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ABSTRACT
Multibody simulations are already used in many industries to speed up the development of new

products. However, improvements in multibody formulations and the continuous increase of com-

putational power open new fields of applications for the multibody simulations, such as using them

as a basis for developing state observers. This work introduces novel state observers developed

by combining a multibody model with some probabilistic estimators from the family of Kalman

filters. Together with other multibody-based state observers already proposed in the literature,

have been benchmarked by applying them to two mechanisms: a planar four-bar linkage, and a

five-bar linkage. The accuracy of the estimations as well as the computational costs are exam-

ined under several scenarios: using encoders or gyroscopes as sensors, with different sampling

rates for the sensors, and assuming different levels of modeling errors. The results obtained in

this work can be employed to select a suitable state observer for a new application. All methods

have been implemented as a reusable MATLAB toolkit which has been released as Open Source

in .

Keywords: Multibody simulation, State observers, Kalman filtering, Benchmark.

1 INTRODUCTION
Multibody simulations (MBS) are a common practice in the industry to speed up the development

of new products. Since many years ago, this tool was employed offline to predict the behavior

of new concepts, or extreme situations which are difficult or expensive to attain with a prototype.

After that, with the development of new multibody formulations and the increase of computational

power, real-time multibody simulations became a reality, allowing people and machines to interact

with the multibody models in simulators and virtual test benches. Nowadays, with the advent of

low cost, low power consumption computers, a multibody simulation could be run in vehicles or

robots as part of their control algorithms, providing information about immeasurable magnitudes.

The problem with this approach is that, in general, a multibody model can be very accurate in the

short term if the forces are accurately known, but it will diverge over the time.

For this reason, multibody models should be corrected with information from the actual mech-

anisms in order to be used as reliable state observers. One way to reach this aim is employing

information fusion techniques to combine information about multibody models with data provided

by real sensors installed on the machine. A prominent example of information fusion technique

is the Kalman filter (KF) which, however, presents some problems regarding its direct application

to this problem. Firstly, the KF was originally formulated for first order, linear and unconstrained

models, whereas multibody models are, in general, second order, highly nonlinear, and constrained

systems. Moreover, the algorithm should be efficient in order to be run in real time. Because of

these reasons, this is an open field of research. In a previous work [1], some existing methods

[2, 3], and several new formulations were tested with different modeling errors and with different

levels of sensor’s noise.

In this work, two new MBS-based formulations were developed: the errorEKF, an error-state

Kalman filter, and the projectionEKF, a method in dependent coordinates in which a projection

technique is employed to fulfill the constraints of the multibody model, based on the methods
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Figure 1. Mechanisms employed in this work.

proposed in [4]. Their accuracy and performance was compared against the best methods presented

in [1]: the CEKF and the UKF methods for their accuracy, and the DEKF and the DIEKFpm

methods for their performance. The tests performed comprise different kind of sensors, including

gyroscopes and encoders, different levels of modeling errors, and different sampling rates for the

sensors, everything applied to two planar mechanism: a four-bar, and a five-bar linkages.

To provide a reference level for attainable accuracy, to which all these results can be compared, a

batch estimator is applied to the whole history of sensor measurements, based on the non-linear

optimization of the graphical model proposed in [5].

2 METHODOLOGY
At this moment there is a huge amount of different possibilities regarding the design of a state

observer for a multibody model. For this reason, the only feasible approach to perform a large

amount of tests is by means of simulations. For every set of tests, a multibody model is run playing

the role of a real mechanism. This model provides the ground truth, and also is employed to build

the signals from the sensors. To do this, perfect sensors are modeled, and then random noise is

added to their measurements. A second multibody is built, but modifying some of the properties,

to simulate modeling error. Usually, the geometry and the mass properties of any machine can

be known with a great accuracy. However, the level of accuracy in force models is usually not

so good. For this reason, the parameter which is intentionally modified is the acceleration of

gravity. Finally, the state observer is built using the latter multibody model (the imperfect one),

and corrected with the information provided by the sensors built from the simulation of the first

multibody model.

The mechanisms selected for this benchmark are a four-bar and a five-bar linkages (see fig. 1).

The four bar mechanism was selected because is the simplest closed-loop mechanism. The five

bar mechanism is the next step in complexity to check that the algorithms can be generalized to

any number of degrees of freedom. Gravity is the only actuating force.

