
Paper Number: EAEC2017_A33

VIRTUAL SENSING ON AUTOMOTIVE

EMBEDDED HETEROGENEOUS PLATFORMS

Antonio J. Rodriguez (University of A Coruña, Spain), Roland Pastorino (Siemens
Industry Software NV, Belgium), Miguel Á. Naya (University of A Coruña, Spain), Emilio
Sanjurjo (University of A Coruña, Spain),

Keywords: multibody dynamics, real-time, heterogeneous processor, FPGA, state estimation

Abstract
For the last decades, the automotive industry has been improving the ride & handling and the
safety of vehicles. Many control strategies have been developed for this purpose. They make
use of multiple sensors and actuators and are applied to different elements of the vehicle, such
as (semi-)active suspension, electric power steering or brake assistance systems. These
strategies require ever more complex algorithms, where more computational power and more
sensor information are needed. New generation Electronic Control Units (ECUs) are in
development to satisfy the demand of higher computational power in the automotive
embedded platforms. However, to retrieve the required sensor information often implies the
use of expensive sensors and, in some cases, the sensor information is not at all available. In
the latter, model-based virtual sensors can be used as an alternative sensing technique. Most
of the virtual sensors that are used nowadays in vehicles are based on analytical models
because of its high computational efficiency. However, the amount of information can be
increased by using multibody models. In conventional ECUs, the implementation of
multibody models for real-time estimation is not possible due to the limited available
computational power. Nevertheless, new generation ECUs offers the opportunity of executing
state observers based on multibody models on-board and in real-time. The aim of this work is
to implement multibody models on these ECUs in order to explore the performance that can
be achieved.

Introduction
Multiple solutions have been developed by the automotive industry to deal with the goal of
improving the ride & handling and the safety. Some are meant to assist the driver by means of
control strategies, while others are focused in acquiring sensor data during vehicle testing for
a high quality dynamics analysis.
In the field of control strategies, active systems together with Advanced Driver Assistance
Systems (ADAS) are widely used. Active systems can be: powertrain control, to allow
different driving modes depending on the demands of the driver; active suspensions, to
modify the behavior of the suspension based on the road profile, giving higher ride comfort;
electric power steering (EPS), to help the driver while steering the vehicle; brake assistance
systems, to provide increased security during braking maneuvers. These active systems are all
working under different control algorithms fed by sensor information. The evolution towards
more complex control algorithms is linked to the information available in the vehicle. Model
Predictive Control (MPC) algorithms are part of these new generation control strategies that
can be used to improve the behavior of active systems. They however require full-state
availability, which means that more sensor information than for conventional control

algorithms is necessary. Virtual sensing appears therefore as a viable alternative to physical
sensors to reduce solution cost and complexity. On the other hand, ADAS systems use
information from 3D environment sensors (radar, lidar, cameras and ultrasonic sensors) to
implement algorithms based on computer vision, machine learning or deep learning, for what
high computational power is required.
For vehicle dynamics analysis, the objective to acquire relevant data during vehicle test
drives. For acquiring part of this data, expensive and difficult-to-place sensors are required.
The use of virtual sensors as an extension of a data acquisition systems is an alternative to
collect more data without having to install additional sensors. The gathered data could then be
used to analyze the vehicle dynamics and improve the ride & handling of the vehicle. As in
the previous case, more computational power will be needed.
In order to implement the aforementioned control solutions, each vehicle has several ECUs.
The number of ECUs is increasing, with luxury cars that can exceed the 100 processors. It is
common to have one ECU for each control action that is taken in the vehicle, from simple
task such as seat regulation, lights control or air conditioning to more complex tasks like the
ones required for the engine, the suspension, the steering or the powertrain, for what advanced
ECUs are needed. This situation leads to a vehicle with a very complex network and an
important increment of weight.
As a solution to these problems, new generation ECUs are starting to be used in commercial
vehicles. These ECUs offer an increase in computational power with respect to the
conventional ECUs, and its use in commercial vehicles is an opportunity for reducing the
number of on-board ECUs, and for implementing more complex control strategies, fed by
virtual sensors based on multibody models.
In the next sections, the way virtual sensors are implemented nowadays will be presented,
followed by an explanation on why new generation ECUs offer more computational power
than conventional ECUs. Then, the implementation of state observers based on multibody
models will be discussed, focusing specially on the coordinates and observer selection
regarding to the coordinates and observer selection. Preliminary research results on achieved
computational performance and multibody selection will be discussed in the next sections.
Finally, conclusions and future work will be presented.

