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Abstract 

Thermal phenomena are of critical importance in automotive applications of 

permanent-magnet synchronous motors (PMSMs). Heat accumulation in 

sensitive locations, such as the magnets or the endwindings, can decrease the 

performance of the device and damage it in extreme cases. Preventive actions 

can be defined based on the accurate knowledge of the temperatures of the 

device, but monitoring thermal effects through direct measurements is often 

unfeasible in production units. An alternative consists in building real-time 

capable digital twins to represent the thermal effects in the motor, using to this 

end a limited set of sensor data. Here, an approach to build these digital twins 

that relies on a Lumped-Parameter Thermal Network (LPTN) representation of 

the heat flows and temperatures in the PMSM is presented, whose predictions 

are fused with sensor information by means of state, input, and parameter 

observers. For the LPTN to provide a meaningful description of the motor 

behaviour, it is necessary to identify the relevant thermal effects that take place 

inside the device and translate them into appropriate parameters and input 

functions. Also, a methodology to adjust the LPTN from experimental readings 

obtained in a test bench by means of a combination of observer algorithms and 

sensitivity analysis is introduced. The method can be applied in the offline and 

online tuning of thermal models, enabling the update of real-time capable digital 

twins over extended periods of time and taking into consideration the long-term 

evolution of the system parameters caused, for instance, by thermal cycling 

deterioration and component aging. Results obtained in a cyber-physical bench, 

in which the motor under test was interfaced to a computer simulation of a 

vehicle motion, confirmed the ability of the methodology to improve the thermal 

representation of physical PMSMs. 
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1 Introduction 

Novel automotive components and technologies require extensive testing campaigns 

before they can be released to the market, to meet the stringent safety standards and 

regulations of road transportation. Comprehensive testing campaigns are necessary 

to guarantee that new products and techniques will perform as intended during the 

design stage and to identify unexpected phenomena whose effect on performance is 

initially unknown. This way, testing becomes a key step to ensure the safe deployment 

of new solutions in real-world applications, and to generate the necessary confidence 

to have them accepted by the market and the consumers [1]. 

Road vehicles are nowadays complex engineering systems in which the interplay of 

mechanical, electronic, hydraulic, and thermal effects has an impact that needs to be 

considered not only at the design stage of new models, but also during the entire life 

cycle of the product, e.g., to enable predictive maintenance. In this context, traditional 
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testing approaches, based on the availability of a prototype of the final vehicle, need 

to be supported by alternative validation methods to reduce costs and accelerate de-

velopment.  Model-Based System Testing (MBST) is a recently proposed paradigm for 

the evaluation of automotive components [2], based on the combination of physical 

tests with simulation models to study the performance of multi-physics systems. Fol-

lowing a MBST approach, it is possible to assess the behavior of automotive compo-

nents by testing them in System-in-the-Loop (SiTL) platforms, replacing the real-world 

environment with which the device under test (DUT) would interact in practice by its 

virtual representation and an appropriate combination of sensors and actuators. This 

assessment can take place before a full-vehicle prototype exists, thus allowing the 

early-stage testing of components in automotive systems under realistic conditions. 

The resulting cyber-physical test bench (CPTB) represents an application of MBST of 

particular interest for the automotive industry [3]. 

The practical use of CPTBs in industrial setups enables the realistic testing of compo-

nents at a reduced cost, but requires addressing important challenges to ensure that 

the obtained results are reliable and representative of actual operation conditions.  

CPTBs are hybrid co-simulation environments [4,5] that need to combine real-time 

execution with the monitoring of the accuracy of the overall dynamics [6, 7]. It is also 

necessary to verify and handle the effect of communication issues at the physical-

virtual interface [8, 9], and to adapt the actuation strategies to the available information 

about the system operation point and the physical limitations of the hardware used in 

the bench. The treatment and use of the data gathered by the sensors mounted on the 

DUT and the bench itself is a point of particular interest. For instance, the use of 

appropriate estimation and data fusion algorithms enables one to gain insight into the 

operation of the system under study that goes beyond sensor readings, e.g., [10, 11], 

and can be used as a means to improve the knowledge gained from experimentation 

via the introduction of digital twins in the testing process [12]. With proper calibration 

and data treatments, costly tests could be performed in benches through the 

interaction with virtual environments, thus significantly reducing development costs. 

This kind of test bench allows to start experimentation in the early stages of product 

development and enables a controlled enviroment for complex testing. By means of a 

virtual environment with a dynamic vehicle model, complemented with a digital twin of 

the eMotor, an easy change of simulation scenarios can be realized. Besides, a simpler 

instrumentation can be used in comparison to real vehicle applications; indeed, the 

use of benches makes it possible to acquire in a simple way sensor data such as the 

permanent magnet temperatures, which are complex to obtain in real vehicle tests. 

Besides, dangerous situations or emergency manoeuvres can be replicated without 

the need of destructive testing, and repeatability of situations and measurements' 

variability can easily be analyzed. Hence, in a large number of applications this can be 

translated in cost reduction, regarding prototype manufacturing, assemblying and 

testing, in man-hour for test setting and troubleshooting and even in eliminating some 

of the eMotor physical sensors thanks to digital twins. 
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Figure 1 provides a schematic of the benefits of introducing MBST methodologies, 

such as CPTBs, in product development cycle. If a traditional, prototype-based 

approach is followed, most design defects cannot be identified until a full-system 

prototype is available for experimentation. However, it is precisely during the early 

stages of the cycle when design modifications can be performed most easily, as the 

costs of removing a defect increase as design decisions and implementations 

accumulate over time. MBST schemes, conversely, allow to identify some of these 

problems as soon as components are available for experimentations, provided that 

appropriate testing facilities can be used to this end. 

 

Fig. 1 Impact of Model-Based System Testing methodologies on product 

development cycle. 

The CPTB used for the generation of the data in this article has been designed to 

evaluate the mechanical, electric, and thermal behavior of permanent-magnet synchro-

nous motors (PMSMs), the most frequently used type of electric drive in automotive 

ePowertrains, by virtue of their compactness, high power density, and higher perfor-

mance efficiency compared to other eMotor types. In particular, thermal effects play a 

major role in the operation and behavior of PMSMs [13, 14]. During operation, heat is 

generated at locations such as the eMotor windings and magnets, increasing compo-

nent temperatures and making it necessary to employ cooling methods [15], because 

excessive temperature can cause permanent damage to the motor magnets [16]. At 

the same time, however, the optimal operation of electric drives requires them to per-

form as close as possible to their admissible temperature thresholds. The control al-

gorithms that regulate this operation need to rely on precise information about the 

eMotor temperatures to attain this goal [17]. This is problematic, because temperature 

sensors can be placed at some locations on the component, but often not at the most 

critical ones, e.g., the magnets, especially in practical applications.  

Efficient computational models of the thermal effects in PMSMs can be used to address 

this issue and provide an indication of the internal temperatures of the eMotor. 

Lumped-parameter thermal networks (LPTNs) offer a good trade-off between accuracy 

and real-time execution capabilities. It is necessary, however, to adjust their topology, 

inputs, and parameters to match the behaviour of the physical system that they repre-

sent, which is not always straightforward. Theoretical approaches to determine model 



32nd Aachen Colloquium Sustainable Mobility 2023 5 

parameters are not completely accurate; moreover, these values in physical compo-

nents are subjected to uncertainty [18]. Besides, the thermal parameters of an LPTN 

may vary during operation, as a result of changing operation conditions or the aging of 

materials [19], for instance. State, input, and parameter estimation algorithms have 

been proposed as a way to overcome the above-mentioned problems. LPTNs, in par-

ticular, lend themselves well to sensor data fusion by means of Kalman filters, which 

enables the definition of estimators based on temperature readings from sensors 

mounted on the DUT [12], [20], [21]. With appropriate statistical treatments of the gath-

ered data, these solutions can become the basis to develop digital twins to accurately 

describe the thermal behavior of the components tested in CPTBs. 

