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Abstract 

Some patients with spinal cord injury (SCI) can walk with the help of orthoses and crutches. However, this 

assisted gait often causes the patient to suffer from pain in the active part of his body, as for example in the upper 

extremities. Although many musculoskeletal models have been proposed to estimate muscle forces during the 

gait of healthy subjects, the same cannot be said for SCI subjects. Therefore, the purpose of this work is to 

propose a full body musculoskeletal model of a SCI subject for assisted gait and to validate it. Both the 

kinematics and the ground reactions were experimentally obtained from a female subject with SCI at T11 and 

applied to a three-dimensional human model featuring 53 muscles in the right leg, trunk and right arm. An 

inverse dynamic analysis provided the histories of the joint drive torques. Then, four static and one physiological 

criteria were used to estimate the muscle forces at hip, trunk, shoulder and elbow levels (since the subject did not 

possess muscular activity under hip level). Finally, the electromyographic signals from 15 out of the 53 modeled 

muscles were recorded and compared with the corresponding estimated histories. 
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1. Introduction 

Advances in the care of individuals with spinal cord injury (SCI) have resulted in an increased life expectancy in 

this population. As an individual with SCI ages, an increase in the prevalence of problems like pain in the upper 

extremity might be expected. The structures of the upper extremity are designed primarily for prehensile 

activities. Because SCI patients also need them for daily functions such as mobility, they are used more 

frequently and strenuously and subject to increased stresses compared to those of an able-bodied individual [1]. 

Moreover, recent advances in passive and active orthoses allow people with neuromuscular disorders to move 

with crutches instead of wheelchairs. In the same way as wheelchair activities, walking with crutches produces 

important joints loads at the upper extremities: Westerhoff [2] reported maximum loads of up 170% of the 

bodyweight at shoulders.  

Crutch-assisted gait was studied at skeletal level by various authors to determine joint loads [2-4], but not at 

musculoskeletal level, like Morrow did for wheelchair activities [5]. Additionally, people with SCI or other 

neuromuscular diseases, have a different gait pattern which requires a specific analysis [6-7]. 

Determination of muscle forces during gait (or any other exercise) is of great interest to extract the principles of 

the central nervous system (CNS) control [8] (assessment of pathological gait from muscular activation 

abnormalities, diagnosis of neuromuscular disorders), or to estimate the loads on bones and joints [9] (prevention 

of injuries in sports, surgical planning to reconstruct diseased joints). The invasive character of in vivo 

experimental measurements, and the uncertain relation between muscle force and electromyography (EMG), 

makes computer modeling and simulation a useful substitutive approach [10].  

The fundamental problem is that there are more muscles serving each degree of freedom of the system than those 

strictly necessary from the mechanical point of view, which implies that, in principle, an infinite number of 

recruitment patterns are acceptable. This problem is often referred to as the redundancy problem of the muscle 

recruitment [11] or the force-sharing problem [12]. Experimental studies [13] and EMG collections [14] suggest 

that a specific strategy of muscle coordination is chosen by the CNS to perform a given motor task. 

A popular mathematical approach for solving the muscle recruitment problem is the optimization method, which 

can be associated to inverse or forward dynamics [15]. These methods minimize or maximize some criterion 

(objective function or cost function) which reflects the mechanism used by the CNS to recruit muscles for the 

movement considered. The proper cost function is not known a priori, so the adequacy of the chosen function 

must be validated according to the obtained results [16]. Many criteria have been proposed in the literature to 

predict muscle forces.  

In previous papers, the authors presented a comparison among four muscle recruitment criteria working on a 

static optimization scheme, and an additional criterion applied within a physiological optimization approach 



 

 

based either on an inverse dynamic analysis of the acquired motion [17] or on a forward dynamic one [18]. 

However, all methods were applied to healthy subjects and normal gait, while, in this work, they are applied to 

the assisted gait of an adult SCI female. The objective is to propose a musculoskeletal model of the SCI subject 

walking with the help of orthoses and crutches that provides an estimation of muscular forces and to validate it. 

2. Experiment and model 

2.1. Subject 

The subject was an adult female of age 45, mass 65 kg and height 1.52 m, with SCI at T11. Her injury allowed 

her a normal motion of the upper extremities and trunk, while partially limiting the actuation at the hips due to 

partial or no muscular innervation. Therefore, in order to walk she required the assistance of a pair of passive 

knee-ankle-foot orthoses (KAFO) and two crutches. In daily life she mainly used a wheelchair to move and 

resorted to the mentioned assisted gait only occasionally and during short periods of time. In order to assess 

muscle activity at hip level, surface EMG was used (equipment to measure deep muscles was not available). 

Based on the results, it was considered that pelvic and biceps femoris muscles were active, while other muscles 

going down the leg were inactive. 

