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Abstract
There has been a growing attention to efficient simulations of multibody systems. This trend is apparently seen in many
areas of computer aided engineering and design both in academia as well as in industry (e.g. in industrial or space
robotics, in automotive industry or in a variety of simulators for mining, construction or crane operations including
cables and ropes simulations). The need for efficient or real-time simulations require better and faster formulations.
Parallel computing is one of the approaches to achieve this objective. This paper presents a novel divide and conquer
algorithm for efficient multibody dynamics simulations. A redundant set of absolute coordinates is used for the system
state description. The trapezoidal rule is exploited as a numerical integrator. Sample multibody system test cases are
reported in the paper to indicate overall characteristics of the formulation measured in terms of constraint violation
errors and total energy conservation. The gathered data indicate good performance indices of the formulation with the
prospect for efficient or real-time simulations of complex multibody systems in parallel computing environments.
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1. Introduction
Computational efficiency has traditionally been a major concern of researchers developing algorithms for multibody
dynamics simulations. Considerable improvements in computer architectures have taken place during the last years,
enabling the efficient simulation of larger and more complex mechanical systems. Also the expectations about the
performance that a multibody software tool can deliver have grown at the same pace.

The availability of distributed computing environments and parallel architectures, equipped with inexpensive multi-
core processors and graphical processor units, has encouraged researchers to develop parallel multibody dynamics
algorithms [1]. Featherstone’s Divide and Conquer Algorithm (DCA) [2] is among the most popular ones. Its binary-
tree structure allows distributing the computations among several processing cores in a scalable and relatively simple
way. In open chains with n bodies it can achieve O(log(n)) performance if enough processors are available [3]. The
DCA constitutes the building block of dozens of methods and parallel codes for multibody dynamics [4]. Some of
these introduced changes in the way originally proposed to deal with closed kinematic loops [5] and other constraints
[6]. Others extended the algorithm to enable the consideration of flexible bodies [3], [7], discontinuities in system
definition [8], and contacts [9]. Computational improvements to the initial algorithm have been published as well, such
as techniques to keep constraint drift under control [10, 11] and optimized variants for computer architectures with
reduced computational power [12]. The practical applications of the DCA are multiple and range from the simulation
of simple linkages and multibody chains to molecular dynamics [13, 14].

The DCA scheme does not specify the way in which the system equations of motion must be formulated and sev-
eral approaches can be followed to do this. A spatial formulation of the Newton-Euler equations was used in the
initial definition of the algorithm and subsequently adopted by many of the formalisms that were derived from it,
e.g., [5], [12]. However, other expressions of the dynamics equations can be used as well. The Articulated Body
Algorithm (ABA) [15] was combined with the DCA in [16] to deliver significant speedups in computation times.
Hamilton’s canonical equations were used in [17, 18] and showed good properties regarding the satisfaction of kine-
matic constraints. Augmented Lagrangian methods with configuration- and velocity-level mass-orthogonal projections
have also been employed [19]; the resulting algorithm has been proven to behave robustly during the simulation of
mechanical systems with redundant constraints and singular configurations.

Augmented Lagrangian methods are common in multibody literature. Many of them were derived from the penalty
formulation in [20], in which the constraint reactions were made proportional to the violation of kinematic constraints
at the configuration, velocity, and acceleration levels. An augmented Lagrangian algorithm was also proposed in [20]
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that complemented the penalty formulation with a set of modified Lagrange multipliers, evaluated iteratively, to satisfy
more accurately the kinematic constraints and obtain stable and precise simulations for wider ranges of penalty factors.
Mass-orthogonal projections were introduced in [21] to ensure the satisfaction of the constraints down to machine-
precision levels. An index-3 algorithm, in which the dynamics equations were combined with the Newmark integration
formulas to produce an iterative method in Newton-Raphson form was described in [21] as well. Such method was
later improved to deliver real-time performance in [22] and [23], and to handle nonholonomic constraints in [24]. This
index-3 augmented Lagrangian algorithm with projections of velocities and accelerations (ALi3p) has shown very good
efficiency and robustness in the simulation of multibody systems in real-time industrial applications, e.g. [25].