Every test was run 20 times, and the results were averaged. The different tests performed comprise

the two mechanisms, with tho different levels of error in the magnitude of the gravity, 4 different

sampling rates for the sensors, and two different sets of sensors for every mechanism.

3 DESIGN OF THE OBSERVERS
Next we introduce the different filtering algorithms that are benchmarked in this work. The reader

can refer to table 1 as a summary of the notation employed in this work.
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n Number of dependent coordinates

m Number of constraints

g = n−m Number of degrees of freedom

z Vector of independent coordinates

q= q(z) Vector of dependent coordinates

ΦΦΦ(q) = 0 Constraint equations

ΦΦΦq, ΦΦΦx Jacobian of ΦΦΦ with respect to q̂, x̂
M Mass matrix

Q Vector of generalized forces

x, x̂ Real value and estimation of the filter state vector

x̂−k , x̂
+
k Estimation mean at time step k, before and after the update stage

P−
k ,P

+
k Estimation covariance at time step k, before and after the update stage

f(·), fx, fq Transition model and its Jacobians w.r.t. x̂ and q̂
h(·),hx,hq Observation (sensor) model and its Jacobians w.r.t. x̂ and q̂

ok Sensor measurements at time step k
ΣΣΣP Covariance matrix of system transition ("plant") noise

ΣΣΣS Covariance matrix of sensors noise

K Kalman gain matrix

IN The N ×N unit matrix

Table 1. Notation summary.

3.1 Independent coordinates methods
The Kalman filter assumes that its states are independent. For this reason, the more natural way to

combine a multibody model and a Kalman filter is by using independent coordinates.

3.1.1 Continuous extended Kalman filter (CEKF)
This formulation was already described in some previous works [2] but it will be reproduced here

for the convenience of readers. The main idea under this formulation is to adapt the multibody

equations in order to fit the Kalman filter structure. In its most basic form, the dynamics of a

multibody system is described by the constrained Lagrangian equations:

{
Mq̈+ΦΦΦq

�λλλ = Q
ΦΦΦ = 0 (1)

As the multibody equations are expressed in the form of continuous-time differential equations, it

seems natural to adopt the continuous-time version of the Kalman filter. The multibody formalism

employed is the R-matrix formulation [6]. The main idea behind this formulation is to obtain

an ODE with dimension g equal to the number of degrees of freedom, starting with the identity

q̇= Rż, which relates dependent and independent velocities. Accelerations can be then expressed

as follows:

q̈= Rz̈+ Ṙż (2)

Going back to Eq. (1), premultiplying by the transpose of R, and having in mind that ΦΦΦqR= 0,

z̈=
(
R�MR

)−1 [
R� (

Q−MṘż
)]

= M̄−1Q̄ (3)

If now the filter state is defined as the vector x� =
{
z�, ż�

}
, it turns out that:

{
ż
z̈

}
=

{
ż

M̄−1Q̄

}
⇒ ẋ= f(x) (4)
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These equations perfectly fit the continuous extended Kalman filter equation, so they can be

straightforwardly applied. In particular, the state-space transition matrix is obtained as the lin-

earization:

A=
∂ f
∂x

=

⎡
⎣ 0 I

∂
(
M̄−1Q̄

)
∂z

∂
(
M̄−1Q̄

)
∂ ż

⎤
⎦ (5)

which can be approximated by:

A �
[

0 I
A21 A22

]
(6a)

A21 = −M̄−1R� (
K̄R+2Rq̂Rz̈

)
(6b)

A22 = −M̄−1R�(C̄R+MṘ) (6c)

where K̄ and C̄ are the stiffness and damping matrices, respectively. In this case the size of

the problem is 2g. Next, we introduce the CEKF correction stage [7], which fuses the sensor

information into the filter, leading to:

ż− ˆ̇z+Kz(y−o) = 0 (7a)

M̄z̈− Q̄+M̄Kż(y−o) = 0 (7b)

In order to numerically integrate the result of the filter, the implicit single-step trapezoidal rule has

been selected as integrator:

ˆ̇zn+1 =
2

Δt
ẑn+1 −

(
2

Δt
ẑn + ˆ̇zn

)
(8a)

ˆ̈zn+1 =
2

Δt
ˆ̇zn+1 −

(
2

Δt
ˆ̇zn + ˆ̈zn

)
(8b)