2.2. Instrumentation and data collection 

The subject walked over two embedded force plates (AMTI, AccuGait sampling at 100 Hz) with the help of two 

crutches instrumented for ground contact force measurement [19], as shown in Figure 1a, and completed the 4-

point crutch-assisted gait cycle shown in Figure 2. Her motion was captured by 12 optical infrared cameras 

(Natural Point, OptiTrack FLEX:V100 also sampling at 100 Hz) that computed the position of 43 optical 

markers. Position data were filtered using an algorithm based on Singular Spectrum Analysis (SSA). 

Additionally, 15 surface EMG muscle signals were recorded at 1 KHz: 4 at the right hip, 4 at trunk, 4 at the right 

shoulder and 3 at the right arm; they were normalized and then filtered by SSA with a window length of 250. 

    
Figure 1: Gait of spinal cord injured subject assisted by passive orthoses and crutches:  

a) acquired motion; b) computational model. 

 

 
Figure 2: 4-point crutch-assisted gait cycle.  

2.3. Model description 

The 3D human model (Figure 3a) consisted of 18 anatomical segments: pelvis, torso, neck, head, and two hind 

feet, forefeet, shanks, thighs, arms, forearms and hands, with the crutches rigidly connected to the hands and the 

orthoses embedded in the corresponding body links (thighs, claves and feet). The segments were linked by ideal 



 

 

spherical joints, thus defining a model with 57 degrees of freedom (6 of the base body plus 17x3 of the joints). 

The geometric and inertial parameters of the model were obtained, for the lower limbs, by applying correlation 

equations from a reduced set of measurements taken on the subject, following the procedures described in [20]. 

For the upper part of the body, data from standard tables [15] was scaled according to the mass and height of the 

subject. In order to adjust the total mass of the subject, a second scaling was applied to the inertial parameters of 

the upper part of the body. Assistive devices were taken into account by altering the inertia properties of hands 

(crutches) and thighs, calves and feet (orthoses). 

     

Figure 3: a) Human multibody model; b) musculoskeletal model details. 

Inverse dynamic analysis [21] was applied to obtain the ground reactions and joint drive torques along the 

motion. Measurements from the force plates and instrumented crutches were just used to overcome the 

indeterminacy in the distribution of ground reactions during the multiple-support phases [19]. Therefore, the 

obtained joint drive torques and external reactions were consistent with the corresponding motion and no 

residuals were generated. 

The musculoskeletal model (Figure 3b) was composed of 53 muscles: 21 muscles at the right hip, 6 at trunk, 15 

at the right shoulder and 11 at the right elbow, their properties taken from OpenSim [22]. 

3.  Optimization methods  

3.1. Static optimization 

The first approach considered was static optimization. Joint drive torques at the right hip, shoulder and elbow, 

and at the lumbar joint, should be reproduced by muscle forces. The following optimization problem was stated, 
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where C is the cost function, Q is the vector of joint drive torques at the mentioned joints (where the force-

sharing problem is addressed), F is the vector of muscle forces, J is the Jacobian whose transpose projects the 

muscle forces into the joint drive torques space, and ,0iF  is the maximum isometric force of muscle i, with m the 

number of muscles (in this case, m=53). 

Regarding the cost function C, four cases were considered, shown in Table 1: 

I) Sum of the squares of muscle forces. 

II) Sum of the squares of normalized muscle forces. 

III) Sum of muscle stresses, with iA  the cross sectional area of muscle i. 

IV) Largest normalized muscle force. 

Table 1: The four muscle recruitment criteria compared. 
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Before showing the results, there is an issue which deserves to be mentioned. It has been said when describing 

the human model that spherical kinematic pairs have been considered for all the joints. This means that three 

joint drive torques are obtained at each joint from the inverse dynamic analysis. However, not all of them are due 

to the actuation of muscles. For example, the abduction/adduction torque at the elbow is not provided by 

muscles, but rather by other joint structures as trochlea and ligaments, being more a reaction moment than a 

drive torque. Therefore, the following joint drive torques were selected to form vector Q: the three torque 

components at the hip, lumbar joint and shoulder, and the flexion/extension torque at the elbow. A discussion on 

how the modeling of the joints and the considered torques affect to the results can be found in [23]. 

3.2. Physiological optimization 

In constrast to the static optimization, the so-called physiological static optimization takes muscle dynamics into 

account by introducing dynamic muscle force constraints [24]. This method applies static optimization 

techniques at each time point but prescribes minimal and maximal constraints for the muscle forces by 

extrapolating the force values from the previous time point using feasible muscle activation values. In this way, 

the optimization process remains efficient, but muscle dynamics are considered. The following optimization 

problem was stated, 

 

2

1 ,max

T

,min ,max

min  

subject to     

                       1, 2,...,

m
i

i i

i i i

F

F

F F F i m



 
  
 



  


F

J F Q  (2) 

where all the symbols have the same meaning as in (1), and ,miniF , ,maxiF  are, respectively, the minimum and 

maximum admissible forces for muscle i at the corresponding time point. In what follows, the way to determine 

such force limits is explained. 