The ALi3p and the DCA were first combined for the simulation of open-loop chains in [26]. In this work we continue
this avenue and propose a novel and generalized index-3 divide and conquer formulation for multi-rigid body dynamics
that elegantly handles potential numerical difficulties found in such simulations.

2. Equations of motion for constrained spatial systems
Before embarking on the divide and conquer formulation, the general form of the equations of motion for constrained
spatial multibody system (MBS) is recalled. The system dynamics is formulated in terms of a set of absolute coordinates
involving Euler parameters. Consider n bodies that form a multibody system (MBS). The composite set of general-
ized coordinates for the system is q =

[
qT

1 qT
2 · · · qT

n
]T , where q contains the absolute coordinates of all of the

bodies in the system. For a particular body i the absolute coordinates can be written as qi =
[
rT

i ,pT
i
]T

, i = 1, · · · ,n,
where ri = [xi yi zi]

T refers to the global Cartesian coordinates (i.e. expressed with respect to the global coordinate
frame (x0y0z0)) of the body-fixed centroidal coordinate frame (xiyizi) and pi = [e0i e1i e2i e3i]

T =
[
e0i eT

i
]T cor-

responds to the set of four Euler parameters that describe the orientation of body i with respect to the global reference
frame (x0y0z0). Rigid bodies in MBS are interconnected by l joints. It is assumed that there are m holonomic constraint
equations that relate the absolute coordinates as follows

ΦΦΦ(q) =
[
ΦΦΦ

T
1 ,ΦΦΦ

T
2 , · · · ,ΦΦΦT

l
]T

= 0m×1. (1)

In the following derivations, there is a necessity to evaluate first and second time derivatives of constraint conditions
shown in Eqn. (1). The velocity and acceleration constraint equations can be expressed as

Φ̇ΦΦ≡ΦΦΦqq̇ = 0m×1, (2)

Φ̈ΦΦ≡ΦΦΦqq̈+ Φ̇ΦΦqq̇ = ΦΦΦqq̈− γγγ = 0m×1, (3)

where ΦΦΦq is the constraint Jacobian matrix. In addition, the Euler parameter normalization constraints must hold.
There are n such conditions in the form

Ψi(qi) = pT
i pi−1 = 0. (4)

Similarly to Eqn. (2) and Eqn. (3), one can define the velocity constraints Ψ̇i = 0 and acceleration level conditions
Ψ̈i = 0. Let us define the following matrix for body i

Mi =

[
miI3×3 0

0 4GT
i J′iGi

]
, i = 1, · · · ,n, (5)

where mi is the mass of body i, J′i is the inertia matrix expressed with respect to centroidal coordinate frame (xiyizi),
and Gi = [−ei,−ẽi + e0iI3×3] is a useful 3×4 matrix that involves Euler parameters that fulfills the relation ωωω

′
i = 2Giṗi

(ωωω
′
i – angular velocity of body i expressed in the local coordinate frame). The vector of generalized forces acting on

body i is

Qi =

[
fi

2GT
i n′i−8ĠT

i J′iGi

]
, i = 1, · · · ,n. (6)

The active forces fi acting on body i are expressed in the global reference frame (x0y0z0), whereas active torques n′i are
expressed in the body-fixed centroidal coordinate frame. Finally, the Euler parameter form of constrained equations of
motion for spatial multibody system can be expressed asM ΦΦΦ

T
q ΨΨΨ

T
q

ΦΦΦq 0
ΨΨΨq


 q̈

λλλ

µµµ

=

Q
γγγ

ηηη

 (7)



(a) Two articulated bodies (b) Compound bodies

Figure 1: Two articulated bodies and generalization in the form of compound bodies

with the addition of the following definitions

M = diag(M1, · · · ,Mn), Q =
[
QT

1 , · · · ,QT
n
]T

. (8)

Moreover, the vector of Lagrange multipliers λλλ that corresponds to constraint reactions at joints and the vector of
Lagrange multipliers µµµ associated with Euler normalization constraints are given as

λλλ =
[
λλλ

T
1 ,λλλ

T
2 , · · · ,λλλ

T
l

]T

m×1
, µµµ =

[
µ1,µ2, · · · ,µn

]T
n×1 . (9)

In the following sections the form of constrained equations of motion presented in Eqn. (7) will be heavily exploited to
explain the details of the divide and conquer based formulation.

