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ABSTRACT 

Cable-driven parallel robots are light-weight parallel robots where cables replace 

rigid actuators to move an end-effector. As a consequence, they have large 

workspaces, high-dynamic handlings, ease of reconfigurability and/or low-cost 

architecture. Knowing the full state variables of the robot model is usually useful for 

control and monitoring; however, it is often not directly measured and therefore the 

development of state observers is essential. In this work a general approach to 

develop a nonlinear state observer based on an Extended Kalman Filter is proposed 

and validated numerically by referring to a cable-suspended parallel robot. The state 

observer is based on a system model obtained converting a set of Differential 

Algebraic Equations into Ordinary Differential Equations through two different 

methods: the penalty formulation and the Udwadia-Kalaba formulation. 

Keywords: State estimation, Extended Kalman Filter, Cable-Driven Parallel Robots, 

Penalty Formulation, Udwadia-Kalaba. 

1. INTRODUCTION AND MOTIVATION 

Parallel robots (e.g., the Stewart-Gough platform) typically actuate the end-effector by driving 

rigid links, in Cable-Driven Parallel Robots (CDPRs), conversely, the end-effector is actuated by 

flexible cables. Parallel robots can be designed to achieve high stiffness at the end-effector and 

payload capacity, but the weight of the actuators and their fixed minimum and maximum lengths 

may limit considerably the feasible velocity and the workspace. Alternatively, parallel robots can 

be designed to achieve high velocity at the expenses of payload capacity, but the workspace 

limitations cannot be overcome (e.g., Delta robots). In CDPRs, instead, each cable is wound 

around a winch connected to a motor. The winch can easily provide several meters of cable not 

only enabling large workspaces, but also assuring minimal inertias, lightweight structures, easy 

reconfigurability and modularity of the system.  

Despite these advantages, the current deployment of CDPRs seems hampered mainly by the fact 

that cables are unilateral elements: they can only exert pulling forces. If they become slack, the 

end-effector cannot be made follow a prescribed trajectory or exert the required wrench to perform 

a task: in manufacturing or heavy handling, this can obviously introduce relevant performance 

and safety issues since the control of the end-effector may be lost [1]. The use of CDPRs has, 

however, already been suggested in several different operation fields, such as heavy handling, 

medical rehabilitation, rescue and home assistance, industrial manufacturing, or sport shooting 

(see for example [2] and the references therein). In the future, a wide use of CDPRs is expected 

thanks to their lightweight structure (which makes them energy efficient), modularity and 

reconfigurability (which makes them flexible and easy to transport) and finally, the potentially 

high dynamics and payload capacity (which makes them effective in a wide range of industrial 

applications). The presence of flexible elements can however introduce accuracy issues as a 



consequence of cable elasticity and sagging. Additionally, the upper and lower bounds on 

admissible cable tensions impose implementing complex planning and motion control strategies. 

These problems clearly demand developing and using accurate dynamic models for CDPRs.  

There is no single classification universally recognized for CDPRs, not even the terminology 

adopted is unified. CDPRs topologies can however be very dissimilar, and every topology 

presents advantages and drawbacks that must be considered at the design stage and when 

developing planning and control algorithms. To try to simplify the analysis the main categories 

shown in Table 1 can be used to classify CDPRs. 

Table 1. Classifications of CDPRs 

Workspace Actuation Constraints Exit-points 

Planar Under-actuated Under-constrained Fixed 

Spatial Fully-actuated Fully-constrained Reconfigurable 

 Over-actuated Redundant  

As for the workspace, a CDPR can obviously operate in a three-dimensional space or into a bi-

dimensional (planar) space. 

As for the actuation, if the end-effector of a CDPR is driven by nac active cables, depending on 

the number of degrees of freedom, ndof, of the end-effector, the CDPR can be: 

• Under-actuated  if nac < ndof [3] 

• Fully-actuated, if nac = ndof [4]; 

• Over-actuated, if nac > ndof [5]. 