State of the art
As explained in the previous section, control strategies are programmed in the vehicle ECUs
for improving Ride and Safety. Most of these ECUs need information from multiple sensors
placed of the vehicle to get all the information required to execute their control actions.
However, in some cases, this information is not available or imposes the use of expensive
sensors. As an alternative, a state observer based on a model of the vehicle (or part of it) and
a reduced number of sensors can be used to create virtual sensors [1, 2, 3] for the missing
information required by the ECU.
There exist multiple use-cases for estimation algorithms in real-time applications, such as the
control algorithms for active suspension system [4]. For enabling the control in the
suspension, multiple sensors are placed on the suspension itself, such as accelerometers, to
gather information of the real situation of the suspension. The data from the sensors is sent to
the ECU, where the state observer based on an analytical model of the suspension is executed
and returns information from the virtual sensors. Once that the information of physical and
virtual sensors is acquired, the control algorithm sends the control action to the actuator of the
suspension to adapt the suspension system behavior to the road profile, thus increasing the
ride comfort.

With respect to the vehicle dynamics analysis, the work presented in [5], shows the possibility
of estimating the forces in the knuckle of the vehicle. With the data collected by strain gauges
and accelerometers placed on the knuckle, a finite element model of the knuckle combined
with a Kalman filter can be fed with enough information to estimate the forces endured by the
knuckle. After the estimation, these forces can be used for the knuckle durability analysis. To
acquire the same data with physical sensors, the cost of the setup would increase, as well as
the sensor installation cost. Therefore, with virtual sensing, the number and cost of the sensors
needed for system analysis can be reduced.
As the evolution of control strategies tends to require more sensor information, the use of
virtual sensors appears to be an adequate solution to avoid the high costs and difficulties
derived from installing more physical sensors. The virtual sensors implemented in the last
years, are based on analytical models due to the limitations of computational power on ECUs.
Therefore, it was not possible to implement virtual sensors based on multibody models in
real-time instead of analytical models, despite the opportunity of acquiring data from more
(virtual) sensors, as a direct consequence of having more detailed models. Thus, the challenge
is to execute the state observer and the multibody model of the vehicle in real-time on the
commercial vehicle ECUs. Several studies have developed models of some parts of the
vehicle or simplified models of it with state observers for control applications [6-7]. In [8] the
multibody model of a complete vehicle with a state observer is simulated with good accuracy,
but the computational complexity of the simulation was too high to be able to simulate it in
real-time. In [9], an indirect state observer is presented and the simulation of a multibody
model and its state observer reached real-time in an on-board CPU. This strategy is promising
but the computing hardware used in this research does not correspond to the computational
power available in ECUs of commercial vehicles. As mentioned before, these ECUs have
substantially less computational performance than CPU of commodity PCs. However, new
generation ECUs have the computational power required for executing virtual sensors based
on multibody models.
New generation ECUs are based on heterogeneous processors. A heterogeneous processor has
one chip that embeds two different processors. It is also known as System-On-Chip (SoC). In
the case of ECUs, it embeds an ARM processor and a Field Programmable Gate Array
(FPGA) co-processor. Using both processors in the same chip allows reducing the
communication overhead between the two processors. Therefore, higher computational power
than separated can be achieved.
ARM processors are based on a RISC (Reduced Instruction Set Computer) architecture, with a
set of attributes allowing them to have a better cost, power consumption and heat dissipation
than processors based on CISC (Complex Instruction Set Computer) architecture. These
advantages make ARM processors suitable for embedded applications as smartphones or
automotive ECUs.
On the other hand, an FPGA is a set of wires, logic gates and registers that can be combined
with total freedom to build a dedicated computer unit for a specific application. FPGAs are
also known as hardware accelerators: the code placed in the FPGA can outperform the same
code in a CPU. However, each FPGA has limited resources, which means that a limited
amount of code can be programmed on the FPGA. Also, FPGA code is programmed in
hardware language, VHDL, which is significantly different from the conventional
programming languages. Nevertheless, the available resources change depending on the
model, and FPGA manufacturers embed ever more resources in FPGAs for heterogeneous
processors. With respect to the programming language, FPGA manufacturers offer their own
software for helping the designer when programming the FPGA, giving all the tools to
translate the code from C/C++ to VHDL and to generate the files needed to program the
hardware.