3. Algorithm formulation

3.1. Two articulated rigid bodies
This subsection will serve as an introduction to the derivation of the divide and conquer based formulation proposed in
this paper. Specifically, consider two representative bodies A and B demonstrated in Fig. 1a. The bodies are connected
to each other by joint 2 and form only a part of the whole multibody system. Body A and body B are also connected to
the rest of multibody system by joint 1 and joint 3, respectively.

Equations of motion for constrained bodies A and B can be written similarly as in Eqn. (7). For convienience, we define
two functions gA and gB, to get

gA ≡MAq̈A +F1
A +F2

A +Ψ
T
AqA

µA−QA = 0, (10)

gB ≡MBq̈B +F2
B +F3

B +Ψ
T
BqB

µB−QB = 0, (11)

where F1
A, F2

A are constraint reactions at joints 1 and 2, which are acting on body A, whereas the vectors F2
B, F3

B
correspond to constraint forces at joint 2 and 3 that are acting on body B. Moreover, the following conditions are held

F1
A = ΦΦΦ

1T
qA

λλλ 1, F2
A = ΦΦΦ

2T
qA

λλλ 2, F2
B = ΦΦΦ

2T
qB

λλλ 2, F3
B = ΦΦΦ

3T
qB

λλλ 3. (12)

Let us also note that the equivalent mass matrices MA, MB of size 7×7 in Eqn. (10) and Eqn. (11) are singular. This
issue is particularly inconvenient when one would like to apply the divide and conquer method. Later in this section
this problem will be alleviated by proper use of the penalty method.

In this work the equations of motion for constrained multibody system will be integrated by single-step trapezoidal
rule. This integration scheme has been adopted for the simulation due to its good numerical properties. The difference
equations in velocities and accelerations can be written as

q̇ =
2
∆t

q+ ˆ̇q, where ˆ̇q =−
( 2

∆t
q+ q̇

)
, and q̈ =

4
∆t2 q+ ˆ̈q, where ˆ̈q =−

( 4
∆t2 q+

4
∆t

q̇+ q̈
)

(13)

Please note that subscripts indicating the time instant have been omitted. It is assumed that qk+1 ≡ q (next time-instant)
and qk ≡ q (current time-instant), where k is the index associated with arbitrary kth time-instant. Now, let us introduce



Eqn. (13) into Eqn. (10) and Eqn. (11) at the next time step. After scaling the resulting equations by ∆t2

4 , we get

MAqA +
∆t2

4
(
F1

A +F2
A +Ψ

T
AqA

µA−QA +MA ˆ̈qA
)
=0, (14)

MBqB +
∆t2

4
(
F2

B +F3
B +Ψ

T
BqB

µB−QB +MB ˆ̈qB
)
=0. (15)

Algebraic relations (14) and (15) constitute a discretized form of equations of motion (10) and (11) expressed at the
next time-instant. They also form a system of nonlinear equations in positions qA, qB and Lagrange multipliers. These
equations may be solved by using the Newton-Raphson procedure. The position vector q and Lagrange multipliers
λλλ , µµµ at the current time instant are taken as initial guesses. Following this idea one can obtain the system of linear
equations in the form:

M̌A∆qA +
∆t2

4
(
∆F1

A +∆F2
A +Ψ

T
AqA

∆µA
)
=−∆t2

4
gA, (16)

M̌B∆qB +
∆t2

4
(
∆F2

B +∆F3
B +Ψ

T
AqB

∆µB
)
=−∆t2

4
gB, (17)

where M̌A =MA− ∆t
2

∂QA
∂qA
− ∆t2

4
∂QA
∂ q̇A

, M̌B =MB− ∆t
2

∂QB
∂qB
− ∆t2

4
∂QB
∂ q̇B

are equivalent mass matrices, vectors ∆qA = qA−qA,

∆qB = qB−qB denote the increments in positions. In turn, vectors ∆λλλ 1 = λλλ 1−λλλ 1, ∆λλλ 2 = λλλ 2−λλλ 2, ∆λλλ 3 = λλλ 3−λλλ 3
are used to define the increments in constraint forces ∆F1

A = ΦΦΦ
1T
qA

∆λλλ 1, ∆F2
A = ΦΦΦ

2T
qA

∆λλλ 2, and ∆F2
B = ΦΦΦ

2T
qB

∆λλλ 2, ∆F3
B =

ΦΦΦ
3T
qB

∆λλλ 3, and ∆µA = µA− µA, ∆µB = µB− µB represent the increments in Lagrange multipliers associated with the
normalization constraints.