Another critical feature of a CDPR is the capability of cables to react to external forces acting on 

the end-effector. Different cases can be recognized: 

• Under-constrained: there exist some directions along which cables cannot exert equilibrating 

reactions to external wrenches applied to the end-effector [6]; 

• Fully-constrained: the end-effector can maintain equilibrium against every external wrench 

(under the assumption of infinite maximum cable tension) [7]; 

• Redundant: the number of cables is greater than the minimum one making the robot fully-

constrained [8]. 

Finally, CDPRs can also present reconfiguration capabilities for their exit points (i.e., the points 

on the opposite side of the cable with respect to the points connected to the end-effector). 

Typically, the exit points are fixed, but more in general, they can follow the motion of, for 

example, drones [9], motors moving along a fixed frame [10] or even other manipulators. These 

robots are called Reconfigurable Cable-Driven Parallel Robots (RCDPRs) and are expected to 

have interesting applications also in the rescue and home assistance fields. 

A critical issue in the field of cable robotics is ensuring that cable tensions are positive. Therefore, 

proper motion planning and control should be performed by adopting advanced techniques. In the 

case of feedback control, advanced control schemes often require the knowledge of the full state 

of the system (see e.g. [11,12]), that is in contrast usually not available. To overcome this issue, 

state observers can be designed and implemented [13,14]. 

In this paper, an Extended Kalman Filter (EKF) is adopted to estimate the state variables of a 

CDPR. The dynamics of a CDPR is highly nonlinear and imposes the development of nonlinear 

state observer, such as EKFs, which are widely used in state estimation of nonlinear systems 

starting from a complete model formulated through first-order Ordinary Differential Equations 

(ODEs). A widespread approach in the literature of CDPRs is writing the Newton-Euler equations 

of motion for the end-effector under the hypothesis that cables are stiff, massless and straight, and 

often the contribution of the motor inertial properties to the overall system dynamics is neglected, 

or just considered through approximations or through non-systematic approaches. On the other 

hand, redundant coordinates are never used in dynamic models, although this choice has several 



benefits in modelling this CDPRs (e.g. to simulate cable failures or bouncing motions), and also 

make easier the development of models including both the motors and the end-effector. The latter 

is therefore the approach investigated in this work for the design of state observers. 

Since the models implemented in the state observer need to be in ODEs representation, the 

conversion of DAEs into ODEs must be performed. This step can be carried out taking advantage 

of different formulations. In this work, two well established formulations are investigated: the 

penalty formulation [15] and the Udwadia-Kalaba formulation [16], since both the approaches 

are well suited for handling multibody systems with redundant constraints [15,17], as often occurs 

in CDPRs. 

2. DYNAMIC MODELING OF A CABLE-DRIVEN PARALLEL ROBOT 

2.1.  Differential-Algebraic Equations (DAEs) modeling technique 

Let us collect the coordinates of a CDPR into the vector of dependent coordinates pq . The 

following set of DAEs, of index 3, is obtained to model the system dynamics [18]: 

 
( )

T

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+ =

=

Mq J λ f

Φ q 0
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where ( )Φ q  is the set of n kinematic constraint equations, p pM  is the mass matrix, pf  

is the vector of the external forces, nλ   is the vector of the Lagrange multiplier and n pJ  

is the Jacobian of the constraint equations, 
 
 
 


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Φ
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q
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The CDPR studied in this work, as sketched in Figure 1, is a cable-suspended robot: a three-DOF 

suspended end-effector (modeled as a lumped mass m ) is driven by four cables winding on 

winches and actuated by motors (whose equivalent moments of inertia reflected to the motor shaft 

are ,1 ,2 ,3 ,4, , ,m m m mJ J J J ). The system is therefore overactuated, as often happens in CDPRs, since 

this configuration increases the static equilibrium workspace [19]. Vector 
T

T T =  q p θ  includes 

the absolute Cartesian positions of the end-effector 
T

p p px y z =  p  and the angular positions 

of the motors 1 2 3 4

T
     =θ . Under the assumption that cables are perfectly stiff and taut, 

and hence behave as holonomic, ideal kinematic constraints, the i-th constraint (i=1,..,4) that re-

lates the end-effector coordinates and the angular positions of the motors is 
i = − il p a  (with 

ia  

the absolute position of the exit-point of cable i), where 
0,i i il r= +

i
l  is the i-th cable length (

0,il  

is the i-th cable length corresponding to 
i =0 and ri is the radius of the i-th winch). 