In this work, the Zynq7020 SoC from Xilinx was used. It includes an ARM Cortex A-9
processor, more powerful than conventional ECUs, with a floating point unit for providing
high precision for solving the multibody dynamics with no additional computational cost, and
a FPGA Artix-7 to complement the ARM processor, giving the opportunity of accelerate the
task which consumes more time on the algorithm, so the efficiency can be improved.

Automotive multibody models
As explained in previous Sections, the use of a state observer based on multibody models
provides more information via virtual sensors. As new generation ECUs offer higher
computational power than conventional ECUs, the implementation of multibody models in
these platforms needs to be studied. As an initial approach, a 3D multibody model of a
quarter-car will be tested.
The multibody model developed for the 3D quarter-car model (figure 1.A) was defined in
natural coordinates. This type of coordinates (see [10]) are easy to implement, at expenses of
a higher number of variables which normally leads to higher computational times. As an
alternative, in [11], an approach for the use of relative coordinates is presented. Using these
coordinates, the number of variables is substantially reduced. Although using these
coordinates increases the complexity of the model, the final computational time is lower than
with natural coordinates for the case of models of high size as a full-car. Therefore, the
multibody model of the full-car (figure 1.B) is developed using relative coordinates. Due to
the higher performance of relative coordinates, their use seems to be more promising than
natural coordinates for achieving real-time. Thus, the multibody formulation for relative
coordinates used in this work will be explained in the next Section.

 A B

Figure 1. A) Multibody model of a quarter-car. B) Multibody model of a full-car.

Multibody formulations for relative coordinates
Modelling in relative coordinates means using a reduced set of variables for defining the
dynamics of the model. The main disadvantage of using relative coordinates is the complexity
for defining the dynamic equations of motion. As a solution, in [11], the semi-recursive
formulation was presented.
The semi-recursive method defines a double set of coordinates in the modeling: six Cartesian
coordinates (three translations plus three rotations) for each body, and the relative coordinates
of the whole mechanism. The dynamic equations are defined in the Cartesian coordinates (or
body coordinates) and, then, a velocity projection is used to obtain a set of equations in the
relative coordinates. However, when the relative coordinates are dependent (a common
situation in automotive applications), constraint equations should be imposed. In (1), the
dynamic equations of motion using the index-3 augmented Lagrangian formulation [12] are
presented.

𝐌𝐌�̈�𝐳 + 𝚽𝚽𝐳𝐳
𝐭𝐭𝛂𝛂𝚽𝚽 + 𝚽𝚽𝐳𝐳

𝐭𝐭𝛌𝛌∗ = 𝐐𝐐 (1)

where z are the relative coordinates, M is the mass matrix of the mechanism expressed in
terms of the relative coordinates, Φ is the constraint vector, Φz is the Jacobian matrix of the
constraints, α is the penalty factor, Q is the vector of applied and velocity-dependent forces,
and 𝛌𝛌∗ is the vector of Lagrange multipliers.
As mentioned above, expressing the terms of equation (1) in relative coordinates is not a
trivial task. However, using body coordinates, the dynamic terms M and Q can be more easily
expressed. A relationship between both coordinates should be imposed therefore to obtain M
and Q in relative coordinates. A matrix R can be defined so that the following relationship
stands,

𝐙𝐙 = 𝐑𝐑�̇�𝐳 (2)

where Z are the body coordinates. If this relation is applied to the dynamic equation of
motion,

𝐑𝐑𝐭𝐭𝐌𝐌�𝐑𝐑�̈�𝐳 = 𝐑𝐑𝐭𝐭(𝐐𝐐� −𝐌𝐌��̇�𝐑�̇�𝐳) (3)

which means that the mass matrix and the vector of applied and velocity-dependent forces of
the model expressed in relative coordinates become,

𝐌𝐌 = 𝐑𝐑𝐭𝐭𝐌𝐌�𝐑𝐑 (4)

𝐐𝐐 = 𝐑𝐑𝐭𝐭(𝐐𝐐� −𝐌𝐌��̇�𝐑�̇�𝐳) (5)

Once that the terms of (3) are known, it is possible to integrate the equations and solve the
dynamics of the model at a certain time step. As integration scheme, the implicit single-step
trapezoidal rule has been adopted. The corresponding difference equations in velocities and
accelerations are:

�̇�𝐳𝐧𝐧+𝟏𝟏 = 2
Δt
𝐳𝐳𝐧𝐧+𝟏𝟏 + �̇�𝐳�𝐧𝐧 with �̇�𝐳�𝐧𝐧 = −(2

Δt
𝐳𝐳𝐧𝐧 + �̇�𝐳𝐧𝐧) (6)