In this kind of bench, the assessment of the thermal behavior of the tested device is 

based upon an adjustable computational representation of the thermal dynamics of the 

system. Readings from thermocouples mounted on accessible locations on the DUT 

are fused with a detailed LPTN that models the thermal behavior of the component, to 

develop a state, input, and parameter estimation algorithm, able to adjust the system 

model based on sensor readings. This approach had been previously used in [12] in 

the offline estimation of thermal properties of electronic components.  

In this study, a methodology for the construction of such digital replicas is introduced. 

A LPTN representation of the motor is employed to model the intricate interplay of heat 

fluxes and temperature distributions within the PMSM. The anticipatory outcomes of 

this model are then merged with data from sensors through the implementation of 

observers that account for the system state, input, and parameters. The approach can 

be employed for both offline and online refinement of thermal models, facilitating the 

ongoing enhancement of real-time adaptable digital counterparts for extended dura-

tions. This encompasses the integration of alterations arising from the extended tem-

poral evolution of system parameters, prompted by factors such as thermal cycling 

degradation and component maturation. Outcomes derived from experimentation con-

ducted on a cyber-physical platform, where the examined motor was interconnected 

with a computer-simulated vehicle motion, corroborated the effectiveness of this meth-

odology in enhancing the fidelity of thermal portrayals for tangible PMSMs. 

Firstly, in Section 2, a detailed description of the CPTB and its capabilities is presented. 

In Section 3 a calibration procotol is described, based on dynamic sensitivity analysis 

and optimization of the most influential parameters. The method is applied to the 

improvement of an LPTN model in a WLTP cycle. In the investigation shown in Section 

4, the use of the CPTB was extended to the online correction in an experimental setup 

of the inputs of LPTNs that represent PMSMs, to support the notion that it can be used 

in real-time operations with physical components in test benches. Experimental runs 

of the test bench were used to correct uncertain input values, both offline and during 

runtime; results confirmed that the thermal estimation algorithm was able to automati-

cally adjust the LPTN representation to deliver realistic predictions of the thermal dy-

namics of the motors under test. In Section 5, an experimental campaign is conducted 

to determine the law of deterioration of an automotive-grade stator insulation system. 

The result will also be used to update models depending on the ageing state of the 

motors. Finally, conclusions to the current investigation and future work are presented. 
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2 Cyber Physical Test Bench Design 

The test bench used in this research has been designed to enable the evaluation of 

permanent-magnet, three-phase eMotors with a power of up to 150 kW, 450 Arms at 

each phase, maximum angular speeds of 16,000 rpm, and able to deliver an output 

torque of 220 Nm.  

 

Fig. 2 Conceptual design and flow of information in a cyber-physical test bench for 

automotive-grade eMotors. 

The bench intends to enable the evaluation of the tested motors in a controlled and 

repeatable environment, which is beneficial for the systematic gathering of experi-

mental data and makes it easier and safer to reproduce dangerous situations such as 

emergency manoeuvres. This approach would not be simple, or even feasible to exe-

cute, if a prototype-driven strategy were to be followed. 

For the particular case of electric motors, the evaluation of their thermal response is of 

interest for the design and improvement of efficient control algorithms that make the 

most of the component capabilities without compromising their safe operation, avoiding 

excessive temperatures that could damage them.  
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Fig. 3 Implementation and information flow in the proposed CPTB. 

The bench is arranged in a back-to-back configuration [22]. The eMotor under study, 

i.e., the DUT, is actuated with a desired torque, determined by a human or virtual driver. 

The DUT is mechanically coupled to an identical component that drags it at the speed 

determined by a computer simulation of the virtual environment with which the DUT 

interacts. Each motor has its speed or torque commanded by means of a commercial 

inverter. A real-time co-simulation interface is responsible for the exchange of 

information between the components of the bench. Figure 2 illustrates the conceptual 

design of the test bench for ePowertrain motors used in this study. 

Figure 3 illustrates the practical realization of the cyber-physical test bench. The 

communication between the physical ePowertrain components and the simulation 

environment is performed via CAN by means of a PXI bus, both for command delivery 

and test bench data acquisition. 

A torque sensor is installed at the connection between the motor shafts; current probes 

provide readings of the electric state of the motor phases. These readings are used to 

determine the mechanical, electric, and thermal operation point of the eMotors. 

Besides, accelerometers are mounted on the bench platform to monitor system 

performance and to enable noise, vibration, and harshness (NVH) analyses.                       

Figure 4 provides a simplified illustration of the communications layout of the bench, in 

which the aforementioned sensors are connected to the central PC by means of a data 

acquisition system. These measurements are received by the CPTB, and can thus be 

compared in real time with the predictions delivered by the thermal model of the motor. 
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Fig. 4 Test bench communications layout. 

Two levels of sensorization are considered for the DUTs. Production units present a 

basic set of NTC (Negative Temperature Coefficient) sensors, usually one or two in 

the winding of the stator, which often is not the hot spot of the eMotor. Hence, a 

correlation with the hot-spot temperature or a safety factor is usually needed for the 

definition of derating strategies, whose target is to maintain the eMotor in the 

temperature range desired to avoid shortening the lifespan of the machine.  In the test 

bench, however, Testing units are provided with a higher number of sensors, placed 

near critical components. Hence, thermocouples are located in the gaps between the 

layers of conductors in the winding to measure the temperature as close to the 

conductors as possible, commonly in the endwindings and the extremes of the stator 

iron. Figure 5 shows an example of the distribution of the sensors installed in the 

eMotors under study. 

 

Fig. 5 Thermocouple locations in the stator of the eMotor. 
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Analogously, thermocouples are located in the rotor between chosen pairs of rotor 

stacks, both in the iron core and the magnets. Figure 6 presents an example of the 

instrumentation of the rotor to measure its most relevant temperatures. It is worth 

mentioning that it has been observed that temperatures in the same section locations 

vary along the axial longitude of the rotor, both in the magnets and the rotor core. 

Hence, two sets of sensors are placed in the shown example to capture this effect. The 

equipment used for the data retrieval is a wireless system. The first part is an emitter 

that is inserted in the shaft cavity, rotates solidary to the shaft and contains the 

thermocouples that are connected to the measurement points. The second part is a 

static receiver that is separated by a narrow airgap from the emitter. Thus, the emitter 

wirelessly transmits the read measurements to the receiver and subsequently the data 

is captured by a datalogger. 

 

Fig. 6 Location of the thermocouples on the rotor.    

2.1 Software components of the test bench 

The simulation environment of the bench is built in Matlab-Simulink, following a 

modular block scheme. Figure 7 depicts its structure. It is composed of two main 

domains: the Vehicle and the eMotor.   

The first domain (Vehicle) contains a multibody dynamics solver to simulate the vehicle 

motion with a visual interface for human drivers (Figure 3, center screen). Additional 

dedicated blocks evaluate the dynamics of the brakes, the battery, and the efficiency 

of the transmission. 

The second domain (eMotor) describes the behaviour of the DUT; it is the starting point 

of a digital twin for the electromagnetic and thermal representation of the motor. 

Currently, this unit is composed by a loss block that determines the thermal losses of 

the eMotor, and its LPTN-based thermal representation. The losses module 

determines the copper losses produced in active and endwindings, both DC and AC, 

which are combined and applied to the corresponding node. Iron losses are calculated 
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per region, yoke and teeth for the stator and core and external diameter for the rotor. 