 
Figure 1. CSPR driven by four cables and detail of the i-th winch and exit point. 



The i-th position constraint can therefore be expressed in the following form: 

 2 2 2
0, 0,2 2 0T T T

i i ii il l r r  = − + − − − =i i ip p p a a a  (2) 

The conversion of the set of DAEs to a set of nonlinear ODEs, both for simulating the system and 

for designing the state observer, can be done through different approaches. Three different ap-

proaches are here considered, as briefly discussed in Sections 2.2, 2.3 and 2.4. 

2.2. DAE to ODE conversion: projection matrix 

A usual way to convert a DAE model into a minimal set of ODE is using the “projection matrix 

method”, by means of the matrix (here denoted as 
( )dofp n p− 

R ) that relates the dependent 

(redundant) velocities, q , and the independent (minimal) ones, z : 

 ( )=q R q z  (3) 

taking the time-derivative of Eq. (3), ( ) ( ),= +q R q z R q q z , leads to the minimal set of ODEs 

 ( ) ( ) ( ) ( )( ),
T T

= −R q MR q z R q f MR q q z  (4) 

Eq. (4) can be expressed in the following compact form, with the obvious meaning of the symbols: 

 =Mz f  (5) 

2.3.  DAE to ODE conversion: Penalty Formulation 

To retain all the redundant coordinates in the multibody model, a formulation often used to convert 

the DAEs model to an ODEs system is using the “Penalty Formulation”, which allows directly 

simulating the time evolution of all the dependent coordinates [18]. The penalty formulation 

assumes that the Lagrange multipliers are proportional to the constraint violation at the 

configuration, velocity, and acceleration levels. In its simplest form, the following definition is 

assumed, by means of the three scalar tuning parameters  ,   and  . 

 ( )22  = + +λ Φ Φ Φ  (6) 

The choice of their values has been carried out by following the advices proposed in the literature 

(see e.g. [15]); if the model is used in the design of a state observer, they can be treated as two 

tuning parameters. Since the constrains of the system under investigation are scleronomic, the 

time-derivative of the position constraints can be expressed as 

 
( )

( )

=

= +

Φ q Jq

Φ q Jq Jq
 (7) 

and therefore, the following set of p ODEs is obtained to model the dynamics of the CDPR: 

 ( ) ( ) 22T T T   + + + + =M J J q J J J q J Φ f  (8) 

again, Eq. (8) can be written in the following compact form 

 ( ) ( ) ( )+ + =M q q C q q K q f  (9) 

2.4.  DAE to ODE conversion: Udwadia-Kalaba formulation 

A different approach to convert the DAEs into a set of ODEs retaining all the p dependent 

coordinates is through the methods exploiting the exact evaluation of the Lagrange multipliers, 

most of which are related to the Gauss’ principle of least constraint. The most famous of these 

methods is, probably, the Udwadia-Kalaba formulation [20], that holds for systems with non-



singular mass matrix. The acceleration of the p dependent coordinates of the constrained system,

q , is obtained as the sum of the free-body (unconstrained) accelerations 
fq , 

 1
f

−=q M f  (10) 

and a perturbation due to the kinematic constraints, 
cq , that can be computed as follows: 

 ( )
1
2 †

c f

−
= −q M B Γ Jq  (11) 

matrix †B  is the pseudoinverse of B, with 

 
1
2

−
=B JM , (12) 

while Γ is due to the acceleration constraint equations: 

 
( )

2


= − − −


Jq
Γ q Jq Φ

q
 (13) 

since this formulation arises from a DAE system of index 1, position and speed constraints usually 

are not satisfied after numerical integration of the equation of motions. Therefore, the Baumgarte 

stabilization [21] is usually introduced, by leading to the following set of ODEs to be integrated: 

 ( )
1
21 † 22 f 

−−= + − − −q M f M B Γ Φ Φ Jq  (14) 

where χ and φ are Baumgarte stabilization parameters that are tuned with a trial-and-error proce-

dure. If the model is used in the design of a state observer, they could be treated as two tuning 

parameters. 