Combining Eq. (7) and Eq. (8) leads to the following nonlinear system,{
g1(x̂n+1) = 0
g2(x̂n+1) = 0 ⇒ g(x̂n+1) = 0 (9)

This system can be iteratively solved, e.g. by means of the Newton-Raphson method, employing

the following approximate Jacobian matrix:

∂g
∂x

=

⎡
⎢⎣

2

Δt
I −I

R�K̄R R�(C̄R+MṘ)+
2

Δt
M̄

⎤
⎥⎦+

⎡
⎣ Kzhz Kzhż

M̄Kżhz M̄Kżhż

⎤
⎦ (10)

where the pair hz and hż and the pair Kz and Kż are the position and velocity parts of the sensor

Jacobian matrix and the Kalman gain matrix, respectively.

3.1.2 Discrete extended Kalman filter (DEKF)
This is the discrete-time version of CEKF described above. A key difference between CEKF and

the rest of estimators described from now on, which work in discrete time steps, is that the filter

formulation clearly consists of two separated stages: state transition (also called prediction) and

state update. The former relies on the transition model of the system (dynamical equations) while

the latter includes the information from sensors, or observations – this is in contrast to CEKF

where both stages are seamlessly fused together.

Each stage comprises differentiated equations for updating the state vector and the covariance

matrix. Starting with the prediction stage, the EKF equations in their most generic form are:

x̂−k = f(x̂+k−1) (11a)

P−
k = fxk−1P+

k−1fx
�
k−1 +ΣΣΣP

k−1 (11b)
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where f(·) stands for the transition model of the system. By considering now the state vector of a

MBS estimator in independent coordinates, x̂� =
{
ẑ�, ˆ̇z�

}
, and assuming the usage of the Euler

method for numerical integration with time step Δt, we can put the integrator in a form that fits

that required by the EKF transition function f(·):

x̂−k = f(x̂+k−1) −→
[

ẑk
ˆ̇zk

]
=

[
ẑk−1 +Δt ˆ̇zk−1

ˆ̇zk−1 +Δt z̈k−1

]
(12)

Here, the only unknown term is the acceleration vector z̈k−1 for the previous time step, which must

be computed by solving the multibody equations of motions as in Eq. (3). Thus, it follows that the

transition model Jacobian fx has a fairly simple structure:

fx ≡ ∂ f
∂ x̂

=
∂

∂{ẑ, ˆ̇z}
[

ẑ+Δt ˆ̇z
ˆ̇z+Δt z̈

]
=

[
Ig ΔtIg

0g×g Ig

]
(13)

Regarding the ΣΣΣP
k−1 covariance matrix appearing in Eq. (11), it stands for the additional uncertainty

of the new state x̂k, physically attributable to unmodeled forces and errors in the parameterization

of the mechanism (e.g. lengths of bars, inertia values, etc.). Assuming independent and identically

distributed (iid) Gaussian noise for each independent coordinate, its structure becomes:

ΣΣΣP
k−1 =

[
σ2
ẑ Ig 0g×g

0g×g σ2
ˆ̇z Ig

]
(14)

with the parameters σẑ and σ ˆ̇z specifying the standard deviations of the assumed noise in position

and velocities, respectively.

The second stage of the DEKF method, the update, incorporates the sensor readings to improve

the estimate:

ỹk = ok −h(x̂−k ) (15a)

Sk = hxkP−
k hx

�
k +ΣΣΣS

k (15b)

Kk = P−
k hx

�
k S−1

k (15c)

x̂+k = x̂−k +Kkỹk (15d)

P+
k = (Ig −Kkhxk)P−

k (15e)

where h(·) stands for the observation model of the system, such that ỹk in Eq. (15) is clearly

the error or mismatch (often called innovation) between the expected sensor readings and their

actual values (ok). The covariance matrix Sk in Eq. (15b), or innovation covariance, represents

the uncertainty in the system state projected via the sensor function (hxkP−
k hx

�
k ) plus an additional

additive Gaussian noise originated in the sensor itself (ΣΣΣS
k). Small values of Sk mean that the

observation introduces useful information to constrain the estimation of the system state. By

evaluating the temporary term known as Kalman gain (Kk) we can update the estimate mean and

covariance, in Eq. (15d) and Eq. (15e), respectively. These values are then used as the input to the

next iteration of this iterative filter in the next time step.