Now, let us turn our attention to the Lagrange multipliers µA and µB. The penalty method allows one to formulate the
following relations

hA(qA,µA)≡ ∆µA−αΨA(qA) = 0, hB(qB,µB)≡ ∆µB−αΨB(qB) = 0, (18)

where α is a penalty factor. Equations (18) may be treated as a set of nonlinear algebraic equations in qA, µA and qB, µB
as unknowns. Let us expand the relations into a Taylor series by taking the values (qA,µA) and (qB,µB) as operating
point, to obtain

∆µA = αΨAqA(qA)∆qA−hA(qA,µA), ∆µB = αΨBqB(qB)∆qB−hB(qB,µB). (19)

Now, if we introduce equations (19) into Eqn. (16) and Eqn. (17), respectively, we obtain almost the final algebraic
form useful for further applications.

ˇ̌MA∆qA +
∆t2

4
(
∆F1

A +∆F2
A
)
=−∆t2

4
(gA−Ψ

T
AqA

hA), (20)

ˇ̌MB∆qB +
∆t2

4
(
∆F2

B +∆F3
B
)
=−∆t2

4
(gB−Ψ

T
BqB

hB), (21)

where ˇ̌MA = M̌A +
∆t2

4 ΨT
AqA

αΨAqA and ˇ̌MB = M̌B +
∆t2

4 ΨT
BqB

αΨBqB . Please note that this time the matrices ˇ̌MA, ˇ̌MB
are symmetric and positive definite. Therefore, one can write the following form of discretized equations of motion for
body A and B, which is useful in the development of the divide and conquer algorithm:

∆qA = δδδ
A
i1∆F1

A +δδδ
A
i2∆F2

A +δδδ
A
i3, i = 1,2, (22)

∆qB = δδδ
B
i1∆F2

B +δδδ
B
i2∆F3

B +δδδ
B
i3, i = 1,2, (23)

where again, for i = 1,2, we get

δδδ
A
i1 = δδδ

A
i2 =−

∆t2

4
ˇ̌M−1

A , δδδ
A
i3 =−

∆t2

4
ˇ̌M−1

A (gA−Ψ
T
AqA

hA), (24)

δδδ
B
i1 = δδδ

B
i2 =−

∆t2

4
ˇ̌M−1

B , δδδ
B
i3 =−

∆t2

4
ˇ̌M−1

B (gB−Ψ
T
BqB

hB). (25)

Please note, that in general δδδ
A
i1 6= δδδ

A
i2 and δδδ

B
i1 6= δδδ

B
i2 for compound bodies considered later in this work. The equality

relations are true only for the physical bodies when the assembly process is about to start.



3.2. Generalized formulation
Now, let us generalize the notions made in the previous section for the system of articulated bodies A and B that may
be composed of compound bodies as depicted in Fig. 1b. Note that there are three Lagrange multipliers indicated in
Fig. 1b. The vectors λλλ 1 and λλλ 2 correspond to the forces of interaction between the compound body C and the rest of
multibody system, whereas constraint loads λλλ represent the forces of interaction between body A and B. Moreover,
within each compound body, there are physical bodies marked by numbers 1 and 2.

The discretized form of equations of motion for the representative bodies A and B can be written in the form:

∆q1
A = δδδ

A
11∆F1

A +δδδ
A
12∆F2

A +δδδ
A
13, (26)

∆q2
A = δδδ

A
21∆F1

A +δδδ
A
22∆F2

A +δδδ
A
23, (27)

∆q1
B = δδδ

B
11∆F1

B +δδδ
B
12∆F2

B +δδδ
B
13, (28)

∆q2
B = δδδ

B
21∆F1

B +δδδ
B
22∆F2

B +δδδ
B
23. (29)

The objective of the first phase of the divide and conquer algorithm, called assembly phase, is to obtain the discretized
equations of motion for the compound body C in the form:

∆q1
C = δδδ

C
11∆F1

C +δδδ
C
12∆F2

C +δδδ
C
13, ∆q2

C = δδδ
C
21∆F1

C +δδδ
C
22∆F2

C +δδδ
C
23. (30)

The Lagrange multipliers λλλ associated with the constraint forces between body A and B can be found by using the
penalty method:

hAB(q2
A,q

1
B,λλλ ) = ∆λλλ −αΦΦΦ(q2

A,q
1
B) = 0. (31)

One can treat Eq. (31) as a set of nonlinear equations in terms of q2
A, q1

B, λλλ . By expanding Eq. (31) into a Taylor series
and neglecting higher order terms, we get

1
α

∆λλλ = ΦΦΦq2
A
∆q2

A +ΦΦΦq1
B
∆q1

B−
1
α

hAB, (32)

where hAB = h(q2
A,q

1
B,λλλ ). Then, substituting Eqn. (27) and Eqn. (28) into Eqn. (32) with the addition of Eqn. (12) the

following relation that corresponds to the increment of the Lagrange multipliers at considered joint is obtained

∆λλλ = CΦΦΦq2
A
δδδ

A
21∆F1

A +CΦΦΦqB
1
δδδ

B
12∆F2

B +Cβββ , (33)

where C =
(

1
α

I−ΦΦΦq2
A
δδδ

A
22ΦΦΦ

T
q2

A
−ΦΦΦq1

B
δδδ

B
11ΦΦΦ

T
q1

B

)−1
and βββ = ΦΦΦq2

A
δδδ

A
23 +ΦΦΦq1

B
δδδ

B
13− 1

α
hAB. Please note that the inversion of

matrix C exists, even in the case when constraint Jacobian matrices become rank deficient. Equation (33) is substituted
back to Eqns. (26) and (29) to obtain the forms (30). The unknown matrix coefficients are obtained as

δδδ
C
11 = δδδ

A
11 +δδδ

A
12ΦΦΦ

T
q2

A
CΦΦΦq2

A
δδδ

A
21, (34)

δδδ
C
12 = (δδδC

21)
T = δδδ

A
12ΦΦΦq2

A
CΦΦΦq1

B
δδδ

B
12, (35)

δδδ
C
22 = δδδ

B
22 +δδδ

B
21ΦΦΦ

T
q1

B
CΦΦΦq1

B
δδδ

B
12, (36)

δδδ
C
13 = δδδ

A
13 +δδδ

A
12ΦΦΦ

T
q2

A
Cβββ , δδδ

C
23 = δδδ

B
23 +δδδ

B
21ΦΦΦ

T
q1

B
Cβββ . (37)

The divide and conquer algorithm developed here is composed of two computational stages: assembly and disassembly
phase. Each phase is associated with the binary tree, which represents the topology of the mechanism (see [2, 8, 16]).
The first phase starts with the evaluation of matrix coefficients for individual bodies as in Eqn. (24) and Eqn. (25).
Then, the multibody system is assembled. The coefficients in Eqns. (34)–(37) form recursive formulae for coupling
two compound bodies A and B into one subassembly C by eliminating the constraint force between them. The process
may be repeated and applied for all bodies that are included in the specified subset of bodies up to the moment when
the whole MBS is constructed. Finally, a single assembly is obtained. This entity constitutes a representation of the
entire multibody system modeled as a single assembly. The first phase finishes at this stage. Taking into account the
boundary conditions, e.g., a connection of a chain to a fixed base body and a free floating terminal body, the second
phase is started. At this stage all constraint forces increments ∆λλλ and bodies’ positions ∆q are calculated according to
the binary tree.



Figure 2: Flowchart of the algorithm. The orange boxes indicate the possiblity to parallelize the computations according
to the binary tree associated with topology of a multibody system

3.3. Mass-orthogonal projections
In the previous section we imposed the constraint equations only at the position level. Therefore, it is expected that the
first and second derivatives of constraint equations as in Eqn. (2) and Eqn. (3) will not be satisfied during the simulation.
To circumvent this effect, mass-orthogonal projections at the velocity and acceleration level are employed [21, 22].
Usually this procedure is numerically expensive due to the iterative scheme involved in the calculations. For real-
time applications, one needs a deterministic response. The mass-orthogonal projections are performed only once per
integration step, just after the Newton-Raphson procedure converges to the solution.

