
ECCOMAS Thematic Conference on Multibody Dynamics
June 19-22, 2017, Prague, Czech Republic

Benchmark Problems for the Linearization of Multibody Dynamics
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Abstract
Multibody formulations express the dynamics of a mechanical system in terms of a set of n generalized

coordinates q and their derivatives. These may be independent; alternatively they can be related by m kinematic
constraint equations ΦΦΦ(q, t) = 0. In the latter case, the dynamics is expressed by a system of Differential Algebraic
Equations (DAEs)

Mq̈ = f+ fc (1a)
ΦΦΦ(q, t) = 0 (1b)

where M is the n× n mass matrix, f comprises the applied and velocity-dependent forces, and fc stands for the
constraint reactions. If the coordinates q are independent, then the dynamics is described by Eq. (1a) alone with
fc = 0, which is a system of Ordinary Differential Equations (ODEs).

A wide variety of coordinate selections, formulations, and numerical methods to deal with the solution of such
systems have been proposed during the last decades [1], which has prompted the multibody dynamics community
to put forward a significant number of benchmark problems [2]. These benchmark problems serve two purposes.
First, they allow researchers to validate newly proposed methods or software implementations. Second, they can be
used as a means to compare the efficiency, ease of use, and accuracy of different algorithms and codes, providing
useful information for the selection of the most appropriate ones for a given application.
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Figure 1: Two of the proposed benchmark problems: (a) Four-bar linkage with spring and damper elements; (b) A
wheel rolling on a tipping table.

Regardless of the approach followed to obtain Eqs. (1), the resulting system is highly nonlinear in most cases.
However, some applications such as modal analysis require a linearized expression of the dynamics. In others,
like stability analysis, the availability of a linear model makes it simpler to gain insight into the system behaviour.
The linearization of Eqs. (1) can be achieved in many different ways and several approaches have already been
published in the multibody literature. The properties of each approach depend on the coordinate selection and the
way in which kinematic constraints are treated [3]. Each method has different accuracy and efficiency properties
and conveys information about the system dynamics in its own particular way.

In this work, we introduce a series of test problems to benchmark linearization methods for multibody dy-
namics. Some of these have already been added to the IFToMM library of Computational Benchmark Problems
[2]. The examples can be categorized into two main groups:
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Figure 2: Benchmark problems with variable dimensions: (a) N-loop four-bar linkage; (b) A flexible pendulum
modelled with finite elements.

• Simple problems with known analytical solutions (Fig. 1): a simple rigid pendulum, a four-bar linkage with
spring and damper elements, a wheel rolling on a tipping table.

• Variable-size problems that can be used to assess the computational efficiency of the methods. Among
these, two kinds of problems can be distinguished: heavily constrained systems with relatively few degrees
of freedom, e.g., the N-loop version of the four-bar linkage in Fig. 2a, in which the number of kinematic
constraints is similar to system size (m≈ n); and systems with many more variables than constraints (m� n),
such as flexible beams and pendulums (Fig. 2b).

The proposed test problems have been used to validate and compare the performance of three multibody lin-
earization methods based on velocity transformations, direct eigenanalysis, and a penalty formulation respectively
[3]. Results showed that these methods were able to match the theoretical solutions of the first type of problems.
The linearization of the proposed examples highlighted the differences between the three approaches in terms of
computational efficiency and accuracy of the obtained eigenvalues.
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