Magnet and mechanical losses are introduced here as well. Finally, a distribution block 

assigns the correct losses to the desired components as inputs in the thermal model.  

 

Fig. 7 Components of the simulation environment of the CPTB. 

The thermal model consists in a LPTN that describes the heat flows inside the motor 

and the temperatures of its nodes. This model incorporates an estimator based on an 

Extended Kalman Filter (EKF) to fuse data from physical sensors into the evaluation 

of the thermal dynamics.  

Additional blocks in the eMotor domain include an efficiency module responsible for 

the evaluation of the efficiency of the ePowertrain, and an electronic control unit (ECU) 

that implements a derating strategy to prevent motor overheating in critical situations. 

Moreover, a human-machine interface (HMI) and a python-based display have also 

been implemented to enable the visualization of the temperature status of the motor. 

 

2.2 Towards a Digital Twin for eMotors 

The eMotor domain in the test bench is the starting point for a digital twin of the DUT, 

geared towards obtaining high-fidelity information about the operation point of the 

tested motor beyond the readings of the physical sensors mounted on it.                

 

Fig. 8 Illustration of the digital twin concept. 



32nd Aachen Colloquium Sustainable Mobility 2023 11 

The digital twin concept is illustrated in Figure 8. The physical subsystem under test in 

the bench, the eMotor in this case, is replicated by a high-fidelity virtual representation, 

which aims to capture the representative phenomena that take place in its real-world 

counterpart. A bi-directional communication between the physical and the virtual 

subsystem is used to convey information about the operation point of the DUT to is 

computational representation, which in turn provides simulation and analysis results 

that can be used in decision-making, for instance to determine commands to drive the 

real ePowertrain [23]. The virtual representation includes a probabilistic treatment of 

the data gathered from the sensors mounted on the DUT, as well as the results of the 

simulation conducted in the virtual environment [24]. This information can be used to 

update the computational model during the life cycle of the eMotor, including for 

instance the effect of damage suffered by the part, or the aging of materials. 

This digital twin of the DUT is currently being developed, but some of its functionality 

is already operational, in particular the description of thermal phenomena by means of 

LPTN simulation, and the simulation and sensor data fusion through EKF-based 

methods. These are described in further detail in Section 4. In this particular 

application, the thermal observer in the bench was used to provide an estimation of 

the component temperatures in critical points, at which sensors often cannot be placed 

in production components. Examples of these locations are the inner part of the 

eMotor, more specifically the rotor, the magnets, and the central part of the winding. 

Even in testing facilities, settings sensors in these areas is a highly complex 

task.Temperature readings from these locations would be very useful to determine the 

operation point of the motor and to decide on the control strategy adopted to operate 

it. Indeed, in the winding, when there is a cooling system for the stator assembly 

extremes, the hot-spot moves into the active winding. In the rotor the hot-spot is mainly 

located in the center of the stack [25].  

Identifying these hot-spots is essential for the definition of derating strategies; the 

thermal characterization of the eMotor is, accordingly, fundamental to avoid early 

deterioration or failure. In this context, digital twins can play a central role in the 

calibration and update of the thermal representation of the eMotor for a wide range of 

boundary conditions. 

3 Lumped Parameter Thermal Network Calibration with the CPTB 

The thermal circuits used to describe the behavior of the eMotors tested in the bench 

follow the implementation and solution approaches presented in [26]. LPTNs express 

the thermal inertia and heat transfer characteristics of a device, as well as its heat 

generation, by means of lumped components, namely thermal resistors, capacitors, 

and heat sources, which are similar to the ones used to build electric circuits. Nodes 

in a LPTN stand for significant locations in the physical component, subjected to a 

temperature that plays a role similar to a voltage in an electric circuit; the heat that 

flows between these nodes is analogous to an electric current. 
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The system thermal dynamics is described by a set of 𝑛 variables 𝐪 that comprises 𝑛T  

temperature values and  𝑛Q heat flows, grouped in terms 𝐪T and 𝐪Q, respectively: 

𝐪 = [  𝐪T
T     𝐪Q

T   ]T Eq. 1  

The system variables 𝐪 are not independent and they must satisfy the algebraic con-

straints imposed by Kirchhoff's laws and the constitutive equations of some compo-

nents, such as thermal resistors, and heat sources. These constraints can be grouped 

in an 𝑚 x 1 term, 𝚽 

𝚽 (𝐪, 𝐯, t) = 𝟎 Eq. 2  

that is a function of time 𝑡 and the system input 𝐯, e.g., fixed temperatures at given 

nodes and heat generation values. Moreover, thermal capacitors subject the time de-

rivatives of the variables to 𝑝 linear differential equations in the form 

𝚪 = 𝐀�̇� + 𝐛 = 𝟎 Eq. 3  

where 𝐀 and 𝐛 are 𝑝 x 𝑛 and 𝑝 x 1 terms that depend on the physical properties of the 

capacitors and the circuit topology.  

Equations 2 and 3 can be used to describe the dynamics of any electric or thermal 

system. The particular features and structure of LPTNs, however, make it possible to 

write them in the form 

[ 
𝚽 
𝚪

] = [ 
𝚽𝐪𝐪 +  𝚽𝐯𝐯

𝐀�̇� +  𝐀1𝐪
 ] = 𝟎 Eq. 4  

where 𝚽𝐪, 𝚽𝐯, and 𝐀1  are 𝑚 x 𝑛, 𝑚 x 𝑟, and 𝑝 x 𝑛 matrices, respectively, with 𝑟 the 

number of inputs that act on the circuit. 

The matrices in Eq. 4 have a constant structure for each LPTN and their numerical 

values depend only on the circuit topology and the physical parameters of its compo-

nents. In order to simulate the dynamics of the thermal system, the nonlinear system 

of equations in Eq. 4 has to be solved and integrated in the time domain. 

The DUT is described by means of a modular LPTN built with the formulation presented 

in Eqs. 1-4, in which the system topology has been divided into the following areas: 

shaft, bearings, rotor, magnets, end-plates, end-rings, stator iron, active winding, 

endwindings, housing with heat extraction sinks, cooling jacket, and internal air 

cavities. Figure 9 provides an overview of these areas and the heat transmission 

channels between them. Dashed lines in the figure represent convection between 

components and fluids, while solid lines denote conduction between parts. 
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Fig. 9 Thermal sections of the PMSM under study. 

The LPTN model was initially formulated as a complex network composed of hundreds 

of nodes. The computational model of the motor, however, is intended to deliver real-

time performance in the test bench; moreover, future applications of the LPTN are 

likely to be deployed in low-power hardware platforms, such as the ones present in 

automotive inverters. For these reasons, a reduced 21-node model was developed, 

merging parameters from the original LPTN while preserving the physical meaning of 

the scheme. The initial parameters of the system were scaled down from the model of 

a bigger motor, previously calibrated.  

Thermal losses, which are represented in the LPTN by means of heat sources, are the 

main inputs of the thermal model of the eMotor. Thirteen heat sources were identified: 

seven in the copper components located in the active winding, endwindings, and the 

terminal rack; three in the laminated iron components such as the stator teeth, yoke 

and rotor; one for the magnets and one for each bearing. The losses at the winding 

copper and the stator iron feature a low variability and can be considered to be 

accurately known. The magnet losses, conversely, were more difficult to model; these 

were calculated by means of Finite Element Method (FEM) 2D simulations. 

The thermal parameters and inputs of the LPTN used in the CPTB need to accurately 

match the physical properties of the DUT to deliver correct predictions about its internal 

temperatures and heat flows. Arriving at correct values of these is often challenging for 

several reasons. In the first place, LPTNs rely on a simplification of the thermal 

phenomena that occur in a physical system; this, together with the uncertainties that 

affect component properties, hinders the direct derivation of thermal parameters from 

theoretical formulas.   An adjustment of the model parameters is always required; often 

several possible solutions exist to this problem and not all of them are physically 

meaningful. The difficulty of this adjustment increases proportionally to the number of 

components and, therefore, the descriptive accuracy of the models.  
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3.1 Calibration protocol 

There are many alternatives when trying to identify the parameters of an LPTN model. 