�̈�𝐳𝐧𝐧+𝟏𝟏 = 2
Δt2

𝐳𝐳𝐧𝐧+𝟏𝟏 + �̈�𝐳�𝐧𝐧 with �̈�𝐳�𝐧𝐧 = −(2
Δt2

𝐳𝐳𝐧𝐧 + 2
Δt
�̇�𝐳𝐧𝐧 + �̈�𝐳𝐧𝐧) (7)

being Δt the time-step. Dynamic equilibrium can be established at time-step n+1 by
introducing difference equations (6) and (7) into (1), leading to a nonlinear system of
equations in which the positions at time-step n+1 are the unknowns,

f(𝐳𝐳𝐧𝐧+𝟏𝟏) = 0 (8)

Such a system can be solved through the Newton-Raphson iterative procedure, being the
residual vector,

f(𝐳𝐳) = Δt2

4
(𝐌𝐌�̈�𝐳 + 𝚽𝚽𝐳𝐳

𝐭𝐭𝛂𝛂𝚽𝚽 + 𝚽𝚽𝐳𝐳
𝐭𝐭𝛌𝛌∗ − 𝐐𝐐) (9)

And the approximated tangent matrix,

∂f(𝐳𝐳)
∂𝐳𝐳

= 𝐌𝐌 + Δt
2

4
(𝚽𝚽𝐳𝐳

𝐭𝐭𝛂𝛂𝚽𝚽) (10)

This procedure yields a set of positions that not only satisfies the equation of motion (1), but
also the constraint conditions. Once that the positions are obtained, the velocities and

accelerations should be calculated for the time-step n+1. Thus, the motion of the model is
determined for each time-step.

Results
In order to evaluate the benefits of using the heterogeneous processors, different simulations
were executed for the quarter-car and full-car model. Each simulation was based on the
multibody model running over a flat ground passing over a 10 cm bump. The total simulation
time was of 10 s, with an integration time step of 4 ms.
Concerning the implementation of the multibody models in the heterogeneous processor, there
exist many possibilities for deploying the code on the ARM processor and the FPGA co-
processor. Nevertheless, the limited resources of the FPGA imply that the selection of the
code which will be implemented on this processor is not obvious. Therefore, different
configurations for each simulation will be considered in order to determine which
configuration gives better performance. A simulation made with the full multibody model in
the ARM processor is taken as a reference for making a time comparison with the
implementations that offload code to the FPGA.
Quarter-car simulation
The quarter-car model represents the suspension of a vehicle. Therefore, it is a small model
compared to a full-car model, and it is suitable for getting preliminary results of using the
FPGA for accelerating the simulation. The characteristics of this model are shown in table 1.

 SYSTEM FORMULATION INTEGRATOR ITERATOR TIME
STEP TIME

MULTIBODY
MODEL Quarter-car Penalty Trapezoidal rule Newton-

raphson 4 ms 10 s

Table 1. Quarter-car multibody model characteristics

The options taken for these simulations were mentioned in the previous section: executing the
full model on the FPGA, offload the matrix multiplications to the FPGA or implement the
matrix inversion on the FPGA. The results are show in table 2.

 ARM FPGA TIME (S)

REFERENCE Full model - 0.23

OPTION A - Full model NOT ENOUGH
RESOURCES

OPTION B Model All matrix multiplications 0.94
OPTION C Model All matrix inversions 0.02

Table 2. Results of the quarter-car model simulations

From table 2, it can be seen that the FPGA that the Xilinx ZYNQ-7020 embeds has not
enough resources by far for implementing the code for the simulation of the quarter-car
multibody model, and without any kind of code optimization. Nevertheless, this problem can
be avoided using FPGA with more resources. The FPGA used in this work has 85k logic cells,
while the top level FPGA of the Zynq7000 family has 444k logic cells. Obviously, this