Fortunately, the calculations associated with projections can be organized in the same divide and conquer manner that
is presented in the previous subsection. Moreover, there is a place for many computational savings. In the current
stage there is no need to calculate again the matrices δδδ 11, δδδ 12, δδδ 21, and δδδ 22 as defined in Eqns. (34)–(36). The
qualitative and quantitative difference between mass-orthogonal projections scheme and the divide and conquer based
Newton-Raphson procedure lies in the definitions of δδδ 13, and δδδ 23 coefficients and the involved Lagrange multipliers.
Let us assume that the values q̇∗ and q̈∗ represent the perturbed vectors for which the constraint equations Φ̇ΦΦ, Φ̈ΦΦ are
not completely satisfied after the convergence of the Newton-Raphson scheme. The following equations respresent
one-shot mass-orthogonal projections, in which the constraints Φ̇ΦΦ, Φ̈ΦΦ are enforced by the penalty method:

ǧV EL ≡ M̌q̇+
∆t2

4
(
ΦΦΦ

T
q σσσ +ΨΨΨ

T
q σσσN

)
−M̌q̇∗ = 0, (38)

hN
V EL ≡ σσσN−αΨΨΨqq̇ = 0, hV EL ≡ σσσ −αΦ̇ΦΦ = σσσ −αΦΦΦqq̇ = 0, (39)

ǧACC ≡ M̌q̈+
∆t2

4
(
ΦΦΦ

T
q κκκ +ΨΨΨ

T
q κκκN

)
−M̌q̈∗ = 0, (40)

hN
ACC ≡ κκκN−α(ΨΨΨqq̈−ηηη) = 0, hACC ≡ κκκ−αΦ̈ΦΦ = κκκ−α(ΦΦΦqq̈− γγγ) = 0, (41)

where M̌ = M− ∆t
2

∂Q
∂q −

∆t2

4
∂Q
∂ q̇ and the Lagrange multipliers σσσ , σσσN and κκκ , κκκN are associated with joint and normal-

ization constraints at the velocity and acceleration level, respectively. There are two important things to notice about
Eqns. (38)–(41). Firstly, these equations represent a global form of the mass-orthogonal projections that could be ex-
panded to the relations for individual or compound bodies. Secondly, there is a structural similarity between these
equations and the discretized equations of motion developed in the previous section (see e.g. Eqn. (16), (18), and (31)
for direct comparisons). The correspondence manifests itself in the same mass matrices M̌ and Jacobian matrices ΦΦΦq,
ΨΨΨq but different Lagrange multipliers and forcing terms. Figure 2 presents the flowchart of the algorithm. The most
computationaly intensive parts the formulation are marked in orange boxes. These procedures may be parallelized by
using the approach prosposed in the paper according to the binary tree associated with topology.

4. Numerical test cases
This section presents the results of the numerical simulations of two test cases. The sample mechanisms are chosen
intentionally to demonstrate the performance of the formulation in case of modeling of multibody systems possessing



(a) Spatial double pendulum; joints 1 and 2 are spherical (b) Planar four-bar mechanism; joints 1 – 4 are revolute

Figure 3: Sample test cases

various topologies. The first test case, depicted in Fig. 3a , is a spatial multi-rigid body pendulum. It consists of two
bodies interconnected by spherical joint. Moreover, body A is also connected to the base body 0 by spherical joint. This
system is an example of open-loop topology. The second test case, presented in Fig. 3b, is a planar four-bar mechanism
but modeled as a spatial one. The system exemplifies a closed-loop topology. Particular concerns for simulations of
such systems are associated with constraint violation errors as well as modeling issues (redundant constraints or singular
configurations). All bodies are modeled as rigid moving either in three dimensions as in case of double pendulum or in
the plane as in case of the four-bar mechanism. The length of each body in the systems is 1 meter, mass 1kg and inertia
matrix equals to J′ = diag(1.0)kgm2 with respect to the axes of appropriate centroidal coordinate frames. Long-time
simulations are carried out, with the mechanisms released from the initial state shown in the figures under the gravity
forces. The outcome is verified and compared against the numerical values obtained by using commercial multibody
solver.

