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Abstract 
For the last decades, the automotive industry has been improving the ride & handling and the 
safety of vehicles. Many control strategies have been developed for this purpose. They make 
use of multiple sensors and actuators and are applied to different elements of the vehicle, such 
as (semi-)active suspension, electric power steering or brake assistance systems. These 
strategies require ever more complex algorithms, where more computational power and more 
sensor information are needed. New generation Electronic Control Units (ECUs) are in 
development to satisfy the demand of higher computational power in the automotive 
embedded platforms. However, to retrieve the required sensor information often implies the 
use of expensive sensors and, in some cases, the sensor information is not at all available. In 
the latter, model-based virtual sensors can be used as an alternative sensing technique. Most 
of the virtual sensors that are used nowadays in vehicles are based on analytical models 
because of its high computational efficiency. However, the amount of information can be 
increased by using multibody models. In conventional ECUs, the implementation of 
multibody models for real-time estimation is not possible due to the limited available 
computational power. Nevertheless, new generation ECUs offers the opportunity of executing 
state observers based on multibody models on-board and in real-time. The aim of this work is 
to implement multibody models on these ECUs in order to explore the performance that can 
be achieved. 
 

Introduction 
Multiple solutions have been developed by the automotive industry to deal with the goal of 
improving the ride & handling and the safety. Some are meant to assist the driver by means of 
control strategies, while others are focused in acquiring sensor data during vehicle testing for 
a high quality dynamics analysis.  
In the field of control strategies, active systems together with Advanced Driver Assistance 
Systems (ADAS) are widely used. Active systems can be: powertrain control, to allow 
different driving modes depending on the demands of the driver; active suspensions, to 
modify the behavior of the suspension based on the road profile, giving higher ride comfort; 
electric power steering (EPS), to help the driver while steering the vehicle; brake assistance 
systems, to provide increased security during braking maneuvers. These active systems are all 
working under different control algorithms fed by sensor information. The evolution towards 
more complex control algorithms is linked to the information available in the vehicle. Model 
Predictive Control (MPC) algorithms are part of these new generation control strategies that 
can be used to improve the behavior of active systems. They however require full-state 
availability, which means that more sensor information than for conventional control 



algorithms is necessary. Virtual sensing appears therefore as a viable alternative to physical 
sensors to reduce solution cost and complexity. On the other hand, ADAS systems use 
information from 3D environment sensors (radar, lidar, cameras and ultrasonic sensors) to 
implement algorithms based on computer vision, machine learning or deep learning, for what 
high computational power is required.  
For vehicle dynamics analysis, the objective to acquire relevant data during vehicle test 
drives. For acquiring part of this data, expensive and difficult-to-place sensors are required. 
The use of virtual sensors as an extension of a data acquisition systems is an alternative to 
collect more data without having to install additional sensors. The gathered data could then be 
used to analyze the vehicle dynamics and improve the ride & handling of the vehicle. As in 
the previous case, more computational power will be needed.  
In order to implement the aforementioned control solutions, each vehicle has several ECUs. 
The number of ECUs is increasing, with luxury cars that can exceed the 100 processors. It is 
common to have one ECU for each control action that is taken in the vehicle, from simple 
task such as seat regulation, lights control or air conditioning to more complex tasks like the 
ones required for the engine, the suspension, the steering or the powertrain, for what advanced 
ECUs are needed. This situation leads to a vehicle with a very complex network and an 
important increment of weight. 
As a solution to these problems, new generation ECUs are starting to be used in commercial 
vehicles. These ECUs offer an increase in computational power with respect to the 
conventional ECUs, and its use in commercial vehicles is an opportunity for reducing the 
number of on-board ECUs, and for implementing more complex control strategies, fed by 
virtual sensors based on multibody models. 
In the next sections, the way virtual sensors are implemented nowadays will be presented, 
followed by an explanation on why new generation ECUs offer more computational power 
than conventional ECUs. Then, the implementation of state observers based on multibody 
models will be discussed, focusing specially on the coordinates and observer selection 
regarding to the coordinates and observer selection. Preliminary research results on achieved 
computational performance and multibody selection will be discussed in the next sections. 
Finally, conclusions and future work will be presented. 
 