Depending on the number of nodes and parameters, however, having an efficient 

method can strongly reduce the computational cost and time of model calibration. 

Sensitivity analysis is a powerful tool that highlights which parameters are more 

relevant for the nodes desired, the critical ones. Thus, it allows the selection of the 

most influential nodes as prioritary in the adjustment process, in order to get to a faithful 

system description by means of parameter optimization.  

Sensitivity analysis is a commonly employed technique for refining strategies, as evi-

denced by previous works such as [27], [28], and [29]. In the majority of cases, a finite 

differences methodology is adopted. This involves iteratively subjecting chosen param-

eters to perturbations and subsequently performing repeated forward-dynamics simu-

lations. This approach yields an estimation of the sensitivity of the system dynamics 

concerning said parameters. Such estimations prove valuable in identifying pivotal pa-

rameters, thereby concentrating optimization efforts on them. However, it is worth not-

ing that the computational demands of finite-difference-based sensitivity analysis 

increase substantially when dealing with a large number of parameters, as highlighted 

by [27]. Furthermore, accuracy concerns arise if the selection of perturbation sizes is 

not judiciously executed, as indicated by [30]. This issue can be mitigated by leverag-

ing the technique of complex-step differentiation, as outlined by [31]. An alternative 

avenue for assessing system sensitivity involves the utilization of automatic differenti-

ation (AD) methods. These methods rely on the decomposition of computations into 

elemental mathematical operations possessing established analytical derivatives, as 

elucidated by [32], [33], and [34]. 

Within this context, a calibration protocol, as explained in [35], is formulated based on 

dynamic sensitivity analysis. This protocol entails optimizing the most influential pa-

rameters associated with critical nodes in the model according to the tests frequently 

used in eMotor characterization: continuous service (S1) and peak service (S2) curves. 

In the first ones, a constant load is applied long enough to attain a thermal equilibrium. 

For each of the operation points, a constant speed value is administered and the 

corresponding torque value is chosen to reach 180ºC in the hot spot of the motor after 

the application of the speed and torque point in a period of about 30 minutes. These 

cycles represent a maintained speed operation of a vehicle, adequate to capture the 

steady-state behaviour of the electric machine. In S1 curves, there is also a transient 

period until thermal equilibrium is achieved, however, it represents a slow dynamic and 

may not capture the entire thermal inertia spectrum, especially the fastest ones. 

Indeed, S2 curves are used precisely for this purpose. In peak service tests a torque 

value is requested during a time frame of 10, 30 or 60 seconds most commonly. 

Dissimilar to S1 curves, these tests do not reach thermal equilibrium. Actually, these 

tests terminate when the hot spot reaches the maximum admissible temperature 

(180ºC) or when the inverter or battery exceed their current limit. 

To validate the adequacy of the fitting, the Worldwide harmonized Light vehicles Test 

Procedure (WLTP) cycle [36] is employed. 
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Moreover, even if the eMotor was calibrated well at the start of its operation, it's 

important to note that its thermal properties can change over time due to factors like 

aging and the wear and tear of critical components from heat cycles or overheating 

[37]. Some system inputs, such as thermal losses, are subjected to quick variations 

during operation, and they introduce an additional source of uncertainty in the system 

representation. It was observed that it is highly complex to obtain an expression that 

faithfully represents the losses of the magnets in the eMotor.   

In the present study, the dynamics equations were differentiated (which were 

presented in Section 3) with respect to the system parameters to obtain the analytical 

sensitivity of temperatures and heat fluxes with respect to the critical parameters. Then 

the resulting most influential resistances and capacitances in the LPTN model were 

optimized according to S1 and S2 curves, using a Levenberg-Marquardt algorithm. 

The parameters were constrained to vary plus-minus 300% from their initial values. 

 

Fig. 10 Temperatures in the PMSM during the WLTP cycle: sensor readings at the 

magnets and the stator hot spot (𝑇𝑚
∗  and 𝑇ℎ

∗ and optimized LPTN predictions 

at these locations (𝑇𝑚 and 𝑇ℎ)). 

Figure 10 shows the comparison between the initial state and the state after the 

application of the sesitivity analysis presented in the Section 3.1 and the optimization 

procedure. The capacity to improve the models tuning the most influential parameters 

demonstrates to be potentially effective and computationally fast compared to other 

literature methodologies. For instance, when compared to the finite differences 

method, the time consumed for this other approach is at least proportionally higher to 

the number of parameters. The LPTN model used for the current investigation counts 

with around 70 parameters, so the method employing finite differences would be at 

least 70 times slower computationally speaking [35]. Besides, the usage of the 

presented method avoids the selection of the perturbation size required by finite 

difference methods.  
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4 Kalman Filter In-Operation Model Adjustment 

Even though an acceptable calibration may have been obtained at the beginning of the 

operation of the eMotor, its thermal parameters may change over time during operation 

due to aging and the deterioration of the critical components caused by thermal cycling 

or overheating [37]. Besides, some system inputs, such as thermal losses, are 

subjected to quick variations during operation, and they introduce an additional source 

of uncertainty in the system representation.  

Therefore, an EKF is used to handle these problems and arrive at a physically 

meaningful description of the thermal behaviour of the DUT, following the approach 

presented in [12]. The EKF allows for the online estimation of the thermal parameters 

and inputs of the LPTN, as well as the temperatures of the nodes of interest.  A 

conventional KF could be used instead for state estimation, but this would require the 

thermal parameters and input values to be accurately known during operation. 

4.1 Input and parameter estimation 

The observer is based on the discrete-time Kalman filter, which requires to write the 

system dynamics equations as  

𝐱𝑘+1 = 𝐅𝑘𝐱𝑘 +  𝐆𝑘𝐮𝑘 +  𝛚𝑘 Eq. 5  

Where 𝐱 and 𝐮 are the system state and inputs, terms 𝐅 and 𝐆 are the system and 

input matrices, and 𝝎 is the system noise. Subscripts 𝑘 and 𝑘 + 1 stand for the current 

and the next time-steps in the representation of the system dynamics. Sensors 

mounted on the system are used to retrieve an array of measurements 𝐨, of size 𝑠 x 

1. The system model can be used to calculate the values of these readings as 

𝐡k = 𝐇k𝐱k +  𝐍k𝐮k Eq. 6  

where 𝐇 and 𝐍 are linear combination matrices. The sensor measurements are 

subjected to noise, which, as it was the case with the system noise, is assumed to be 

white Gaussian noise. 