increment of resources is traduced into a cost increment.
Therefore, the code of the multibody model was split between the ARM processor and the
FPGA. As a first option, the matrix multiplications were implemented on the FPGA, due to
the simplicity of the algorithm. However, as shown in table 2, the execution time taken for the
simulation is higher than the reference simulation, meaning that this option does not improve
the performance of the simulation. This result might be surprising, as the FPGA is supposed to
accelerate the code. This is due to the simplicity of the model, which results in small matrices
and, therefore, the multiplication in the FPGA does not provide a significant reduction of time
to compensate the required communication time, making the overall execution slower.
Thus, as a third option, the matrix inversion was implemented on the FPGA. This operation is
involved in the calculation of the position increments of the model each iteration, which is the
most time consuming operation of the simulation. As this operation is more complex than the
matrix multiplication, the algorithm provided by Xilinx for the FPGA was implemented. With
this implementation, the performance of the matrix operation in the FPGA is substantially
higher than in the ARM processor. The communication times have therefore a lower impact.
Full-car simulation
In order to evaluate a problem of higher size than the quarter car model, a full-car multibody
model was developed. This model was made for studying the vertical dynamics of the vehicle,
thus it has 10 degrees of freedom (6 from the spatial movement of the chassis and 1 for each
suspension). In table 3, a resume of the model is made.

 SYSTEM FORMULATION INTEGRATOR ITERATOR TIME
STEP

TIME

MULTIBODY
MODEL Full-car Semi-recursive

ALI3P Trapezoidal rule Newton-
raphson 4 ms 10 s

Table 3. Full-car multibody model characteristics

For the full-car model, the main option taken was to implement all the operations required for
solving the system of equations that gives the position increments of the model each time
step, instead of implementing just the matrix inversion, as in the quarter-car model. The
implementation of the full model on the FPGA was also tested. In table 4, the results of these
simulations are shown.

 ARM FPGA TIME (S)
REFERENCE Full model - 5.99

OPTION A - Full model NOT ENOUGH
RESOURCES

OPTION B Model Solve equation system 4.41

Table 4. Results of the full-car model simulations

The first result of these simulations is that implementing a multibody model entirely on this
FPGA is not possible. The resources of the ZYNQ-7020 are not enough, and using a bigger
FPGA increases the cost making it not worth. Nevertheless, as these platforms evolve, it could
be possible in the future to have more resources at the same cost than nowadays.

Thus, the most interesting option is to implement the code that consumes more time during
the simulation and, in the case of multibody simulations, it is the resolution of the position
increments. For this operation, Xilinx does not provide an algorithm. Therefore, a Gauss-
Jordan algorithm was implemented. The results in table 4 show that there is a reduction of
time when executing this operation on the FPGA. However, the improvement is not as good
as it could be expected from the results obtained in the quarter-car simulation.
The blueprint of the FPGA implementation of the Gauss-Jordan algorithm is shown in figure
2, where the clear blue represents the resources consumed for this implementation. For the
full-car model in relative coordinates used in this work, the matrix size of the system is
26x26. As it can be seen, almost all the elements of the FPGA are employed. In case of using
natural coordinates, the size of the system would be substantially higher and there would not
be enough resources for implementing the Gauss-Jordan algorithm on the FPGA. In this
situation, the system should be solved using matrix partitioning, leading to an increase of
complexity and higher computational cost.

Figure 2. Blueprint of the Gauss-Jordan implementation on the FPGA used in this work

In [13-14], Gauss-Jordan implementations for FPGA are presented, showing an important
reduction of time when compared with the same algorithm in a personal computer. Therefore,
the actual implementation of the algorithm can be improved, increasing more the performance
of the simulation when using the FPGA.

Conclusions and future work
The evolution of control algorithms for automotive applications is limited by the sensors
available in commercial vehicles. In some cases, these sensors do not provide the most
suitable data or cannot provide it at all. The use of virtual sensors in the automotive industry
can alleviate the problem of gathering information of elements where the sensors cannot be
placed or their installation implies a prohibitive cost. One of the main difficulties in
implementing virtual sensors in a vehicle is related to the computational power of ECUs.
Although virtual sensors based on analytical models can be implemented on conventional
powerful ECUs, the information that can be gathered from these models is limited. In
contrast, the use of multibody models can increase the number of virtual sensors and therefore
the amount of information available.

The appearance of heterogeneous processors as processors for new generation ECUs means a
high increase in computational power in ECUs. New generation ECUs embed an ARM

processor and an FPGA co-processor. FPGAs are platforms that can be fully programmed for
each specific application thus reaching higher performance than with conventional processors.
One of the main disadvantages of FPGAs is the limitation on the amount of code that can be
programmed on them. Therefore, the FPGA should ideally be used to accelerate the slower
parts of the program that is being executed on the ECU.
In this paper, the implementation of multibody models in this new generation ECUs were
made in order to evaluate the potential of these platforms. In an initial phase, a 3D multibody
model of a quarter-car was executed, showing promising results. Then, a 3D full-car
multibody model for analyzing the vertical dynamics of a vehicle was implemented. In this
case, although there was an increase in the performance of the simulation, the results were not
as good as in the initial approach.
As future work, new FPGA implementations will be tested in order to further increase the
performance of the multibody simulations. Improving the multibody simulations will allow
combining the multibody model with a state observer, in order to measure virtual sensors in
real-time and to test the application in a real situation.

