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Abstract 

Optimal control is a well-known tool in the biomechanics field for gait analysis and prediction [1]. When 
solving an optimal control problem, first and second derivatives of the objective function and constraints (which 
may include the equations of motion in differential form) with respect to the design variables, states and controls 
are needed [2]. It is common to obtain first derivatives numerically by means of finite difference formulas, and to 
estimate the Hessian to avoid the calculation of second derivatives, which is very time consuming. Alternatively, 
it is possible to obtain symbolic expressions for the derivatives or use automatic differentiation [2]. In this work, 
the problem of analytically obtaining the first derivatives of the objective function and constraints is addressed for 
an optimal control problem that seeks to track an experimentally measured gait motion while making the simulated 
motion dynamically consistent. Results and efficiency are compared when using numerical and analytical first 
derivatives, respectively. For second derivatives, a Hessian approximation method is maintained in both cases. 

Experimental walking data were collected from a healthy adult male, 34 years old, mass 85 kg, and height 
1.82 m. All test procedures were approved by the local institutional review board, and the subject gave informed 
consent. The subject walked on a walkway possessing two embedded force plates (AMTI, AccuGait sampling at 
100 Hz), and his motion was captured by 12 optical infrared cameras (Natural Point, OptiTrack FLEX:V100 also 
sampling at 100 Hz) that computed the position of 37 optical markers (red dots in Fig. 1). 

A three-dimensional multi-body dynamic walking model of the subject was created by the authors [3], and is 
illustrated in Fig. 1. The model consisted of 18 anatomical segments: pelvis (base body), torso, neck, head, and 
two hindfeet, forefeet, shanks, thighs, arms, forearms and hands. The segments were linked by ideal spherical 
joints, thereby defining a model possessing 57 degrees of freedom (6 for the base body plus 51 for the joints). The 
computational model was defined using 228 mixed (174 natural + 54 angular) coordinates. Details about the 
treatment of captured data can be found in [3]. 

 

 
Figure 1. Human multibody model. 

 
Given the experimental marker motion and force plate data, a direct collocation optimal control problem was 

formulated to find the dynamically consistent model motion that best fit the marker motion data. The optimal 
control problem possessed the following characteristics. The states were the generalized positions and velocities
z  and z  for the 57 independent degrees of freedom, and the controls were the associated generalized accelerations 
z  and the torques τ  acting at the 51 controlled joint degrees of freedom. The objective function minimized the 
time integral over a complete gait cycle of the squared deviations between the generalized positions, velocities, 
and accelerations obtained from the model and those obtained from an inverse kinematic analysis, plus the squared 
deviations between the joint torques obtained from the model and those obtained from an inverse dynamic analysis. 
The dynamic constraints were trivial, as the generalized accelerations were used as controls. Dynamic consistency 
was imposed as a path constraint, forcing the residual forces and torques on the base body to be zero. This scheme 
using inverse dynamics increases the size of the problem, as the accelerations must be included as controls, but 



proves to be more robust than the forward dynamics alternative. 
The equations of motion were provided using the so-called matrix-R formulation [4], which leads to a system 

in the minimum number of 57 coordinates. Using this formulation, the inverse dynamic equations that provided 
the generalized forces were: 

T T T( )ID = − − = −Q R MRz R Q MRz R MRz Q                                                    (1) 

where R is the matrix that projects the independent set of coordinates onto the dependent set, M is the mass matrix 
in dependent coordinates, and Q is the generalized force vector in dependent coordinates. 

For the optimal control problem to be solved, the partial derivatives of the path constraints with respect to the 
states, z  and z  and controls z  and τ  were necessary. The derivatives with respect to the torques were trivial. 
The complexity arises in the derivatives of equation (1) with respect to z , z  and z , which are outlined using the 
following equations: 
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The development of each of these partial derivative terms leads to extremely complex expressions involving 
tensor products that can be found in detail in [5]. Equations (1) through (4) were implemented in the software 
package MBSLIM [6], written in FORTRAN. For solving the optimal control problem, the commercial software 
GPOPS-II [7] was used. 

Table 1. Results for the initial mesh. 

Derivatives method Iterations until convergence Time (s) Time per iteration (s) Objective 

GPOPS-II Sparse Central Diff. 16 399 24.94 1.084e-2 

GPOPS-II Sparse Forward Diff. 18 225 12.5 1.14e-2 

MBSLIM 17 123 7.24 1.033e-2 
 
Results, summarized in Table 1, show that the three methods lead to almost the same solution in a similar 

number of iterations, but the use of analytical derivatives provides slightly better accuracy and much better 
efficiency. 
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