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ABSTRACT: The forward-dynamics approach to the estimation of muscle forces during human 

motion has the best potential to provide insight into muscle coordination. Currently, the 

computed muscle control (CMC) is the established method in the biomechanics community to 

implement the mentioned approach. In this work, an alternative method is proposed based on a 

co-integration scheme, in which the integration of the equations of motion leads the process and 

the muscular activation and contraction dynamic equations are solved with a smaller time-step 

size. The accuracy and efficiency of the proposed method are compared with those of the CMC.  

1 INTRODUCTION  

It is well-known that using a forward-

dynamics approach to find the excitation 

patterns that best generate movement 

trajectories has the best potential to provide 

insight into muscle coordination [1]. Even 

though the forward and inverse-dynamics 

models are identical, the estimated muscle 

forces or optimal excitations by inverse-

dynamics approaches hardly reproduce the 

measured movement in a forward-dynamics 

simulation due to both errors from the 

estimation of intersegmental moments by 

inverse dynamics and errors from numerical 

integration. 

Nowadays, the computed muscle control 

(CMC) [2] is the established method in the 

biomechanics community to implement the 

forward-dynamics approach for muscle 

force estimation. Basically, the CMC 

method runs a physiological static 

optimization [3] to obtain an estimate of 

muscle excitation, considered constant 

along the current time step, and then, with 

such an input, integrates, in a unified 

scheme, the model equations of motion and 

the muscle activation and contraction 

dynamic equations. 

In this work, an alternative method is 

proposed. The idea is similar to the co-

integration approach adopted in [4] for a 

simulation of multibody and hydraulic 

dynamics: the integration of the equations 

of motion leads the process and the 

muscular activation and contraction 

dynamic equations are solved with a 

smaller time-step size as possessing higher 

frequencies. 

Since both CMC and co-simulation 

methods are based on principles that are 

also used in the simpler physiological static 

method, the latter is also described in this 

paper. 

2 MULTIBODY FORMULATION 

The skeletal system is modeled as a rigid 

multibody system using independent 

coordinates. The general equations of such 

a system, for a vector of generalized 

coordinates q, is: 
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 ( , ) ( ,) )( m q H q q Q Q q qM q   (1) 

where M is the mass matrix, H is the 

centrifugal and Coriolis forces vector, Qm 

represents the joint torques produced by the 

muscle forces, and Q contains all the 

remaining applied generalized forces, such 

as gravity, springs, dampers, etc. 

The joint torques Qm are produced by 

muscle contraction forces F, which are 

related to the corresponding joint torques by 

means of the position-dependent matrix of 

moment arms Jm(q): 

 ( )m mQ J q F   (2) 

The CNS controls the muscular forces by 

means of the neural excitations u, which 

will be considered as an external input from 

the musculoskeletal system’s point of view. 

The following Section explains how the 

muscular forces are related to the neural 

inputs and the skeletal motion. 

3 MUSCULOTENDON MODEL 

Muscles are modeled using the well-known 

Hill’s model. As shown in Figure 1, a 

musculotendon element is considered as a 

passive nonlinear elastic tendon (SE) in 

series with a muscle, which is itself formed 

by two elements acting in parallel: a passive 

nonlinear elastic spring (PE), playing the 

role of the elasticity of the muscle fibers, 

and an active contractile element (CE). The 

contractile element is driven by the muscle 

activation a, which varies between 0 and 1. 

 
Fig. 1 Hill’s muscle model 

The force produced by the contractile 

element 
CEF  is essentially proportional to 

the activation a and the maximum isometric 

force 
0F . However, it is also affected by 

the muscle elongation and contraction 

velocity, an effect that can be represented 

by two nonlinear functions f l and fv: 

 
0 ( ) ( )CE l m v maF f l fF l   (3) 

Muscles are considered to have a constant 

width so their fiber pennation angle  

will depend on the elongation. Taking this 

into account, the constitutive equations of 

SE, PE and CE can be combined into a 

single nonlinear first-order ODE of the 

following form [3]: 

  , , ,F a FF f ll   (4) 

In this equation, l corresponds to the total 

length of the musculotendon element, 

which is in turn completely determined by 

the position of the skeletal system q. 

The muscle activation a is itself governed 

by another first-order differential equation: 

  ,a ua f a   (5) 

in which the excitation u is considered as an 

independent input, ranging as well between 

0 and 1. Excitation-activation dynamics can 

be understood as a first-order low pass 

filter: a follows u with a certain delay, and 

high-frequency variations of u are filtered 

out. The activation and deactivation time 

constants of this first-order system lie in 

general within the 10-50 millisecond range, 

leading to a significant electromechanical 

delay. 