The discrete Kalman filter provides an estimation of the state and the error covariance 

𝐏 at time 𝑘 + 1, starting with the a priori estimates 

�̂�𝑘+1
− = 𝐅k�̂�𝑘

+ +  𝐆k𝐮k Eq. 7  

𝐏𝑘+1
− = 𝐅𝑘𝐏𝑘

+𝐅𝑘
T +  𝐐 Eq. 8  

where �̂�𝑘
+ and 𝐏𝑘

+ are the a posteriori estimated state and covariance matrix at step 𝑘, 

and 𝐐 is the noise covariance matrix of the system. A correction step delivers the a 

posteriori values of these terms: 

�̂�𝑘+1
+ =  �̂�𝑘+1

− + 𝐊𝑘+1(𝐨𝑘+1 −  𝐡𝑘+1 ) Eq. 9  
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𝐏𝑘+1
+ = (𝐈 −  𝐊𝑘+1𝐇𝑘+1)𝐏𝑘+1

−  Eq. 10  

where 𝐈 is the identity matrix and 𝐊 is the Kalman gain, evaluated as 

                                       𝐊𝑘+1 = 𝐏𝑘+1
−  𝐇𝑘+1

T (𝐇𝑘+1 𝐏𝑘+1
−  𝐇𝑘+1

T + 𝐑)−𝟏 Eq. 11  

where 𝐑 is the covariance matrix of the measurements. In order to use Eqs.5-10 in the 

estimation of state, inputs, and parameters of LPTNs, it is necessary first to express 

the system dynamics in Eq. 4 in terms of an independent set of coordinates. This can 

be achieved extracting a reduced subset of 𝑝 variables 𝐳 using a constant 𝑝 x 𝑛 matrix 

𝐁0,  

𝐳 = 𝐁0𝐪 Eq. 12  

The EKF used for input and parameter estimation includes the 𝑝 independent variables 

𝐳, their derivatives with respect to time, �̇�, and the set of 𝑜 parameters 𝝆 that need to 

be estimated, in its extended state term of size (2𝑝 + 𝑜) x 1; the filter inputs 𝐮 include 

the 𝑟 system inputs 𝐯 and their derivatives with respect to time: 

𝐱 = [ 

𝐳
�̇�
𝝆

 ] ;        𝐮 = [ 
𝐯
�̇�

 ] Eq. 13  

The state variables in Eq. 13 must satisfy Eq. 3; this condition is imposed following the 

perfect measurements approach [38]. The details of these derivations can be found in 

[12]. It must be noted that the correct behaviour of the estimation algorithm presented 

in this section requires that the system dynamics is almost linear during the time-step 

[𝑘, 𝑘 + 1]. To keep this assumption valid, the value of 𝜏 has to be selected appropriately 

to match the dynamics of the thermal effects here described. 

4.2 Results 

The best way to test the method was to determine its performance during a duty cycle, 

with the intention to estimate the losses of the most uncertain heat sources in the 

thermal model of the digital twin. The tested motor was subjected to a series of three 

WLTP cycles in the CPTB described in Section 2. This common homologation test was 

selected because of its coverage of a wide range of motor speeds, as it includes four 

consecutive low, medium, high and extra high velocity segments [36].  

The inputs to the algorithm are the heat sources, parameter values and measurements 

retrieved from testing in the selected duty cycle. During the experiments, four readings 

were retrieved from temperature sensors located at the external surface of the rotor, 

the magnets, and the A-side and B-side endwindings. In this case, only these 

measurements were significative according to the nodes in the LPTN model. Results 

from a single test run are shown because of the low variability of the recorded cycles. 

Otherwise, the output of this particular application is the estimated value for magnet 

losses, which have been proved to be the most uncertain heat source to the system. 
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Preliminary tests showed that the values of the thermal losses had the greatest impact 

on the correctness of the temperature predictions of the eMotor model. Accordingly, 

for each experiment, the thermal dynamics of the DUT was evaluated twice. First, the 

thermal behaviour of the system was simulated using the 21-node LPTN described in 

Section 3 using analytical expressions of the thermal losses in the DUT. The simulation 

was carried out solving the nonlinear system of equations 4 through Newton-Raphson 

iteration and using a second order Backward Differentiation Formula (BDF2) as 

numerical integrator. Next, the same LPTN model was combined with the EKF-based 

observer described in the previous section to carry out the correction of the uncertain 

thermal losses, which are system inputs from the point of view of the formulation in 

previous section. 

In these procedures, the readings from the rotor and endwindings thermocouples were 

treated as sensor measurements for the estimation algorithm (they were included in 

array 𝐨), while the temperature readings from the magnets were used for verification 

only, to determine the level of accuracy attained by the estimation process. The 

numerical simulation and estimation were performed using a sample time 𝜏 = 0.5 s.  

To sum up, the heat losses at the magnets are the input corrected by the estimation 

algorithm; the sensor measurements obtained from the bench are the temperatures at 

the A and B endwindings and the outer diameter of the rotor core. The temperature at 

the magnets is measured and used as validation variable, but not used in the input 

estimation.  

The values delivered by the estimation algorithm are compared to the uncorrected 

forward-dynamics simulation of the the thermal dynamics of the system in Figures 11-

13. 

 

Fig. 11 Magnet temperature in the WLTP cycle. 

Figure 11 shows the time-histories of the magnet temperatures obtained with the 

uncorrected LPTN simulation and the estimation algorithm, and compares them to the 

thermocouple measurements at the same location. The estimation procedure brought 

the maximum absolute error in the magnet temperature in this scenario down to 6 ºC, 

with a mean absolute error below 1.6 ºC. Figure 11 confirms that the incorrect 

adjustment of the LPTN model introduces errors in the prediction of the temperature of 
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the critical hot-spots of the system, rendering the uncorrected simulation results 

unreliable. These errors were largely removed by the use of the input observer. 

 

Fig. 12 A-side endwinding temperature in the WLTP cycle. 

 

Fig. 13 B-side endwinding temperature in the WLTP cycle. 

Figure 12 shows the temperature of the A-side endwinding in the WLTP cycle. The 

uncorrected LPTN simulation curve overestimates the node temperature, except in the 

extra-high velocity stretch (between t = 1400 s and t = 1800 s), in which the uncorrected 

simulation fails to capture the expected increase in temperature. The estimation 

approach corrects these deviations. Relatively small overshoots can be observed in 

the system response, which could be related to the signal noise; additionally, the peak 

temperature predicted is a few degrees below the experimentally measured values. In 

spite of these issues, the estimation results represent an improvement over the 

uncorrected simulation ones. A similar behaviour can be observed in Fig. 13, which 

contains data for the B-side endwinding. 

In the latter two cases, the maximum differences between the temperature estimated 

at a node and the corresponding sensor measurements were below 8 ºC, with a mean 

absolute error below 2 ºC. 
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Fig. 14 Magnet heat source estimation result for the WLTP cycle. 

Figure 14 contains the magnet heat losses, i.e., the input adjusted by the observer, 

delivered by the estimation algorithm in this scenario. 

The results obtained in the WLTP cycle support the ability of the proposed estimation 

method to correct LPTN simulation results by means of sensor data fusion. Results 

also confirmed that the estimation algorithm was able to deal with the measurement 

noise introduced by the telemetry data acquisition in the readings from the 

thermocouples. It must be pointed out, however, that the estimation seems to introduce 

a small delay in the thermal response of the system, in particular in periods in which  

the magnet temperature decreases. 

5 Thermal Ageing Effects on an Automotive Grade Motor Stator 

The function of the insulation in the stator of electric machines is to both insulate 

electrically the winding from the laminated steel core and enhance the conduction of 

the heat generated from the conductors, which are the main heat sources, towards the 

laminated steel to be disipated by the cooling systems. Generally, these can be a water 

jacket or any type of oil cooling system. Insulation systems also grant higher structural 

rigidity to the conductors in the slot.  

The eMotor, and so the insulation system, is usually subjected to thermal cycling, 

thermal shock, exposure to high temperatures and partial discharge phenomena 

during the performance of the machine.  

These effects produce the deterioration of the materials that form the insulation 

conglomerate; in the case of the DUT these materials are:  

1. Hairpin individual conductor organic enamel (polyester-imide, over-coated with 

polyimide-amide); 

2. Epoxy resin impregnation. 

3. Single-layered Nomex® paper, which can be double-layered in some areas 

depending on their configuration. 
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In the present investigation, the thermal ageing accumulation was studied. It is 

essential to have a very accurate calibration of the so-called critical parameters [39]-

[41]: the correct approach on the heat extraction paths and convection heat transfer 

coefficients, interference resistance between stator and housing, thermal capacities 

and thermal conductivities of the materials, especially in multi-material conglomerates 

such as the insulation system [27]. 