Whenever M is singular, the extension of this formulation provided in [22] could be exploited. 

3. DEVELOPMENT OF THE EXTENDED KALMAN FILTER (EKF) 

Extended Kalman Filters (EKFs) are widely used as nonlinear state observers to estimate 

unmeasured variables in multibody systems [14]. An EKF provides optimal estimates ˆ( )tx  of the 

actual state ( )
T

T Tt  
 =x q q  of a first-order system representation, by merging the prediction of 

a nominal model ( ) ( ( ), ( ))ct t t=x x uf  ( ( )tu  is the input vector), with a closed-loop correction 

inferred through the measurements retrieved from a proper set of sensors ( ) ( ( ), ( ))t g t t=y x u  

ensuring observability. The resulting closed-loop estimation is based on a prediction-correction 

scheme, that in the continuous time leads to the following form 

 ˆ ˆ( ) ( ( ), ( )) ( ( ) ( ))ct t t t t= + −x x u L y yf  (15) 

where L is the filter gain and ˆ( ) ( )t t−y y  is the output-estimation error ( ˆ( )ty  is the estimated 

output), usually denoted as the innovation. In practice, the EKF is implemented in discrete-time 

and the vectors through the discretized form of the function cf , here denoted as f : 

 
( )
( )

1 1,

,

k k k

k k k

− −




=

=

x x u

y x u

f

g
 (16) 

where k  denotes the simulation step.  

The discrete-time model f and the noisy input measurements 
ku  

are adopted for computing the 

prediction (or a-priori estimation) ( )| 1 1| 1
ˆ ˆ ,k k k k k− − −=x x uf , that is then corrected through the output 

estimation error ( )| 1
ˆ

k k k−−y y , with ( )| 1 | 1
ˆ ˆ ,k k k k k− −=y x ug , weighed through the time-varying filter 

gain |k kL , leading to the following recursive scheme: 

( )| | 1 | | 1
ˆ ˆ ˆ

k k k k k k k k k− −= + −x x L y y  (17) 

The term ( )| | 1
ˆ

k k k k k−−L y y  is a closed-loop correction, in the control theory sense, forcing the 



estimation to track sensor measurements by compensating for noise and model uncertainty. To 

compute 
|k kL  at each time step, the EFK algorithm replaces the nonlinear model with its Jacobian 

matrices computed about the estimated state trajectory and uses them in the propagation of the 

noise covariance matrices [14]. 

As an example, the EKF developed with the penalty formulation is based on Eq. (9), which allows 

expressing the accelerations in the following form: 

 1 1 1( ) ( ) ( ) ( ) ( )− − −= − −q M q f M q K q M q C q q  (18)   

the following first-order representation of the system is obtained: 

 
11 −−        

        
         

−
= +

q q f

q q 0

M 0M C 0
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where the equivalent external forces vector f  is: 

 ( )= −f f K q  (20) 

Several discretization schemes can be adopted, with different accuracy, stability and computa-

tional effort [14,18]. In this paper, in order to simplify the computational cost for boosting real 

time estimation, and aware of the positive effect of the filter correction that can compensate for 

energy losses due to the numerical integration scheme, discretization is performed with a simpli-

fied method based on an approximation of the forward Euler scheme (with time-step dt ), as often 

done in control theory. The following state-dependent matrices are defined, due to the dependence 

of some submatrices on q and q  (that is omitted for clarity of representation): 
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where 
,d kA  and 

,d kB  represent the discrete counterpart of the continuous-time matrices of Eq. 

