The adjective "perfect" that names this method comes from the assumption that there is no error source in
the virtual observations. In practice, this implies employing an extended sensor covariance matrix ΣS

k

′ with
the structure:

ΣS
k

′
=

[
ΣS
k 0

0 0

]
(29)

Apart from these extensions, this iterated DEKF filter follows the same prediction and update equations
than the version introduced in section 3.1.3.

4 EXPERIMENTAL RESULTS

All six methods presented in the previous section have been implemented in MATLAB for the specific case
of the four-bar linkage shown in Figure 2 equipped with a noisy gyroscope in the middle bar as the unique
sensor. As mentioned above, we have evaluated increasing levels of two kinds of errors: (i) inaccuracies
in the model (in particular, an incorrect actuating gravity force) and (ii) sensor noise. For each method and
noise level we run the state observer 100 times and compute average statistics in order to obtain statistically-
significant results. With a fixed time step of 5ms, each run simulates 15 seconds of the real system (ground
truth) and the state observer.

Regarding the computational time employed by each method, the results are summarized in Figure 3 in
the form of ratio between computational cost and real time. This parameter is crucial when the aim of the

Figure 3. Execution time for each compared method, as the ratio between computation time and real
time. Lower values mean faster, and those below 1.0 mean faster than real time.
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Figure 4. (a) Root mean average error (RMSE). (b) Average Mahalanobis distance for each method.

observer is to provide feedback for a controller, where it is mandatory to achieve faster than real-time speed.
All methods obtain values below the unity, reflecting that all of them are suitable for real-time operation in
spite of the lack of optimizations and the usage of the MATLAB programming language. It can be seen how
DIEKF with perfect measurements (DIEKF_pm) and DEKF are the most efficient methods. The efficiency
of DIEKF_pm can be explained due to its quick convergence and the lack of separate position and velocity
problems, present in the independent coordinate methods.

When exposed to errors in the MBS model, particularized as a mismatch in the assumed gravity force,
no statistically significant differences were found among the behavior of all the tested estimators. Such a
results may reflect the fact that all methods are robust enough to tolerate a wide range of errors in the system
model as long as the sensor provides information enough to correct it.

The results for increasing levels of sensor (gyroscope) noise are summarized in Figure 4. Figure 4(a)
illustrates the root mean average error (RMSE) d.o.f. of the mechanism, averaged over the 100 repetitions of
each test case. Interestingly, most methods exhibit a very similar response. When dealing with probabilistic
estimator, the RMSE is not the only accuracy metric that should be benchmarked: Figure 4(b) also shows
the average Mahalanobis distance (MD) from the estimation to the ground truth for each method during the
same experiments. Low MD values reflect either (i) a high accuracy in the estimated mean, or (ii) a filter
that is too pessimistic in its estimation of the uncertainty. That is the reason MD must be contrasted with
RMSE values. In this case, the low RMSE and MD of CEKF mean that it is really accurate in both, the
estimated values and its uncertainty. For the rest of methods, a MD distance threshold of 3.0 is typically
considered as the limit to consider a filter statistically consistent. In other words, a MD above that threshold
indicates that the filter is overconfident in its estimation. CEKF and UKF are the unique methods that do
not become overconfident over the entire range of tested sensor noise, with the rest of methods becoming
inconsistent at some point.

5 CONCLUSIONS

The feasibility of different techniques for the estimation of states in MBS has been analyzed in this paper.
A detailed explanation of each observer and its integration in the multibody model depending on the most
suitable formulation in each case has been carried out. Then, the considered observers have been tested
for predefined conditions of sensor noise, type of error and number of repetitions. This procedure allows
setting the basis for benchmarking new combinations of observers and multibody formulations. This issue
is presented as an interesting approach aimed to the selection of the most appropriate technique according to
the requirements and the availability of sensors in real-world projects, as the case of automotive controllers.
In particular, for the conditions under study in this paper it have been determined that the most computa-
tionally efficient methods are DEKF and DIEKF_pm, while the most accurate observer is CEKF. A good
trade-off between efficiency and accuracy is provided by the DIEKF_pm method, one of the novel methods
introduced in this work.
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