3.1.3 Unscented Kalman filter (UKF)
The Unscented Kalman Filter (UKF) [8] is an evolution of the family of Kalman filters that is better

suited to cope with strong nonlinearities in the transition and observation models. Comprising the

same prediction and update stages than DEKF, the differentiating feature of UKF is the avoidance

of the first order Taylor approximation in the propagation of Gaussian random variables through

the transition and observation functions. Instead, a set of samples are deterministically-chosen

from the Gaussian distributions, transformed via the corresponding function, then those samples in

the transformed space converted back into a parametric distribution, i.e. they are used to compute
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the mean and covariance of the corresponding Gaussian. As shown in [8], this approach captures

the correct posterior mean and covariance up to the third order of a Taylor series expansion, in

contrast to the first order of DEKF and most other methods. In turn, its computational cost is in

general higher than simpler methods.

For the present benchmark, the state vector of UKF comprises the independent coordinates and

their velocities, that is, x̂� =
{
ẑ�, ˆ̇z�

}
. As mentioned above, each filter iteration comprises the

same two steps than DEKF, so only the differences will be highlighted here. Denoting the dimen-

sionality of the state space |x̂| as L, a total of 2L+1 deterministic samples (or sigma points) χi with

i = 0, ...,2L are generated from the mean x̂+k−1 and covariance P+
k−1, each with a different weight

Wi. Then, the samples are transformed with a forward Euler transition function identical to that

of previous filters, and the predicted mean x̂−k and covariance P−
k estimated from them. A similar

process apply to the propagation of the uncertainty in observations, taking into account both the

uncertainty in the system state and the sensor noise (refer to the two terms in the innovation co-

variance of DEKF above). The reader is referred to the original work [8] for the filter equations,

not reproduced here for the sake of conciseness.

3.2 Dependent coordinates methods
Solving the position problem every time step has a high computational cost. For this reason, it is

worth looking for alternatives to include the constraints into the Kalman filter.

3.2.1 Discrete iterated extended Kalman filter with perfect measurements (DIEKFpm)
This method is a expansion of the standard DIEKF [7] to cope with constraints in its state space

by employing so-called perfect measurements [4]. The key idea consists of augmenting the vector

of observations h(x) to include virtual observations that reflect the fulfillment of the kinematics

constraints in both position and velocities. The augmented observation function h′(x) is strongly

nonlinear, hence the application in this case of an iterated estimator, capable of reducing the lin-

earization errors to acceptable levels.

For the benchmark at hand, the state vector of this estimator comprises the multibody model coor-

dinates and their derivatives, that is, x̂� =
{
q̂�, ˆ̇q�

}
. We define the augmented observation model

h′(x̂) as the concatenation of the real sensors h(x) and the kinematic constraints in position and

velocity, such as h′(x)� = [h(x)� ΦΦΦ(x)� Φ̇ΦΦ(x)�]. This affects the calculation of the innovation

(or "residual"), which must compare the actual sensor readings and current constraint errors with

their predictions. For all time steps k and iteration index i, the predicted values of the constrains

are always zero, i.e.

yk,i =

[
ok

02n×1

]
−h′(x̂k,i) =

⎡
⎣ok −h(x̂k,i)

−ΦΦΦ(x̂k,i)

−Φ̇ΦΦ(x̂k,i)

⎤
⎦ (16)

The adjective "perfect" that names this method comes from the assumption that there is no error

source in the virtual observations. In practice, this implies employing an extended sensor covari-

ance matrix ΣΣΣS
k
′
with the structure:

ΣΣΣS
k
′
=

[
ΣΣΣS

k 0
0 0

]
(17)

3.2.2 Extended Kalman filter with projections (projectionEKF)
Other method in dependent coordinates was also developed. The states of this method comprise

the full set of position and velocity coordinates of the multibody model. The propagation and cor-

rection stages are performed as if the states were independent. After that, the states are projected

over the constraint manifold, based in the constrained Kalman filter algorithms presented in [4].