If the Hill's muscle model is used [25], the states of muscle i are denoted by (index i is dropped for simplicity), 
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where a is the muscle activation and F is the musculotendon force. The Hill's muscle first-order differential 

equations are, 
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being u the muscle excitation, l the musculotendon length and v the musculotendon velocity. 

If the states are given at a certain time t, the minimum and maximum state variables at time t t  can be 

computed by setting the neural input u to its minimum ( 0u  ) and maximum ( 1u  ) possible values during the 

time interval t, and integrating the muscle equations, 
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The two integrations in (5) were performed by using numerical integrator ode23 from Matlab. Values of l and v 

inside the time interval t were obtained by linear interpolation of their values at times t and t t . The solution 

of (5) provided the limits ,miniF , ,maxiF  for muscle i. This process was repeated for all the muscles. 

It must be noted that the lowest activation at t t  is not always obtained for 0u  . In the long term, the 

activation converges to the excitation value if the latter remains constant. However, for small t values, an 

excitation higher than 0 can lead to a lower activation at t t . Therefore, the ,miniF  used for the optimization is 

not always guaranteed to be the smallest possible, but the error remains under 2.5% of the maximum activation. 



 

 

Once the force limits for all the muscles were determined, the optimization problem (2) could be solved, thus 

yielding the muscle forces ,   1,2,...,iF i m  for time t t . At this point, an iteration process for each muscle 

was run in order to find out the (assumed constant) excitation value u during the time interval t that led to the 

obtained muscle force 
iF  at time t t . To that end, different values of u (index i is dropped again) were tried 

until the bottom part (that affecting the force; see (3)) of the following equation was satisfied, 
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Function fsolve from Matlab was used for the iteration process, starting with initial guess u=1. The bottom part 

of (6) was integrated for each value of u provided by fsolve, until the resulting muscle force fell within a certain 

tolerance of the force obtained in the optimization (2). The companion muscle activation was then obtained from 

the upper part of (6), being the activation at time t t . 

So far, it had been assumed that the muscle states were known at time t in order to move to time t t . 

Therefore, a particular procedure had to be followed for the initial conditions, i.e. at time 0t  . For that time, it 

was supposed that muscle velocity was zero, 
M 0v  , for all the muscles, which implied that the force-velocity 

relationship of the Hill's muscle model was equal to one, 
M( 0) 1vf v   . To determine the initial muscle forces, 

the optimization problem (2) had to be solved, being the force limits ,miniF  and ,maxiF  the ones obtained by 

considering the minimum and maximum muscle activations, respectively, 0a  , 1a  . Since the velocity term 

is equal to 1, the muscle force can be obtained for a given activation by solving a nonlinear equation, instead of 

requiring the integration of an ODE. A more detailed explanation of this method can be found in [26]. 

3.3. Results 

Comparison of the estimated muscle forces obtained through the different described criteria (four static and one 

physiological) for some representative muscles of each joint is shown in Figure 4. As it can be seen, no 

significant differences were observed among the excitation patterns obtained with the five compared methods. 

 

Figure 4: Comparison of estimated muscle forces obtained with different criteria. 



 

 

  

Figure 5: Muscle activations obtained from physiological optimization (black) and EMG measurements (grey). 

Furthermore, the activation obtained with the physiological approach is compared with EMG measurements in 

Figure 5. Knowing the uncertain relation between muscle force and EMG, especially the difficulties in scaling 

the EMG magnitude of the filtered and normalized signals, it was decided not to scale the EMG processed data 

in order to focus more on the activity and coordination of muscles. Results show a reasonable correlation 

between calculated and experimental data. 

Unlike the normal gait of healthy people, which is smooth, crutch gait is noisy due to the numerous phases of the 

cycle (Figure 2) and their corresponding load distributions. On the other hand, muscular activity is higher in the 

upper extremities, as almost no phase of rest is observed. This results explain why the subject cannot walk for a 

long time. During the experiments, the patient complained of arm pain after few gait cycles and needed to rest 

many times. The partial actuation at hip level could be the reason for this permanent effort of the upper 

extremities, required to keep stability. 

4.  Conclusions 

The acquired gait of an adult female with spinal cord injury assisted by a pair of passive knee-ankle-foot 

orthoses and two crutches was analyzed through a three-dimensional personalized human model featuring 53 

muscles in the lumbar joint and the right hip, shoulder and elbow. Both static optimization with four muscle 

force-sharing criteria and static-physiological optimization were applied to estimate the histories of muscle 

forces. All the methods compared showed similar results. Furthermore, comparison of the activations provided 

by the physiological approach with EMG measurements was established for several muscles, and a reasonable 

correlation was obtained. The validated model could be helpful in the design of assistive gait devices in the 

context a predictive framework.   

It should be remarked that this model has to be adapted to each subject, especially the lower extremity muscular 

modeling. Indeed, another spinal cord injured subject will not necessary have the same muscle limitations. 

Furthermore, muscle activity will strongly depend on the subject’s general physical condition. 
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