Indeed, most of the LPTN models in the literature do not take into consideration that 

some of these parameters could dynamically vary due to ageing. Hence, the models 

are static in time and it could lead, potentially, to erroneous results. More specifically, 

it has been shown in wire conductor motorettes that the equivalent conduction 

resistance representing the insulation between the winding and the stator in the active 

part of the machine present variations above 10 ºC when subjected to thermal ageing 

at 230 ºC for more than 200h [19]. Therefore, it is concluded that the thermal 

conductivity of the insulation conglomerate increases with thermal ageing, gradually 

worsening the heat conductivity and extraction from the windings, the core of the heat 

sources.  

 

Fig. 15 Thermal endurance plot (Arrhenius curve) for class-H insulation systems 

[42]. 

Based on the thermal endurance plots (or Arrhenius curves) shown in Figure 15, a 

failure time as a funcion of the ageing temperature and the failure probability can be 

estimated. While it would be unfeasible to replicate a failure at 180ºC for timing reasons 

(20000 hours), the curves allow to perform the heating at higher temperatures, being 

able to escalate the law of deterioration obtained [42]. 

However, this has been applied to wire conductor motorettes, not to automotive-grade 

stators. It is of interest to validate these effects and to obtain a rule of deterioration for 

the stator insulation for complete machines. In Section 5.1 the experiments that were 

carried out for the present investigation are described, as well as the results obtained. 
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5.1 Experimental campaign 

An experimental campaign was conducted to thermally age an automotive-grade stator 

and its insulation system. A stator consisting of laminated steel core, haripin winding 

and enamel-epoxy-Nomex® insulation system was selected for the study. A 

particularity of the eMotor employed is that it has 6 conductors. 

Figure 16 presents the setup used for the experiments. The stator was placed on a 

glass-fiber support making the minimum possible contact. A direct current (DC) source 

was connected to two of the three phases that are instrumented, entering and exiting 

from a different phase and leaving one phase wihtout current.  Finally, a datalogger 

was used to retrieve all the data coming from the sensors located in the stator. 

Simultaneously, the temperatures were measured with a thermographic camera to 

capture any effects unseen in the sensors.  

 

Fig. 16 Test setup for ageing measurements. 

Firstly, a series of variability measurements were carried out to ensure the repeatability 

of the measurements under practically identical conditions. This test was conducted 

introducing 160 A to two of the phases of the eMotor until the steady state temperature 

was achieved. As the variability was under 3%, the setup was validated for further 

tests. 

Secondly, the iterative procedure applied was a heating cycle in the oven at 230 ºC for 

12 hours, an electrical insulation check and a DC current application of 160 A until 

steady state temperatures were achieved in the setup described and under practically 

identical conditions. In total 21 heating cycles under these conditions were performed, 

20 of 12 hours and a last one of 60 hours, with their corresponding DC current 

application until steady-state temperature was achieved in the motor. The data of all 

the thermocouples was acquired and saved for comparison. For this purpose, six 

thermocouples were installed in each of the winding heads. Figure 17 presents the 

distribution of these sensors, being most of them in the space between the most inner 

layers of conductors and circumferencially distributed.  
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Fig. 17 Thermocouple locations in the stator of the eMotor employed for ageing 

tests. 

Figure 18 presents the maximum temperature read in the stator in steady-state 

conditions on each of the experiment iterations. In all the cycles, the aforementioned 

sensor is 3v, located in the winding head upper area (see Figure 17). 

 

Fig. 18 Hot spot temperature evolution results after applying DC current until 

steady-state temperature after 29 heating cycles.  

During the experiments, after the first eight 12 hour cycles a decrease in the hot spot 

temperature in the steady state was recorded with some up and downs. This was not 

expected, as in the state of the art [37] a clear upwards tendency in the hot spot 

temperature was observed from the beginning of the tests, having around a 30% of 

equivalent conductivity decrease by the first 24 hours of ageing and almost a 50% 

decrease by approximately 300 hours. However, from the ninth cycle to the fifteenth 

included, the hot spot temperature increased with minor variations until the initial 

steady state temperatue is surpassed. In the last six cycles though, the upwards 
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tendency was not followed. Hence, it is observed that isolated thermal cycling can 

increase the steady state temperature not only for motorettes as presented in [19] but 

also for automotive-grade electric motors, but more experiments need to be carried out 

to confirm the tendency from the experimental campaign and its repeatability. 

    

Fig. 19 Stator before (left) and after (right) the thermal ageing experimental 

campaign. 

As shown in figure 19, the deterioration of the stator was very evident, but within the 

cycles performed it was not corresponded by the response of the hot spot temperature 

evolution after thermal cycling according to the literature. All epoxy resins look much 

darker and seem to have been melted. The enamel as well looks dark but shows no 

cracks, neither do the epoxy on the welded conductors. The paper also presents a 

brownish color but no cracks and in the active part the extremes also look progressively 

browner into the middle where it is less affected. In general, the visual appearance 

indicates a more aged state than the demonstrated in the recorded steady state 

temperatures.  

The stator insulation system was expected to be much more deteriorated as shown in 

the work of Madonna et al. [19], [37], [41], [42], nervertheless, it did not behave just as 

what it was presented in the literature. This could be due to the change from a flat and 

shorter motorette to an axially longer and circular geometry as an automotive-grade 

stator has. It is interesting how the performance improves, resulting in lower steady 

state hot spot temperatures, which was opposed to the expected effect. Indeed, not 

only that but it took much longer than expected based on literature to see an increase 

in the hot spot temperature in cycle 15, even if in the next cycle it went down again. As 

a conclusion, the tendency for the time being is still uncertain and more thermal cycles 

and DC current applications will be performed in order to reach to the failure point. 

5.2 Model Update Including Thermal Ageing Effects 

Nowadays, for its complexity, the LPTN models are static and are not modified, leading 

to either power loss for excessive heating due to component degradation or to 

ovearheating deriving ageing acceleration. 
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Based on experimental results this effect can be implemented in thermal models to 

predictively obtain the ageing state of the insulation system due to the exposure to high 

temperatures. The aim of this investigation is to obtain a rule of deterioration that could 

be applied to update the stator insulation equivalent conductivity as a function of time 

above the threshold temperature for the insulation class of the system. Equivalent 

condutivity is defined as the amalgam conductivity of enamel, epoxy resin and 

Nomex® of the insulation system. 

A series of CFD simulations will be carried out to obtain the equivalent conductivity 

values that match the hot spot temperatues observed in the study as in [19]. Those 

values will conform the law of thermal degradation of the stator insulation for 230 ºC 

heating cycles. However, thanks to the Arrhenius curves, and for the same failure 

probability, the law can be adapted to 180 ºC heatings, which is the temperature limit 

for the present stator, with a class-H winding insulation. Based on this law and by 

means of a state observer, the conductivities of the active winding resistances can be 

updated as a function of the accumulative heating above 180 ºC in the eMotor. Thus, 

the parameters of the model adapt as the eMotor deteriorates with time.  

For a more accurate approach, other effects as thermal shock and partial discharge 

phenomena should be taken into account and applied. The more complete, the more 

faithful the thermal digital twin law of deterioration will be. Taking into account all the 

ageing effects, the implementation of such law will enable to have a realistic motor 

ageing model. 