State of the art 
As explained in the previous section, control strategies are programmed in the vehicle ECUs 
for improving Ride and Safety. Most of these ECUs need information from multiple sensors 
placed of the vehicle to get all the information required to execute their control actions. 
However, in some cases, this information is not available or imposes the use of expensive 
sensors.  As an alternative, a state observer based on a model of the vehicle (or part of it) and 
a reduced number of sensors can be used to create virtual sensors [1, 2, 3] for the missing 
information required by the ECU.  
There exist multiple use-cases for estimation algorithms in real-time applications, such as the 
control algorithms for active suspension system [4]. For enabling the control in the 
suspension, multiple sensors are placed on the suspension itself, such as accelerometers, to 
gather information of the real situation of the suspension. The data from the sensors is sent to 
the ECU, where the state observer based on an analytical model of the suspension is executed 
and returns information from the virtual sensors. Once that the information of physical and 
virtual sensors is acquired, the control algorithm sends the control action to the actuator of the 
suspension to adapt the suspension system behavior to the road profile, thus increasing the 
ride comfort. 



With respect to the vehicle dynamics analysis, the work presented in [5], shows the possibility 
of estimating the forces in the knuckle of the vehicle. With the data collected by strain gauges 
and accelerometers placed on the knuckle, a finite element model of the knuckle combined 
with a Kalman filter can be fed with enough information to estimate the forces endured by the 
knuckle. After the estimation, these forces can be used for the knuckle durability analysis. To 
acquire the same data with physical sensors, the cost of the setup would increase, as well as 
the sensor installation cost. Therefore, with virtual sensing, the number and cost of the sensors 
needed for system analysis can be reduced. 
As the evolution of control strategies tends to require more sensor information, the use of 
virtual sensors appears to be an adequate solution to avoid the high costs and difficulties 
derived from installing more physical sensors. The virtual sensors implemented in the last 
years, are based on analytical models due to the limitations of computational power on ECUs. 
Therefore, it was not possible to implement virtual sensors based on multibody models in 
real-time instead of analytical models, despite the opportunity of acquiring data from more 
(virtual) sensors, as a direct consequence of having more detailed models. Thus, the challenge 
is to execute the state observer and the multibody model of the vehicle in real-time on the 
commercial vehicle ECUs. Several studies have developed models of some parts of the 
vehicle or simplified models of it with state observers for control applications [6-7]. In [8] the 
multibody model of a complete vehicle with a state observer is simulated with good accuracy, 
but the computational complexity of the simulation was too high to be able to simulate it in 
real-time. In [9], an indirect state observer is presented and the simulation of a multibody 
model and its state observer reached real-time in an on-board CPU. This strategy is promising 
but the computing hardware used in this research does not correspond to the computational 
power available in ECUs of commercial vehicles. As mentioned before, these ECUs have 
substantially less computational performance than CPU of commodity PCs. However, new 
generation ECUs have the computational power required for executing virtual sensors based 
on multibody models. 
New generation ECUs are based on heterogeneous processors. A heterogeneous processor has 
one chip that embeds two different processors. It is also known as System-On-Chip (SoC). In 
the case of ECUs, it embeds an ARM processor and a Field Programmable Gate Array 
(FPGA) co-processor.  Using both processors in the same chip allows reducing the 
communication overhead between the two processors. Therefore, higher computational power 
than separated can be achieved.  
ARM processors are based on a RISC (Reduced Instruction Set Computer) architecture, with a 
set of attributes allowing them to have a better cost, power consumption and heat dissipation 
than processors based on CISC (Complex Instruction Set Computer) architecture. These 
advantages make ARM processors suitable for embedded applications as smartphones or 
automotive ECUs. 
On the other hand, an FPGA is a set of wires, logic gates and registers that can be combined 
with total freedom to build a dedicated computer unit for a specific application. FPGAs are 
also known as hardware accelerators: the code placed in the FPGA can outperform the same 
code in a CPU. However, each FPGA has limited resources, which means that a limited 
amount of code can be programmed on the FPGA. Also, FPGA code is programmed in 
hardware language, VHDL, which is significantly different from the conventional 
programming languages. Nevertheless, the available resources change depending on the 
model, and FPGA manufacturers embed ever more resources in FPGAs for heterogeneous 
processors. With respect to the programming language, FPGA manufacturers offer their own 
software for helping the designer when programming the FPGA, giving all the tools to 
translate the code from C/C++ to VHDL and to generate the files needed to program the 
hardware.  



In this work, the Zynq7020 SoC from Xilinx was used. It includes an ARM Cortex A-9 
processor, more powerful than conventional ECUs, with a floating point unit for providing 
high precision for solving the multibody dynamics with no additional computational cost, and 
a FPGA Artix-7 to complement the ARM processor, giving the opportunity of accelerate the 
task which consumes more time on the algorithm, so the efficiency can be improved.  
 