Acknowledgments
The support of the Spanish Ministry of Economy and Competitiveness (MINECO) under
project TRA 2014-59435-P, cofinanced by the European Union through the EFRD program, is
greatly acknowledged.

References
[1] J. Cuadrado, D. Dopico, J. A. Perez, R. Pastorino. Automotive observers based on

multibody models and the extended Kalman filter. Multibody System Dynamics, Vol. 27,
No. 1, pp. 3–19, 2012.

[2] Sanjurjo, E., Naya, M.Á., Blanco-Claraco, J.L., Torres-Moreno, J.L. Giménez-Fernández,
A. . Nonlinear Dyn (2017) 88: 1935. doi:10.1007/s11071-017-3354-z

[3] Pastorino, R., Richiedei, D., Cuadrado, J., Trevisani, A. (2013). State Estimation Using
Multibody Models and Nonlinear Kalman Filters. International Journal of non-Linear
Mechanics, 53, 83-90.

[4] A. Chokor, R. Talj, A. Charara, H. Shraim, C. Francis. Active Suspension Control to
Improve Passengers Comfort and Vehicle’s Stability. 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro, Brazil,
November 1-4, 2016.

[5] B. Cornelis, E. Risaliti, T. Tamarozzi, W. Desmet. Virtual Load Sensing Methods for
Efficient Durability Testing and Customer Load Acquisition. 4th International
Commercial Vehicle Technology Symposium (CVT), At Kaiserslautern, Germany. March,
2016.

[6] T. Wenzel, K. Burnham, M. Blundell and R. Williams. Dual extended Kalman filter for
vehicle state and parameter estimation, Vehicle System Dynamics, 44, 153-171, 2006.

[7] V. Sankaranarayanan et al. Observer Based Semi-Active Suspension Control Applied to a
Light Commercial Vehicle.2007 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics. September 4-7, 2007, Zurich, Switzerland.

[8] E. Sanjurjo, R. Pastorino, P. Gallo, M.A. Naya. Implementation Issues of an on Board
Real-Time Multibody Model. Proceedings of the 3rd Joint Int. Conference on Multibody
System Dynamics (IMSD) and 7th Asian Conference on Multibody Dynamics (ACMD

2014), 249-250. Busan, Korea, 2014.
[9] E. Sanjurjo, E. Sinigaglia, M.A. Naya. Multibody-based State Observer for Navigation

Applications. Proceedings of the 4th Joint Int. Conference on Multibody System Dynamics
(IMSD 2016), a179. Montreal, Canada, 2016-05.

[10] J. García de Jalón, E. Bayo. Kinematic and Dynamic Simulation of Multibody Systems:
The Real Time Challenge, Springer-Verlag, 1994.

[11] J. Cuadrado, D. Dopico, M. Gonzalez, M. A. Naya. A Combined Penalty and Recursive
Real-Time Formulation for Multibody Dynamics. Journal of Mechanical Design. July
2004, vol. 126.

[12] J. Cuadrado, R. Gutiérrez, M. A. Naya, P. Morer. A Comparison in Terms of Accuracy
and Efficiency Between a MBS Dynamic Formulation With Stress Analysis and a Non-
linear FEA Code. Int. J. Numer. Methods Eng., 51(9), pp. 1033-1052. 2001.

[13] J.P. David. Low latency and division free Gauss-Jordan solver in floating point arithmetic.
Journal of Parallel and Distributed Computing. Volume 106, August 2017, Pages 185-
193.

[14] M. Ziad, Y. Alkabani, M. El-Kharashi. On Hardware Solution of Dense Linear Systems
via Gauss-Jordan Elimination. Communications, Computers and Signal Processing
(PACRIM), 2015 IEEE Pacific Rim Conference. 24-26 Aug. 2015

http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315/106/supp/C
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7322958
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7322958
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7334793

	Antonio J. Rodriguez (University of A Coruña, Spain), Roland Pastorino (Siemens Industry Software NV, Belgium), Miguel Á. Naya (University of A Coruña, Spain), Emilio Sanjurjo (University of A Coruña, Spain),