6 Conclusions and Future Work 

In this study, first of all, a CPTB has been described, as a platform for automotive-

grade electric motor digital twins. Based on a simplified LPTN model of the eMotor, 

secondly, the results of a calibration protocol driven by a novel sensitivity analysis 

method have been shown, demonstrating an efficient method to calibrate the most 

influential parameters with respect to the selected temperature nodes. The parameters 

were optimized according to the motor characterization curves S1 and S2 and the 

improvement was verified in the WLTP cycle. With this method, the mean absolute 

error decreased 3ºC for the endwinding hot spot and circa 10ºC for the magnets. Then, 

an estimation method has been presented, used to reduce the uncertainty in the losses 

of the magnets to adjust the same LPTN model. Here, by the estimation of the magnet 

heat source with an EKF, the mean absolute error of the magnet temperature in the 

model decreased from 6ºC to below 2ºC. The combination of both methods could 

potentially be part of a complete calibration protocol where uncertain heat sources and 

parameters could be adjusted for thermal behaviour faithful representation. Finally, an 

experimental campaign for eMotor stator insulation systems was carried out, aiming to 

derive an equivalent conductivity decrease law to be implemented in the thermal 

models to go forward towards eMotor digital twins. The results of the tests do not align 

with the literature and further work will be conducted to obtain clearer conclusions. 
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The aim of this investigation is to develop the platform and methods to calibrate and 

update thermal models for digital twins of ePowertrain motors. In this paper, a CPTB 

was selected as test platform. This kind of test bench enables the simultaneous 

operation of a real eMotor and its digital twin, for instance to gain insight into its thermal 

behaviour; moreover, it makes it possible to interact with a large set of real-time 

realistic scenarios in a straightforward way, e.g., by means of interaction with a virtual 

vehicle model. The heart of the digital twin is a LPTN model built based on the original 

geometry and physical properties of the motor. An electromagnetic model generates 

the thermal losses to be inputted in the heat sources. However, no matter how 

accurately the conduction and convection resistances and capacitances, it is 

fundamental to calibrate the models with experimental data to search for a precise 

representation of the thermal behaviour of the system. 

Under the vision of MBST, and based on the experience of model calibration, CPTBs 

could very efficiently enable the calibration of models in a semi-automatic manner. 

Relying on the presented methods such as dynamic sensitivity analysis, most relevant 

parameter optimization and Kalman filtering, the digital twin could be adjusted and 

updated. In this work some of the methods and procedures have been shown and their 

benefits compared to other methodologies existing in the literature. In terms of model 

calibration, the aim is to introduce a blank template, built based on the different stator 

and rotor topologies, in the CPTB. Then a sensitivity analysis is run during the 

execution of a WLTP cycle and the most relevant parameters are selected for 

optimization in S1 and S2 curves at different temperature levels and cooling conditions. 

The tests can be run automatically in the test bench, providing the necessary data to 

launch the offline optimization process. Finally, one or two duty cycles would be 

launched supported by online heat loss distribution calibration with a Kalman filter. The 

output of the test would be the adjusted LPTN model, within the admissible limits for 

the winding hot spot and magnet hot spot nodes and having faithful temperatures for 

the other nodes in the model too.  

Nevertheless, there are some points that need to be further developed in the future, 

focusing in the CPTB and its methods. Firstly, we expect to explore different Kalman 

filter approaches for the estimation of the most uncertain losses. In the present work, 

an EKF has been used, but it would be interesting to analyze the performance of an 

Unscented Kalman Filter (UKF) to perform the estimation tasks. These are widely used 

in the field of multibody system dynamics simulation. Secondly, although S1 and S2 

curves and the WLTP cycle are usually the tests used for eMotor characterization, it 

remains as future work to explore the optimal definition of tests that could help 

characterize and calibrate the LPTN models for digital twins, as well as the most 

appropriate number of operation points needed to comprehend as much as possible 

the whole range of operation of the eMotor and so to build a precise and faithful digital 

twin. Thirdly, albeit the LPTN model has been built iteratively reducing a very detailed 

model, there is future work to do in the definition of the optimal circuit to represent heat 

distribution and disipation paths in the eMotor. Specific work on oil cooling models and 

different topologies' HTCs are planned to be developed in the future, which will require 

intensive experimental campaigns to accurately explore all the phenomena given in oil 

cooled motors. In relation with the LPTN model, there will be future investigation in the 
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field of electromagnetic losses, in order to diminish the uncertainty in the distribution of 

the magnet losses and iron losses in the stator and rotor, also driven by intensive 

experimental campaigns. 

In the topic of automotive-grade motor insulation ageing, there is great room for future 

work as well. In the first place, the tests should be redone to analyze the repeatability 

of the deterioration tendency in the automotive-grade stator evaluated. In the end, a 

complete stator introduces a much greater level of complexity than the motorettes 

prsented in the state of the art and opens the door to many circunferential or axial 

phenomena that could not be identified so far. Secondly, it would be of great interest 

to couple more ageing effects, in order to have a much more complete model 

describing how the insulation deteriorates also depending on greater gradient thermal 

shocks or partial discharge phenomenon. Currently, work in the investigation of partial 

discharge effects is being conducted.  

All these steps will enable the procurement of gradually increasing faithful models for 

the construction of digital twins of ePowertrain motors. When obtained, and even in 

previous steps, the cost of testing, decreasing the number of tests, destructive test 

prototypes will be potentially reduced and, under the MBST vision, the need of physical 

sensors in the driving units in a vehicle too. Some first advances in this work-line are 

presented in this investigation. 

7 Abbreviations 

BDF2   2nd order Backward Differentiation Formula 

CPTB   Cyber-Physical Test Bench  

DUT   Device Under Test  

ECU   Electronic Control Unit 

EKF   Extended Kalman Filter 

MBST   Model-Based System Testing 

PMSM  Permanent-Magnet Synchronous Motors  

SiTL   System-in-the-Loop 

S1   Continuous Service Curves 

S2   Peak Service Curves 

UKF   Unscented Kalman Filter 

WLTP   Worldwide harmonized Light vehicles Test Procedure 



28  32nd Aachen Colloquium Sustainable Mobility 2023 

8 References 

[1] M. Helmle, B. Müller, F. Von Zeppelin, and F. Hauler, 2015.  

Challenges and concepts for the validation of highly automated driving. 

Autonomous Vehicle Test & Development Symposium, Stuttgart, Germany. 

[2] F. L. Marques dos Santos, R. Pastorino, B. Peeters, C. Faria, W. Desmet, L. C. 

Sandoval Góes, and H. Van Der Auweraer, 2016.  

Model Based System Testing: Bringing testing and simulation close together.                                                                                                   

Structural Health Monitoring, Damage Detection & Mechatronics. 

Springer, A. Wicks and C. Niezrecki (Eds.). 

Volume 7, Pages 91-97                                                                                                                                                             

DOI: 10.1007/978-3-319-29956-3\_10 

[3] S. Glumac,  N. Varga, F. Raos, and Z. Kovačić, 2022  

Co-simulation perspective on evaluating the simulation with the engine test 

bench in the loop. 

Automatika, Volume 63, Number 2, pages 275-287. 

DOI: 10.1080/00051144.2022.2031537 

[4] F. Cremona,  M. Lohstroh, D. Broman, E. A. Lee, M. Masin, and S. Tripakis, 

2017  

Hybrid co-simulation: it's about time. 

Software & Systems Modeling, Volume 18, Number 3, pages 1655-1679. 

DOI: 10.1007/s10270-017-0633-6 

[5] N. Tsokanas, R. Pastorino, and B. Stojadinović, 2022.  

Adaptive model predictive control for actuation dynamics compensation in real-

time hybrid simulation. 

Mechanism and Machine Theory, Volume 172, article 104817. 

DOI: 10.1016/j.mechmachtheory.2022.104817 

[6] S. Sadjina, L. T. Kyllingstad, S. Skjong, and Eilif Pedersen, 2017.  