4 PHYSIOLOGICAL STATIC METHOD 

Static optimization methods aim at finding 

a history of optimal muscle forces that, for 

a given captured motion, produce joint 

torques equivalent to those obtained from 

inverse-dynamics analysis: 

 ( , ) (( ,) )m  Q q Q q q H qM q q   (6) 

Traditionally, static optimization methods 

consist of stating, at every time step n, an 

optimization problem of the form: 
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However, this does not take into account 

the additional limitations introduced by 

musculotendon dynamics. Firstly, the 

smoothing behavior of excitation-activation 

dynamics does not allow abrupt force 

variations between consecutive time steps. 

And secondly, the length and contraction 

velocity of the active element, which have a 

relevant effect on the maximum force, 

cannot be directly related to the skeletal 

motion, due to the additional degree of 

freedom introduced by the tendon. 

The physiological static method, instead of 

just imposing constant bounds to muscle 

forces, aims at taking advantage of the 

muscular dynamics to get physiologically 

feasible force limits. Given a time step n, 

where the muscle forces and activations are 

known, the idea is to find the minimum and 

maximum forces a muscle could produce at 

time step 1n  , and use them as boundaries 

for the optimization problem. This is 

achieved by integrating the equations of 

musculotendon dynamics with the 

excitation set to 0 to find the minimum 

force: 
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and to 1 for the maximum force: 
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In order to consider the coupling with the 

skeletal motion, the musculotendon lengths 

l and elongation velocities l , which are 

known at the beginning and end of the 

interval, are interpolated in time by means 

of a cubic polynomial. 

Then, a constrained optimization problem 

can be stated for the N muscles at 1nt  : 
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In this case, the chosen objective function is 

the sum of muscle forces, normalized by 

their respective maximum values and 

squared. 

After the optimization problem has 

converged, a root solver is used to calculate 

the excitations un which, if held constant 

from nt  to 1nt  , would yield the optimum 

forces 1n

opt


F  at the end of the interval. For 

each muscle, the root solver seeks for the 

value of u that fulfills the lower part of the 

following expression: 
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At the first time step, the process needs 

initial values for the muscle activations and 

forces. In order to get force limits for the 

first optimization, the muscle equations are 

also integrated with u=0 and u=1, but this 

time keeping l  and l  constant, and 

integrating until muscle forces stabilize at 

steady-state values. This provides absolute 

maximum and minimum force limits for the 

current state of the skeletal system. After 

obtaining the limits, the same optimization 

and root solver procedure can be used to get 

the optimum forces and their corresponding 

activations for the initial step. 
Figure 2 represents a flowchart of the 

algorithm. The dark grey blocks represent 

time integration of the muscle equations: in 

the “F limits” block, two integrations per 

muscle are carried out at every time step, 

and in the “Root Solver” block, a variable 

number of muscle integrations is performed 

until convergence is achieved. 

5 COMPUTED MUSCLE CONTROL 

The Computed Muscle Control method 

(CMC) was first introduced by Thelen et al. 
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in 2003, and an updated version of the 

algorithm was presented later in 2006 [2]. 

The method calculates muscle excitations at 

discrete intervals, following a procedure 

similar to the physiological static method, 

and then integrates the whole system of 

equations one step forward, in a unified 

scheme, using the previously obtained 

excitations as inputs. 

The procedure for calculating the 

excitations differs from that used in the 

static method in two aspects: on the one 

hand, the calculation of the required joint 

torques Qm is performed differently, since 

the forward integration requires a feedback 

controller for stabilization. On the other 

hand, in forward dynamics the positions 

and velocities at the next time step are 

unknown, so now their values are estimated 

using information from the desired motion. 

For obtaining the joint torques, a set of 

controller accelerations is first calculated: 

 
1 1n n n n

CMC d v pk k   q q ε ε   (12) 

where n
ε  and n

ε  represent the position and 

velocity errors at tn, k p and k v are their 

corresponding feedback gains, and the 

subindex d denotes magnitudes related to 

the desired (i.e. tracked) motion. The 

position and velocity errors are defined as: 
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If the velocity gain 
vk  is set as 2 pk  and 

the accelerations 
1n

CMC


q  are assumed to be 

reached, the position error would converge 

to zero in a critically-damped manner [2]. 

The joint torques that would produce the 
1n

CMC


q  accelerations at the next time step can 

be now estimated as: 

 
1 1 1 1 1n n n n n

m d CMC d d

    Q M QHq   (14) 

And then, the same procedure employed in 

the static method for calculating the optimal 

excitations is used here (calculate force 

limits, optimize forces, and solve for 

excitations) but, as noted above, using the 

desired positions and velocities whenever 

data from the next time step is required. 

After the excitations have been obtained, 

the whole system of differential equations 

(multibody and musculotendon dynamics) 

is integrated together from instant n to 1n   

at a smaller time step, using the calculated 

excitations as inputs. Figure 3 shows the 

flowchart of the algorithm, where the 

similarities and differences with the static 

method can be clearly observed. 