4.1. Spatial double pendulum
Let us consider an open-loop multibody system shown in Fig. 3a. The system is composed of two bodies A and
B. The bodies are interconnected by spherical joints 1 and 2. The gravity force acts in the negative direction of y0
axis. Initially, body A is located along x0 axis, whereas body B is situated in the x0z0 plane and it is pointing at
the z0 direction. Moreover the axes of centroidal coordinate frames (xAyAzA) and (xByBzB) are coincident with the
global reference frame axes (x0y0z0). As mentioned before the state of the system is described by the set of absolute
coordinates. At the initial time instant the Cartesian position of body A and B in the global reference frame (x0y0z0) are
given as rA = [0.5 0.0 0.0]T , rB = [1.0 0.0 0.5]T , respectively. The linear and angular velocities of the bodies
are set to zero. The penalty coefficient for the proposed approach is chosen as α = 106. The maximum number of
iterations in the Newton-Raphson procedure is limited to three, whereas the stop criterion for the procedure is selected
to be ||∆q||< ε = 10−9. The time step for the trapezoidal integration rule is constant and equals to ∆t = 0.005sec while
the simulation time is set to be 10sec.

Figure 4a presents positions of body A and the components of the constraint force at joint 1. The continuous lines
in the plots indicate the outcome obtained by the proposed method. Circle marks represent the results produced by
commercial multibody software MSC.ADAMS. Dynamic motion of the mechanism is well reproduced by the proposed
method and matches the results obtained in ADAMS. On the other hand Fig. 4b demonstrates the constraint violation
errors and the total energy of the system. These time plots can be regarded as a kind of performance measures for the
proposed approach. At each time instant the constraint violation error shows the norm of joint constraint equations as
well as mathematical constraint equations. The total mechanical energy is a sum of kinetic energy and potential energy
of the system. The results are bounded. The constraint violations are kept under control with reasonable accuracy
compared to the characteristic length of each body (L = 1m). The position constraint violation errors are fulfilled with
the highest accuracy compared to the errors committed at the velocity or at the acceleration level. This is an expected
outcome since the absolute positions are primary variables in the formulation. The total energy of the system is well
conserved within the range of the simulation time. It is kept constant and it is approximately equal to zero due to the
assumed initial conditions. The behavior of the curve for longer simulation scenarios has a tendency to reduce the total
energy of the system.
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(a) Configuration of body A, and constraint forces at joint 1
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Figure 4: Numerical results for the spatial double pendulum

4.2. Four-bar mechanism
This test case is more complex than the first example. The four-bar mechanism is one of the simplest representatives
of closed-loop systems. The initial system configuration and topology are presented in Fig. 3b . The mechanism
consists of three bodies A, B, and C. The bodies are interconnected to each other and the base body 0 by revolute
joints 1–4. Each of these joints has five constraint equations, giving 20 constraint equations. In addition, three Euler
parameter normalization constraints yield a total of 23 constraint equations. If absolute coordinates are used, there are
21 generalized coordinates for the three bodies. Since the mechanism possesses one degree of freedom, there must
be three redundant constraints. Such over-constrained systems represent a challenge for numerical algorithms. In this
situation one has to permanently deal with rank-deficient constraint Jacobian matrices. The existence of redundant
constraints might have consequences in non-uniqueness of constraint reactions [27]. The other issue corresponds to
a singular configuration. It is encountered when a multibody system reaches a position, in which there is a sudden
change in the number of degrees of freedom. For instance, a four-bar mechanism shown in Fig. 3b reaches a singular
configuration when the characteristic angle is ϕ = 90◦ and the links B and C are overlapped. At this particular state,
the constraint equations become dependent and the constraint Jacobian matrix temporarily loses its rank. At this point,
the mechanism can theoretically take two different paths (bifurcation point). When the mechanism passes through the
neighborhood of the singular configuration, large errors may be introduced into the solution or the simulation may
completely fail. The exemplary four-bar mechanism may lose the Jacobian matrix row rank both ways.