Automotive multibody models 
As explained in previous Sections, the use of a state observer based on multibody models 
provides more information via virtual sensors. As new generation ECUs offer higher 
computational power than conventional ECUs, the implementation of multibody models in 
these platforms needs to be studied. As an initial approach, a 3D multibody model of a 
quarter-car will be tested. 
The multibody model developed for the 3D quarter-car model (figure 1.A) was defined in 
natural coordinates. This type of coordinates (see [10]) are easy to implement, at expenses of 
a higher number of variables which normally leads to higher computational times. As an 
alternative, in [11], an approach for the use of relative coordinates is presented. Using these 
coordinates, the number of variables is substantially reduced. Although using these 
coordinates increases the complexity of the model, the final computational time is lower than 
with natural coordinates for the case of models of high size as a full-car. Therefore, the 
multibody model of the full-car (figure 1.B) is developed using relative coordinates. Due to 
the higher performance of relative coordinates, their use seems to be more promising than 
natural coordinates for achieving real-time. Thus, the multibody formulation for relative 
coordinates used in this work will be explained in the next Section. 
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Figure 1. A) Multibody model of a quarter-car. B) Multibody model of a full-car.  
 

Multibody formulations for relative coordinates 
Modelling in relative coordinates means using a reduced set of variables for defining the 
dynamics of the model. The main disadvantage of using relative coordinates is the complexity 
for defining the dynamic equations of motion. As a solution, in [11], the semi-recursive 
formulation was presented. 
The semi-recursive method defines a double set of coordinates in the modeling: six Cartesian 
coordinates (three translations plus three rotations) for each body, and the relative coordinates 
of the whole mechanism. The dynamic equations are defined in the Cartesian coordinates (or 
body coordinates) and, then, a velocity projection is used to obtain a set of equations in the 
relative coordinates. However, when the relative coordinates are dependent (a common 
situation in automotive applications), constraint equations should be imposed. In (1), the 
dynamic equations of motion using the index-3 augmented Lagrangian formulation [12] are 
presented. 



𝐌𝐌�̈�𝐳 + 𝚽𝚽𝐳𝐳
𝐭𝐭𝛂𝛂𝚽𝚽 + 𝚽𝚽𝐳𝐳

𝐭𝐭𝛌𝛌∗ = 𝐐𝐐     (1) 

where z are the relative coordinates, M is the mass matrix of the mechanism expressed in 
terms of the relative coordinates, Φ is the constraint vector, Φz is the Jacobian matrix of the 
constraints, α is the penalty factor, Q is the vector of applied and velocity-dependent forces, 
and 𝛌𝛌∗ is the vector of Lagrange multipliers.  
As mentioned above, expressing the terms of equation (1) in relative coordinates is not a 
trivial task. However, using body coordinates, the dynamic terms M and Q can be more easily 
expressed. A relationship between both coordinates should be imposed therefore to obtain M 
and Q in relative coordinates. A matrix R can be defined so that the following relationship 
stands,  

𝐙𝐙 = 𝐑𝐑�̇�𝐳                (2) 

where Z are the body coordinates. If this relation is applied to the dynamic equation of 
motion,  

𝐑𝐑𝐭𝐭𝐌𝐌�𝐑𝐑�̈�𝐳 = 𝐑𝐑𝐭𝐭(𝐐𝐐� −𝐌𝐌��̇�𝐑�̇�𝐳)                  (3) 

which means that the mass matrix and the vector of applied and velocity-dependent forces of 
the model expressed in relative coordinates become, 

𝐌𝐌 =  𝐑𝐑𝐭𝐭𝐌𝐌�𝐑𝐑       (4) 

𝐐𝐐 = 𝐑𝐑𝐭𝐭(𝐐𝐐� −𝐌𝐌��̇�𝐑�̇�𝐳)                 (5) 

Once that the terms of (3) are known, it is possible to integrate the equations and solve the 
dynamics of the model at a certain time step. As integration scheme, the implicit single-step 
trapezoidal rule has been adopted. The corresponding difference equations in velocities and 
accelerations are: 

�̇�𝐳𝐧𝐧+𝟏𝟏 =  2
Δt
𝐳𝐳𝐧𝐧+𝟏𝟏 + �̇�𝐳�𝐧𝐧   with  �̇�𝐳�𝐧𝐧 = −( 2

Δt
𝐳𝐳𝐧𝐧 + �̇�𝐳𝐧𝐧)         (6) 

�̈�𝐳𝐧𝐧+𝟏𝟏 =  2
Δt2

𝐳𝐳𝐧𝐧+𝟏𝟏 + �̈�𝐳�𝐧𝐧   with  �̈�𝐳�𝐧𝐧 = −( 2
Δt2

𝐳𝐳𝐧𝐧 + 2
Δt
�̇�𝐳𝐧𝐧 + �̈�𝐳𝐧𝐧)               (7) 

being Δt the time-step. Dynamic equilibrium can be established at time-step n+1 by 
introducing difference equations (6) and (7) into (1), leading to a nonlinear system of 
equations in which the positions at time-step n+1 are the unknowns, 

f(𝐳𝐳𝐧𝐧+𝟏𝟏) = 0                   (8) 