However, some modifications were made to the algorithm to adapt it to the nature of the multi-

body simulations. The projections are performed in two stages. First, the position coordinates

1600



are projected. As the position constraints are non-linear, the process is iterative, using the next

equation:

q= q∗ −W−1ΦΦΦq
(
ΦΦΦqW−1ΦΦΦq

T )−1 ΦΦΦ(q∗) (18)

where q∗ are the position coordinates after the correction stage, and W is a weight matrix. After

that, the velocity coordinates are projected. As the constraint at velocity level are linear, this

projection is performed in one step:

q̇= q̇∗ −W−1ΦΦΦq
(
ΦΦΦqW−1ΦΦΦq

T )−1
(ΦΦΦqq̇∗) (19)

where q̇ is the vector of velocities obtained after the correction stage of the Kalman filter.

After applying the projections, the covariance matrix of the states, P, must be updated to take into

account the effect of the projections, as follows:

Pq = Pq∗ −Pq∗ΦΦΦq
T (

ΦΦΦqPq∗ΦΦΦq
T )−1 ΦΦΦqPq∗ (20a)

Pq̇ = Pq̇∗ −Pq̇∗ΦΦΦq
T (

ΦΦΦqPq̇∗ΦΦΦq
T )−1 ΦΦΦqPq̇∗ (20b)

where Pq∗ and Pq̇∗ are the blocks of of the covariance matrix correspondent to positions and

velocities before the projection process, and Pq∗ and Pq̇∗ are the blocks of the covariance matrix

after the projection process.

Nevertheless, it was found that this method does not work properly. The reason is that, in general,

the information from the sensors is related not to the full state of the mechanism, but only to

some coordinates. This fact produces that during the correction stage, the constraints are broken.

After that, during the projection process, the mechanism is conducted to a new state in which the

constrains are fulfilled, but most of the effect of the correction is lost. For this reason, this method

was not considered in the benchmark.

3.3 Mixed method: errorEKF
Most of the methods presented previously have some common drawbacks. One of them is that the

integrator must be explicit. Also, the nonlinearities of the multibody models can be not properly

handled by the EKF, which is only a first order approximation. Both these problems are overcome

by the UKF method, but at high computational cost. So a new formulation was developed. In it,

the multibody simulation is run in parallel with a Kalman filter which estimates not the position

nor the velocity vectors of the multibody model, but the errors of the independent coordinates and

velocities, so it is an error-state extended Kalman filter (also known as indirect extended Kalman

filter). With this approach, any existing multibody simulation can be used, regardless of the kind

of integrator or multibody formulation employed. After one step of the multibody simulation is

performed, the estimation of the error is launched. The propagation phase is performed following

the next equations:

x̂−k = 0 (21)

P−
k = fxk−1P+

k−1fx
�
k−1 +ΣΣΣP

k−1 (22)

These equations are the conventional equations for the propagation of the Kalman state. However,

as the estimated errors are fed back to the multibody simulation, the estimation of the error in the

propagation phase is always null, as shown in Eq. (21).

The equations for the correction phase of the filter are also equivalent to the ones found in a

conventional Kalman filter. After the correction stage, the estimation for the errors of positions

and velocities of the independent coordinates are obtained. However, to correct the state of the

multibody system, the errors for all the coordinates must be obtained, so them must be projected

over the constraints manifold.

An error in position means that an increment to the coordinates should be applied to get the position

corrected. Such an increment must fulfill the velocity constraints. So the increments applied
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(a) (b)

Figure 2. The final factor graph. Circle nodes are problem variables, rectangular nodes are

factors.

to the coordinates of the mechanism are calculated by solving the velocity problem. This fact

represent an advantage compared against the other methods based in independent coordinates in

which solving the position problem is necessary, since the velocity problem is linear, and can be

solved without employing iterative methods.

As said previously, the velocity problem is linear, so for correcting the velocities of the multibody

system, the velocity problem must be solved using the estimation of the velocity error of the

degrees of freedom. The result is added to the vector of velocities of the multibody model.

Although this method does not get to a perfect fulfilling of the constraints, it is enough to provide

accurate estimations of the position and velocity of a mechanism.

3.4 The reference: a batch smoother
All state observers introduced up to this point share the key aspect of being filters. A filter pro-

cesses the new information available at each timestep sequentially and immediately outputs an

estimate of the current system state. Therefore, a clear advantage of filters is the fast availability

of state estimates suitable for real-time closed-loop control, among other applications. On the

other hand, the computational efficiency of filters is gained at the cost of forgetting the probability

distribution of the entire history of the dynamic system except the very last timestep. If one uses

Gaussian distributions to implement this process of forgetting information, named marginalization
in the statistical inference literature [9], significant errors are introduced in the case of nonlinear

dynamic systems, especially regarding the cross-covariances between the different variables.