6 CO-SIMULATION METHOD 

The CMC method is very fast and robust, 

but it requires the unified integration of the 

multibody and muscle dynamics equations. 

By using a co-integration scheme, the 

multibody equations can be generated and 

integrated by an already existing multibody 

code, while the muscle dynamics are 

simulated within a different framework. 

 

Fig. 2 Static optimization algorithm flowchart. 

 
Fig. 3 CMC algorithm flowchart. 
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The multibody equations are integrated 

using an implicit integrator, in a predictor-

corrector scheme. Therefore, the state 

estimates at step n+1 improve after every 

iteration, and can be used within the 

corrector loop for performing new muscle 

optimizations. The required joint torques 

for the muscle optimizations are calculated 

at every iteration using a CTC control 

algorithm: 
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After a muscle optimization has converged, 

the torques JmFopt produced by the optimal 

forces are introduced in the multibody 

equations, at the corrector stage. When the 

corrector loop converges, a root solver is 

used as before to obtain the excitations. 

This method is computationally more 

expensive than CMC, since several muscle 

optimizations will be potentially carried out 

at every time step. However, results are not 

so different if the optimization is performed 

only once at the first iteration, using the 

predictor estimate. This defines a simplified 

version of the algorithm: Figure 4 shows 

the flowchart, where the leftmost block 

represents the choice between performing 

optimization at every iteration or not. 

7 EXAMPLE AND RESULTS 

To test the proposed method and compare it 

with CMC, the simple pendulum actuated 

by two muscles shown in Figure 5 was 

used. The pendulum has a massless bar 

with a tip mass, and its position is defined 

by the angle with respect to the vertical , 

which is zero when the pendulum is in 

equilibrium. 

 

Fig. 5 Simple pendulum actuated by two muscles. 

To play the role of the experimentally 

acquired motion in biomechanical 

examples, a predefined history of the angle 

 was imposed. The pendulum starts from 

an inverted position (pointing upwards), i.e. 

=, and performs a one-second-long 

movement described by a continuous 

quintic spline through the values shown in 

Table 1. 

Tab. 1 Pendulum trajectory 

T (s)  (deg) 

0 180 

1/3 180–60  

2/3 180+60 

1 180 

The prescribed motion has zero velocity 

and acceleration at both t=0 and t=1. The 

motion is performed with the pendulum in 

an inverted position, in order to better test 

the robustness of the controllers. 

The tests were all programmed in Matlab. 

In order to accelerate the simulations, the 

muscle equations and their derivatives were 

implemented in a vectorized MEX-file. All 

the time integrations of muscle equations 

related to the optimization (represented by 

dark grey blocks in Figures 2, 3 and 4) have 

 
Fig. 4 Co-simulation algorithm flowchart. 
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been carried out using the ode23t integrator, 

which is an implicit trapezoidal rule. 

In the co-simulation method, the multibody 

system was integrated with a 10 ms time 

step, using an implicit trapezoidal rule with 

Newton-Raphson iteration. 

The CMC method also used the trapezoidal 

rule, although integrating the multibody and 

muscle dynamics equations together, and 

using a time step of 1 ms. The optimization 

process was repeated every 10 ms. 

Tab. 2 Simulation results 

Method CPU time (s) RMS error(deg) 

Static 7.70 - 

CMC 8.25 0.0025  

CSF 23.66 0.0186 

CSS 7.85 0.1146 

Table 2 shows the CPU time and tracking 

accuracy obtained from the different 

methods: Static, CMC, CoSimulation Full 

(CSF), and CoSimulation Simplified (CSS). 

All the methods performing an optimization 

every 10 ms required similar computational 

efforts. However, the simple model 

analyzed in this paper is not totally 

conclusive, since the multibody equations 

(in this case a single equation) are too 

simple and have almost no computational 

impact. 

CMC achieved the best accuracy due to the 

smaller integration time step. Co-simulation 

can reach even better accuracy at 1 ms, but 

at the cost of a much higher CPU-time due 

to the large number of optimizations. 

Figure 6 (top) shows the tracking errors, 

and the bottom plot compares the 

excitations obtained with CMC and CSF. 

CMC excitations are stepped because the 

integration is performed at 1 ms, but the 

excitations are calculated every 10 ms. It 

can be seen that the results at coinciding 

time steps are very close. The results from 

the remaining methods are not shown due 

to the small differences: if the muscles can 

always deliver the required torques from 

Eq.(15), all methods yield very similar 

excitations. 

 
Fig. 6 Results comparison. 

In case the motion is more violent and the 

muscles cannot accurately follow the 

desired motion, the differences between 

methods increase, due to the different 

estimations they use for future positions 

and velocities. This should never happen 

when analyzing a recorded motion: if the 

motion actually happened, muscles were 

capable of producing it. However, this 

problem can be interesting in motion 

prediction. 
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