Such a system can be solved through the Newton-Raphson iterative procedure, being the 
residual vector, 

f(𝐳𝐳) = Δt2

4
(𝐌𝐌�̈�𝐳 + 𝚽𝚽𝐳𝐳

𝐭𝐭𝛂𝛂𝚽𝚽 + 𝚽𝚽𝐳𝐳
𝐭𝐭𝛌𝛌∗ − 𝐐𝐐)            (9) 

And the approximated tangent matrix, 

∂f(𝐳𝐳)
∂𝐳𝐳

= 𝐌𝐌 + Δt
2

4
(𝚽𝚽𝐳𝐳

𝐭𝐭𝛂𝛂𝚽𝚽)          (10) 

This procedure yields a set of positions that not only satisfies the equation of motion (1), but 
also the constraint conditions. Once that the positions are obtained, the velocities and 



accelerations should be calculated for the time-step n+1. Thus, the motion of the model is 
determined for each time-step. 

Results 
In order to evaluate the benefits of using the heterogeneous processors, different simulations 
were executed for the quarter-car and full-car model. Each simulation was based on the 
multibody model running over a flat ground passing over a 10 cm bump. The total simulation 
time was of 10 s, with an integration time step of 4 ms.  
Concerning the implementation of the multibody models in the heterogeneous processor, there 
exist many possibilities for deploying the code on the ARM processor and the FPGA co-
processor. Nevertheless, the limited resources of the FPGA imply that the selection of the 
code which will be implemented on this processor is not obvious. Therefore, different 
configurations for each simulation will be considered in order to determine which 
configuration gives better performance. A simulation made with the full multibody model in 
the ARM processor is taken as a reference for making a time comparison with the 
implementations that offload code to the FPGA. 
Quarter-car simulation 
The quarter-car model represents the suspension of a vehicle. Therefore, it is a small model 
compared to a full-car model, and it is suitable for getting preliminary results of using the 
FPGA for accelerating the simulation. The characteristics of this model are shown in table 1. 

 

 SYSTEM FORMULATION INTEGRATOR ITERATOR TIME 
STEP TIME 

MULTIBODY 
MODEL Quarter-car Penalty Trapezoidal rule Newton-

raphson 4 ms 10 s 

 
Table 1. Quarter-car multibody model characteristics 

 
The options taken for these simulations were mentioned in the previous section: executing the 
full model on the FPGA, offload the matrix multiplications to the FPGA or implement the 
matrix inversion on the FPGA. The results are show in table 2. 

 
 ARM FPGA TIME (S) 

REFERENCE Full model - 0.23 

OPTION A - Full model NOT ENOUGH 
RESOURCES 

OPTION B Model All matrix multiplications 0.94 
OPTION C Model All matrix inversions 0.02 

 

Table 2. Results of the quarter-car model simulations 
 

From table 2, it can be seen that the FPGA that the Xilinx ZYNQ-7020 embeds has not 
enough resources by far for implementing the code for the simulation of the quarter-car 
multibody model, and without any kind of code optimization. Nevertheless, this problem can 
be avoided using FPGA with more resources. The FPGA used in this work has 85k logic cells, 
while the top level FPGA of the Zynq7000 family has 444k logic cells. Obviously, this 



increment of resources is traduced into a cost increment.  
Therefore, the code of the multibody model was split between the ARM processor and the 
FPGA. As a first option, the matrix multiplications were implemented on the FPGA, due to 
the simplicity of the algorithm. However, as shown in table 2, the execution time taken for the 
simulation is higher than the reference simulation, meaning that this option does not improve 
the performance of the simulation. This result might be surprising, as the FPGA is supposed to 
accelerate the code. This is due to the simplicity of the model, which results in small matrices 
and, therefore, the multiplication in the FPGA does not provide a significant reduction of time 
to compensate the required communication time, making the overall execution slower. 
Thus, as a third option, the matrix inversion was implemented on the FPGA. This operation is 
involved in the calculation of the position increments of the model each iteration, which is the 
most time consuming operation of the simulation. As this operation is more complex than the 
matrix multiplication, the algorithm provided by Xilinx for the FPGA was implemented. With 
this implementation, the performance of the matrix operation in the FPGA is substantially 
higher than in the ARM processor. The communication times have therefore a lower impact.  
Full-car simulation 
In order to evaluate a problem of higher size than the quarter car model, a full-car multibody 
model was developed. This model was made for studying the vertical dynamics of the vehicle, 
thus it has 10 degrees of freedom (6 from the spatial movement of the chassis and 1 for each 
suspension). In table 3, a resume of the model is made.  