Let us assume that initially, the characteristic angle for the four-bar mechanism is ϕ = 45◦. This angle corresponds to
the Cartesian position of the system as depicted in Fig. 3a. It is assumed that initial linear and angular velocities are
set to zero. The gravity force is taken as acting in the negative y0 direction. The simulation time is 10 seconds with
the integrator time-step ∆t = 0.005sec. The time-step is larger than that assumed in the previous example due to the
convergence problems. The simulaton parameters are chosen to be α = 106, ||∆q|| < ε = 10−9, and the number of
iterations in the Newton-Raphson procedure equals three. Plots of positions, velocities, accelerations and constraint
loads at joint 1 are shown in Fig. 5a. Since the system is conservative, the presented time histories are periodic with
a dose of symmetry in the results. No sudden changes in constraint force components occur. The proposed approach
delivers the numerical results which match to the outcome achieved by commercial multibody software and indicated by
marks in the figures. Figure 5b presents the performance of the algorithm for the simulation that lasts 300 seconds. As
in open-loop system case, the method gives bounded response in terms of constraint violation errors as well as in terms
of the total energy conservation. The constraint errors are kept under control. The total energy of the system indicates a
small oscillatory behavior with the tendency to marginal energy dissipation. The energy dissipation is observed partly
due to the mass-orthogonal projections involved in the solution process. It can be noticed that the proposed formulation
handles well the system with redundant constraints, which may repeatedly pass through the neighborhood of singular
configuration.

5. Summary and conclusions
The equations of motion are formulated in terms of absolute coordinates. A unified form of the algorithm is presented
at the position, velocity and acceleration level. The unification manifests itself in the computational savings, because
the leading matrices at the mentioned levels are evaluated only once per integration step. Also, the employed Euler
parameter form of the equations of motion is particularly useful in deriving the divide and conquer algorithm presented
in this paper. The associated mass matrix is invertible and the derived divide and conquer formulae are simpler. The
equations of motion for the spatial multi-rigid body system dynamics are discretized by using a single-step trapezoidal
rule as an integration scheme. The employed framework leads to the set of nonlinear algebraic equations for the bod-
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Figure 5: Numerical results for the fourbar mechanism

ies’ positions and for the Lagrange multipliers associated with constraint equations. These equations are solved by
the Newton-Raphson procedure with the add of the second order predictor. It is assumed that the constraint equations
for multibody systems are imposed at the position level. In consequence, one may expect the accumulation of con-
straint errors for velocities and accelerations. To correct the constraint violation errors, the resulting classical index-3
formulation is supplemented by the two mass-orthogonal projections.

The robustness of the formulation manifests itself in the ability of the algorithm to analyze multibody systems with re-
dundant constraints, and the systems that may occasionally enter into singular configurations. The problems associated
with such systems are reflected in numerical difficulties, and in some situations, inability of the algorithm to continue
the simulation as reported. The proposed algorithm circumvents the problems by introducing the approximations of
Lagrange multipliers. The key matrices in the formulation remain nonsingular, and simultaneously, the constraint equa-
tions are fulfilled within the reasonable accuracy dependent on the tolerance imposed in the calculations. Due to the
necessity of the solution of nonlinear equations of motion, the proposed formulation is inherently iterative. The largest
computational load is associated with iterations performed by the Newton-Raphson algorithm, where the increments
in positions and Lagrange multipliers are evaluated to predict the state of the system in the next time-instant. The
computational burden can be reduced each next iteration by assuming that the tangent matrix in the Newton-Raphson
procedure is constant. On the other hand, the error corrections at the velocity and acceleration level are performed only
once per integration step. The mass-orthogonal projections based procedures make use of the tangent matrix evaluated
in the Newton-Raphson procedure. In fact, the numerical cost associated with the projections is only a part of the
burden required in the first iteration of the Newton-Raphson scheme.

Finally, the divide and conquer scheme is employed on top of the index-3 formulation with mass-orthogonal projections.
The trapezoidal rule is embedded into the solution process without the deterioration of the binary-tree structure of the
algorithm. This notion can be extended for incorporation of various structural integrators available in the literature.
The proposed approach enables one to parallelize the involved computations at the position, velocity and acceleration
levels. The efficiency gains can be obtained for the simulation of large multibody systems. The overall wall-clock time
associated with the simulations can be further diminished by careful implementations on various embedded platforms
as well as parallel computers involving multicore processor units or/and graphical processor units.
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