The implication is that observation-based corrections of all the filters introduced above are sub-

optimal in some degree due to inaccuracies in cross-correlation terms of the estimate covariance

matrix. Additionally, some of those filters have another source of approximation in the first (EKF)

or second-order (UKF) truncation of Taylor series for system equations.

As an alternative, we introduce in this work a novel smoother estimator which serves as a reference

of the achievable accuracy for each combination of model and sensor errors in each benchmarked

mechanism. Unlike filters, a smoother handles a joint probability distribution for the dynamic state

during a sequence of timesteps. In particular, we have designed a batch estimator which considers

the full history of dynamic states, which provides a better estimation than filters since the entire

trajectory of the system is simultaneously subject to all existing constraints, both forwards and

backwards in time, effectively smoothing the estimation as much as possible –hence the name. Our

novel method is based on the Dynamic Bayesian Network (DBN) model of a Multibody Dynamic

system devised in [5], and which is shown in Figure 2(a). A DBN encodes the causal relationships

(directed edges) between all the variables (nodes) involved in a dynamic problem. Please refer to
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[5] for an in-depth discussion. In this work, we convert the DBN into its equivalent factor-graph

form (see e.g. [10]), a kind of undirected bipartite graph where variables are represented as circular

nodes, factor functions encode the relationships between variables (represented as square nodes)

and undirected edges join factors with all the involved variables. Using the rules for converting

DBNs into factor graphs we arrive at Figure 2(b). It is known that factor graphs allow writing

down the full joint probability distribution of the system as the product of one cost function per

factor node [9], such that in our case we arrive at:

ϕ(x̂0:t , z̈0:t ,o0:t , f0:t ,B) = ϕini(x̂0)ϕB(B)
t

∏
i=1

ϕo(zi, z̈i, x̂i,B)ϕeom(z̈i, x̂i, fi)ϕi(x̂i, z̈i−1, x̂i) (23)

Where each term has a well-defined physical meaning: ϕini represents a (typically loose) constraint

regarding the a priori knowledge about the initial dynamical state of the system, ϕB stands for the

knowledge about the branch of the mechanism for those having multiple assembly configurations

(please, refer to Figure 3 in [5]), ϕo stands for the sensor models, ϕeom introduces the predicted

accelerations according to the equations of motion and the theoretical multibody model, and ϕi

represents the constraints imposed by a numerical integrator to consecutive dynamic states.

Assuming Gaussian distributions for errors in all factors, it can be shown that the negative loga-

rithm of Eq. 23 becomes a quadratic cost function which can be optimized numerically to obtain

the most likely estimation of the mechanism dynamical trajectory. In this work we employed the

Levenberg-Marquardt with excellent convergence results towards the optimal solution.

4 RESULTS
Four different configurations were tested in this work. For every one, two levels of modelization

error were considered: 1 and 4 m/s2 of error in the gravity, and four different sampling rates of the

sensors: one measurement every time step, and one measurement every 5, 10, and 15 time steps.

The noise of the position sensors (encoders) employed in this work has a standard deviation of 1

deg, while the noise of the gyroscopes has a standard deviation of 1 deg/s

4.1 Test 1: Five-bar linkage with gyroscopes
In this test, the mechanism to be considered is the the five-bar linkage. The sensors installed are

two gyroscopes in both coupler links. In fig. 3 can be seen that the CEKF can only run in this

configuration if it has a measurement every time step, and even in that case, the results are not

very accurate. Next, filter in accuracy in the DIEKFpm. The three best filters are very close to

each other, being the best the UKF, then the errorEKF, and in third place, the DEKF. The batch

smoother provides the best results, as expected.

None of these methods could provide proper results with an error of 4 m/s in this configuration.

Possibly, the reason for this fact is that, due to the particular geometry of the mechanism, in some

ranges of the motion, big displacements of the crank correspond to small angular rates in the

coupler rods, so the gyroscopes in those bars do not provide enough information to correct the

position of the system.