 

 SYSTEM FORMULATION INTEGRATOR ITERATOR TIME 
STEP 

TIME 

MULTIBODY 
MODEL Full-car Semi-recursive 

ALI3P Trapezoidal rule Newton-
raphson 4 ms 10 s 

 
Table 3. Full-car multibody model characteristics 

 
For the full-car model, the main option taken was to implement all the operations required for 
solving the system of equations that gives the position increments of the model each time 
step, instead of implementing just the matrix inversion, as in the quarter-car model. The 
implementation of the full model on the FPGA was also tested. In table 4, the results of these 
simulations are shown. 
 

 ARM FPGA TIME (S) 
REFERENCE Full model - 5.99 

OPTION A - Full model NOT ENOUGH 
RESOURCES 

OPTION B Model Solve equation system 4.41 
 

Table 4. Results of the full-car model simulations 
 

The first result of these simulations is that implementing a multibody model entirely on this 
FPGA is not possible. The resources of the ZYNQ-7020 are not enough, and using a bigger 
FPGA increases the cost making it not worth. Nevertheless, as these platforms evolve, it could 
be possible in the future to have more resources at the same cost than nowadays.  



Thus, the most interesting option is to implement the code that consumes more time during 
the simulation and, in the case of multibody simulations, it is the resolution of the position 
increments. For this operation, Xilinx does not provide an algorithm. Therefore, a Gauss-
Jordan algorithm was implemented. The results in table 4 show that there is a reduction of 
time when executing this operation on the FPGA. However, the improvement is not as good 
as it could be expected from the results obtained in the quarter-car simulation.  
The blueprint of the FPGA implementation of the Gauss-Jordan algorithm is shown in figure 
2, where the clear blue represents the resources consumed for this implementation. For the 
full-car model in relative coordinates used in this work, the matrix size of the system is 
26x26. As it can be seen, almost all the elements of the FPGA are employed. In case of using 
natural coordinates, the size of the system would be substantially higher and there would not 
be enough resources for implementing the Gauss-Jordan algorithm on the FPGA. In this 
situation, the system should be solved using matrix partitioning, leading to an increase of 
complexity and higher computational cost.  
 

 
Figure 2. Blueprint of the Gauss-Jordan implementation on the FPGA used in this work 

 
In [13-14], Gauss-Jordan implementations for FPGA are presented, showing an important 
reduction of time when compared with the same algorithm in a personal computer. Therefore, 
the actual implementation of the algorithm can be improved, increasing more the performance 
of the simulation when using the FPGA. 
 

Conclusions and future work 
The evolution of control algorithms for automotive applications is limited by the sensors 
available in commercial vehicles. In some cases, these sensors do not provide the most 
suitable data or cannot provide it at all. The use of virtual sensors in the automotive industry 
can alleviate the problem of gathering information of elements where the sensors cannot be 
placed or their installation implies a prohibitive cost. One of the main difficulties in 
implementing virtual sensors in a vehicle is related to the computational power of ECUs. 
Although virtual sensors based on analytical models can be implemented on conventional 
powerful ECUs, the information that can be gathered from these models is limited. In 
contrast, the use of multibody models can increase the number of virtual sensors and therefore 
the amount of information available. 
 
The appearance of heterogeneous processors as processors for new generation ECUs means a 
high increase in computational power in ECUs. New generation ECUs embed an ARM 



processor and an FPGA co-processor. FPGAs are platforms that can be fully programmed for 
each specific application thus reaching higher performance than with conventional processors. 
One of the main disadvantages of FPGAs is the limitation on the amount of code that can be 
programmed on them. Therefore, the FPGA should ideally be used to accelerate the slower 
parts of the program that is being executed on the ECU. 
In this paper, the implementation of multibody models in this new generation ECUs were 
made in order to evaluate the potential of these platforms. In an initial phase, a 3D multibody 
model of a quarter-car was executed, showing promising results. Then, a 3D full-car 
multibody model for analyzing the vertical dynamics of a vehicle was implemented. In this 
case, although there was an increase in the performance of the simulation, the results were not 
as good as in the initial approach. 
As future work, new FPGA implementations will be tested in order to further increase the 
performance of the multibody simulations. Improving the multibody simulations will allow 
combining the multibody model with a state observer, in order to measure virtual sensors in 
real-time and to test the application in a real situation. 
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