(19). Then, the discrete-time model ( )1 ,k k k+ =x x uf  of Eq. (18) is cast as follows: 

 , 1 , 1

1 1

d k d k

k k k

− −

− −

    
    

     
= +

q q f

q q 0
A B  (22) 

and in the following compact form (that apparently resembles the one of a linear system): 

 
, 1 1 , 1 1k d k k d k k− − − −= +x A x B u  (23) 

with the obvious definitions of the state and input vectors: 

 k k

k k

  
  
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= =

q f

q 0
x u  (24) 

By following the recursive scheme of the EKF, the covariance propagation is computed as: 

 | 1 , 1 1 , 1
ˆ T

k k d k k d k− − − −= +P A P A Q  (25) 

where Q is the covariance matrix of the of the model noise, that is in practice a tuning parameter 

that represents in an abstract way the amount of model uncertainty. Then, the filter gain is com-

puted as 

 ( )|

1

| 1 | 1
ˆ ˆ

k k

T T
k k k k

−

− −= +L P H HP H R  (26) 

where R denotes the covariance matrix of measurement noise that can be treated as a tuning pa-

rameter, and H is the Jacobian of g . Finally, the covariance propagation matrix is updated by 

setting 



 ( )| | 1
ˆ- k kk k k−=P I L H P  (27) 

4. NUMERICAL RESULTS 

4.1. Description of the test case 

The system under investigation is a Cable-Suspended Parallel Robot (CSPR), which is a particular 

CDPR where all the cables are connected to the end-effector from the top of the frame, and 

therefore the possibility to get positive tensions in the cables is just provided by gravity. The 

CSPR analysed as the test case is sketched in Figure 2: it is made by 4 motors that actuate the 

end-effector, modeled as a point mass 3[kg]m = . The frame dimensions are 1.69 1.775 1.89 

[m] ( w l h  , in Figure 2). Therefore, it can be classified as a spatial, over-actuated, under-

constrained CDPR with fixed exit-points. The exit points are assumed to coincide with the upper 

the vertices Ai of the frame (i=1,..,4). The actuators have equal rotational moments of inertia 
2

, 5.12 4[kgm ]m iJ e= −  (i=1,..,4) (including both the motor rotor and the winch). Rigid and taut 

cables are assumed, as is often reasonable if low-frequency motions are considered. 

 

Figure 2. Basic scheme of the CSPR 

 

The actuators are supposed to be equipped by low resolution encoder measuring θ , with just 150 

pulses per revolution and operating in 4x resolution; such a set of measured output ensures ob-

servability. The torques exerted by each motor is available as well, as usually supplied by com-

mercial drivers and as required by the state observer. The simulator adopted to represent the “real 

system”, i.e. the system that produces the “actual” values of the state vector to be estimated by 

the state observer, has been implemented through the projection matrix method, which uses a 

minimal coordinate representation, and does not require any tuning parameter in the conversion 

of the DAEs to ODEs, as in contrast is required by both the Penalty and the Udwadia-Kalaba 

formulations. The “actual” values of θ  that are fed to the state observer are corrupted by quanti-

zation noise. Additionally, some errors in the mass matrices of the models employed in the ob-

server will be considered in Section 4.4, to assess the observer capability of getting rid of such 

uncertainties by merging the model and the closed loop correction. Two different EKFs are tested, 

by adopting the Penalty and the Udwadia-Kalaba formulations for the model-based filter predic-

tion. In this way, the impact of different multibody formulations on the estimate accuracy is eval-

uated. 

Besides comparing the observer outcomes with the actual state, the estimates of the end-effector 

position and velocities are made through the forward kinematics and the noisy measurements 

provided by the encoders. As for the estimation of the motor shaft speeds, it is obtained by nu-

merical derivation and by low pass filtering through a first-order filter with a 15 Hz bandwidth. 

Increasing the bandwidth does not allow properly removing high frequency noise introduced by 

derivation of the encoder signal corrupted by the coarse quantization. On the other hand, such a 

filter creates a phase lag in the estimated speeds and therefore further reducing the bandwidth 

would decrease the stability margin if such estimates are used in feedback control loops. 



The simulated test consists of a rest-to-rest motion from point  0.8875 0.8425 0.9450iP = [m] 

to point  1.0 1.0 1.5fP = [m] through a linear path, as shown in Figure 2, by means of a 5th-

degree polynomial law of motion. 