4.2 Test 2: Five-bar linkage with encoders
This test is based in the same mechanism than that of the previous one, but with a different set of

sensors. Now, one encoder is considered in each crank. The results can be seen in fig. 4

With this configuration, bigger errors in the model can be handled. Also, the CEKF can be run

with a sensor with a lower sampling rate than in the previous test. However, its performance is still

the worst. The UKF, the errorEKF and the DEKF are even closer that in the previous test, with

almost any difference in between them in terms of accuracy.
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Figure 3. (a) Results for the five-bar linkage with two gyroscopes and 1 m/s2 of error in the

gravity model. In the y axis, the RMS error in rad/s is represented, while in the x axis is

represented the sampling time of the sensors, expressed as number of time steps. (b) Legend
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Figure 4. Results for the five-bar linkage with two encoders. (a) 1 m/s2 of error in the gravity

model. (b) 4 m/s2 of error in the gravity model.

4.3 Test 3: Four-bar linkage with a gyroscope
The third test is based in the four-bar linkage, with a gyroscope installed on the coupler rod. The

results can be seen in fig. 5

In this case, the geometry of the four-bar linkage allows the gyroscope to provide more information

about the position of the mechanism than the five-bar linkage, so the observers remained stable

even with the highest level of modeling error.

The CEKF presents problems again if the sampling rate of the sensors is not high enough. Regard-

ing the other observers, it is remarkable that the DIEKFpm has the best accuracy if the measure-

ment of the sensor is available at every time step, but when the sensor has a lower sampling rate,

the results became worse, especially when the modeling error is high. Also, the batch smoother

could not provide proper estimations in the test with the highest modeling error.

4.4 Test 4: Four-bar linkage with an encoder
This test is based in the four-bar linkage with an encoder in the left crank. The results are shown

in fig. 6. In this test, the DIEKFpm obtained the best results for the lowest level of modeling error,

but the worst after the CEKF with the highest modeling error. The CEKF was again the worst in

both tests. Very similar accuracy was obtained from the UKF, the CEKF, and the errorEKF.

4.5 Performance
For an estate observer to be useful, it must be run in real time. Although the programs employed

for this work were not designed nor implemented with performance in mind, it is expected that
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Figure 5. Results for the four-bar linkage with a gyroscope. (a) 1 m/s2 of error in the gravity

model. (b) 4 m/s2 of error in the gravity model.
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Figure 6. Results for the four-bar linkage with an encoder. (a) 1 m/s2 of error in the gravity

model. (b) 4 m/s2 of error in the gravity model.

the faster algorithm will perform faster both in the programs used here, or in a program designed

and implemented specifically for real time performance. For this reason, a comparative of the time

employed to run two of the previous tests is provided in fig. 7. The time varies depending on the

type of test run, so this figure can be used just as a guide to see which method is faster.

CEKF DEKF UKF DIEKFpm errorEKF
0

1

2

�

4

C
P

U
 ti

m
e/

re
al

 ti
m

e

����
��!�

"���

1.04
��#�

(a)

CEKF DEKF UKF DIEKFpm errorEKF
0

2

4

6

!

C
P

U
 ti

m
e/

re
al

 ti
m

e

��!$
1.02

!���

1.50
��%�

(b)

Figure 7. Performance of the different methods. (a) Four-bar linkage. (b) Five-bar linkage

It is worth focusing on the time of the DEKF, the UKF, and the errorEKF, because they got very

similar results with regard the accuracy. However the computational cost of them is very different,

being the errorEKF the fastest, and the UKF the slowest.

5 CONCLUSIONS
In this work, several state observers based on multibody models have been tested, checking the

accuracy of the algorithms and their speed. Most of the methods tested were already published,

while other, such as the errorEKF, the projectionEKF, and the batch smoother were developed in
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this work. The batch smoother is not an observer. However, it uses the whole history of the states

of the mechanism to obtain the most likely trajectory. It is used here as a reference for the best

possible solution. The projectionEKF was not considered in the benchmark because it did not

work as well as expected. However, the errorEKF showed an accuracy at the level of the best

filters with a much lower computational cost.

The tests performed in this work were based in two planar mechanism: a four-bar and a five-bar

linkages, with two different set of sensors each, and with four different sampling rates for the

sensors.

Our reference MATLAB implementation has been released as Open Source1.
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