4.2.  State observer based on penalty formulation: EKF-P 

The Cartesian coordinates of the end-effector positions ( px , py  and pz ) and velocities ( px , py  

and pz ) are shown from Figures from 3 through 5. In each figure, a comparison is shown among 

the “real system” coordinates, the estimates of the EKF based on penalty formulation (hereafter 

denoted as EKF-P) and the estimations obtained through forward kinematics. The inspection of 

the velocity estimates reveals that the use of the EKF remarkably reduces the effect of the 

quantization noise on the derivatives, compared to the kinematics estimation, without introducing 

visible delay. 

A closer look on the result can be inferred from the error plots shown in Figures 6 and 7, that are 

also summarized in Table 2 through the RMS (root mean square) values. 

 

 
Figure 3. Comparison of actual and estimated 

px  and 
px   

 

Figure 4. Comparison of actual and estimated 
py  and 

py  



 

Figure 5. Comparison of actual and estimated 
pz  and 

pz  

 

Figure 6. Time-history of position estimation errors of the EKF-P 

 

Figure 7. Time-history of velocity estimation errors of the EKF-P 

 



4.3. State observer based on Udwadia-Kalaba formulation: EKF-UK 

The Udwadia-Kalaba formulation has been implemented as well, leading to the observer hereafter 

denoted as EKF-UK. The results of the simulation are compared with the actual values, and the 

estimation errors are plotted in Figures 8 and 9. The results are very similar with those provided 

by the EKF-P, and an effective speed noise rejection is, again, obtained.  

Table 2 allows comparing the three different estimation approaches. While similar errors are 

obtained in term of position, the use of both the EKFs drastically reduces the speed RMS 

estimation error. 

 

Figure 8. Time-history of position estimation errors of the EKF-UK 

 

Figure 9. Time-history of velocity estimation errors of the EKF-UK 

 

Table 2. RMS errors of position and velocity estimates against “real system“ 

 EKF-P EKF-UK Forward 

kinematics 

 EKF-P EKF-UK Forward 

kinematics 
RMS

xe [m] 1.13e-4 1.08e-4 1.20e-4 
/

RMS

dx dte [m/s] 2.13e-3 2.18e-3 0.064 

RMS

ye [m] 1.32e-4 1.28e-4 1.26e-4 
/

RMS

dy dte [m/s] 2.24e-3 2.29e-3 0.059 

RMS

ze [m] 2.04e-4 1.99e-4 2.43e-4 
/

RMS

dz dte [m/s] 2.53e-3 2.55e-3 0.055 

 



4.4. Estimation in the presence of model uncertainty 

A sensitivity analysis on the two EKFs has also been carried out by assuming random bounded 

perturbations of the entries of M, i.e. m and ,m iJ  (ranging in the interval [0, +10%]). Despite the 

relevant mismatch between the actual system model and the ones used in the state observer, a 

negligible increase of the estimation error is obtained, as shown in Table 3. 

Table 3. RMS errors of position and velocity with model mismatch 

 EKF-P EKF-UK  EKF-P EKF-UK 

RMS

xe [m] 1.13e-4 1.08e-4 
/

RMS

dx dte [m/s] 2.16e-3 2.21e-3 

RMS

ye [m] 1.30e-4 1.27e-4 
/

RMS

dy dte [m/s] 2.23e-3 2.28e-3 

RMS

ze [m] 2.04e-4 1.99e-4 
/

RMS

dz dte [m/s] 2.58e-3 2.60e-3 

 

5. CONCLUSIONS 

This work discusses the synthesis of two formulations of EKFs for the state estimations in Cable-

Driven Parallel Robot by means of some different multibody formulations. The approach is 

general and can be applied to several configurations Cable-Driven Parallel Robot. Among the two 

formulations presented to obtain ODEs from DAEs of the multibody model, the Udwadia-Kalaba 

formulation has shown some advantages due to a lower number of parameters to be tuned by the 

designer compared to the penalty formulation, that has led to a faster and simple tuning of the 

model adopted for the filter design. Overall, the performances of EKF-P and EKF-UK are 

comparable, and in both cases the computational effort was small enough to allow for real time 

computation. 
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