Energy conservation and power bonds in co-simulations: non-iterative adaptive 

step size control and error estimation. 

Engineering with Computers,Volume 33, Number 3, pages 607-620.                                                         

DOI: 10.1007/s00366-016-0492-8 

[7] B. Rodríguez, A. J. Rodríguez, B. Sputh, R. Pastorino, M. Á.Naya, and F. 

González, 2022  

Energy-based monitoring and correction to enhance the accuracy and stability 

of explicit co-simulation. 

Multibody System Dynamics, Volume 55, Number 1-2, pages 103-136. 

DOI: 10.1007/s11044-022-09812-5 



32nd Aachen Colloquium Sustainable Mobility 2023 29 

[8] G. Stettinger, M. Benedikt, M. Tranninger, M. Horn, and J.Zehetner, 2017 

Recursive FIR-filter design for fault-tolerant real-time co-simulation. 

25th Mediterranean Conference on Control and Automation (MED), Valletta, 

Malta, 2017, pages 461-466.  

DOI: 10.1109/MED.2017.7984160 

[9] B. H. Sputh,  L. Thielemans,  J. Pašič, C. Ganier, and R. Pastorino, 2021  

Model-based real-time testing of fail-safe behavior for in-wheel motor propulsion 

systems. 

IEEE Vehicle Power and Propulsion Conference (VPPC), Gijón, Spain, 2021. 

DOI: 10.1109/vppc53923.2021.9699304 

[10] D. E. Gaona Erazo,  O. Wallscheid, and J. Bocker, 2020  

Improved fusion of permanent magnet temperature estimation techniques for 

synchronous motors using a Kalman filter. 

IEEE Transactions on Industrial Electronics, Volume 67, Number 3, pages 

1708-1717. 

DOI: 10.1109/tie.2019.2905817 

[11] S. Jaiswal, E. Sanjurjo, J. Cuadrado, J. Sopanen, and A. Mikkola, 2022 

State estimator based on an indirect Kalman filter for a hydraulically actuated 

multibody system. 

Multibody System Dynamics, Volume 54, Number 4, pages 373-398. 

DOI: 10.1007/s11044-022-09814-3 

[12] B. Rodríguez, E. Sanjurjo, M. Tranchero, C. Romano, and F.González, 2021  

Thermal parameter and state estimation for digital twins of e-powertrain 

components. 

IEEE Access, Volume 9, pages 97384-97400.                                         

DOI: 10.1109/access.2021.3094312 

[13] T. J. E. Miller, M.I. McGilp, and K.W. Klontz, 2009  

Approximate methods for calculating rotor losses in permanent-magnet 

brushless machines. 

IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 

2009. 

DOI: 10.1109/iemdc.2009.5075175 

[14] D. M. Ionel, M. Popescu, M. I. McGilp, T. J. E. Miller, S. J. Dellinger, and R. J. 

Heideman, 2007 

Computation of core losses in electrical machines using improved models for 

laminated steel. 

IEEE Transactions on Industry Applications, Volume 43, Number 6, pages 

1554-1564. DOI: 10.1109/TIA.2007.908159 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=28


30  32nd Aachen Colloquium Sustainable Mobility 2023 

[15] A. Tikadar, D. Johnston, N. Kumar, Y. Joshi, and S. Kumar, 2020  

Comparison of electro-thermal performance of advanced cooling techniques for 

electric vehicle motors. 

Applied Thermal Engineering, Volume 183, Part 2, article 116182. 

DOI: 10.1016/j.applthermaleng.2020.116182 

[16] A. Artacho López, D. J. B. Smith, and B. Mecrow, 2022  

Magnet loss reduction: A new technique beyond segmentation and shielding. 

11th International Conference on Power Electronics, Machines and Drives 

(PEMD 2022), Newcastle, UK. 

DOI: 10.1049/icp.2022.1045 

[17] P. Milanfar and J.H. Lang, 1996 

Monitoring the thermal condition of permanent-magnet synchronous motors. 

IEEE Transactions on Aerospace and Electronic Systems, Volume 32, Number 

4, pages 1421-1429. 

DOI: 10.1109/7.543863 

[18] A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, 

2009  

Evolution and modern approaches for thermal analysis of electrical machines. 

IEEE Transactions on Industrial Electronics, Volume 56, Number 3, pages 871-

882. 

DOI: 10.1109/TIE.2008.2011622 

[19] V. Madonna, P. Giangrande, and M. Galea, 2020 

On the capability of heat dissipation in thermally aged electrical machines. 

2020 International Conference on Electrical Machines (ICEM), Gothenburg, 

Sweden. 

DOI: 10.1109/icem49940.2020.9270744 

[20] M. A. Eleffendi and C. M. Johnson, 2016  

Application of Kalman filter to estimate junction temperature in IGBT power 

modules. 

IEEE Transactions on Power Electronics, Volume 31, Number 2, pages 1576-

1587. 

DOI: 10.1109/TPEL.2015.2418711 

[21] Oliver Wallscheid and Joachim Böcker, 2017  

Fusion of direct and indirect temperature estimation techniques for permanent 

magnet synchronous motors. 

2017 IEEE International Electric Machines and Drives Conference (IEMDC), 

Miami, FL, USA. 

DOI: 10.1109/IEMDC.2017.8002038 



32nd Aachen Colloquium Sustainable Mobility 2023 31 

[22] E. V. Beyerleyn and P. V. Tyuteva, 2014  

Energy efficiency of back-to-back method for induction traction motors testing. 

2014 15th International Conference of Young Specialists on 

Micro/Nanotechnologies and Electron Devices (EDM), Novosibirsk, Russia. 

DOI: 10.1109/edm.2014.6882547 

[23] M. Grieves and J. Vickers, 2016  

Digital Twin: Mitigating unpredictable, undesirable emergent behavior in 

complex systems, Transdisciplinary Perspectives on Complex Systems, Pages 

85-113. 

F.-J.Kahlen, S. Flumerfelt, and A. Alves (Eds.), Springer International 

Publishing 

DOI: 10.1007/978-3-319-38756-7\_4 

[24] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, and L. 

Wang, 2010  

(DRAFT) Modeling, simulation, information technology and processing 

roadmap. 

NASA 

[25] D. J. B. Smith, 2014 

High speed high power electrical machines.                                                     

PhD Thesis, Newcastle University. 

URL: http://theses.ncl.ac.uk/jspui/handle/10443/2645 

[26] B. Rodríguez, F. González, M. Á. Naya, and J. Cuadrado, 2020 

Assessment of methods for the real-time simulation of electronic and thermal 

circuits. 

Energies, Volume 13, Number 6, pages 1354. 

DOI: 10.3390/en13061354 

[27] G. G. Guemo, P. Chantrenne, and J. Jac, 2013 

Parameter identification of a lumped parameter thermal model for a permanent 

magnet sychronous machine. 

2013 International Electric Machines & Drives Conference, Chicago IL, USA. 

DOI: 10.1109/iemdc.2013.6556329 

[28] B. Assaad, K. El kadri Benkara, S. Vivier, G. Friedrich, and Antoine Michon, 

2017 

Thermal design optimization of electric machines using a global sensitivity 

analysis. 

IEEE Transactions on Industry Applications, Volume 53, pages 5365-5372. 

DOI: 10.1109/TIA.2017.2746015 



32  32nd Aachen Colloquium Sustainable Mobility 2023 

[29] F. Zhang, D. Gerada, Z. Xu, H. Zhang, and C. Gerada, 2019 

Sensitivity analysis of machine components thermal properties effects on 

winding temperature. 

22nd International Conference on Electrical Machines and Systems ICEMS, 

Harbin, China. 

DOI: 10.1109/icems.2019.8922095 

[30] D. Dopico, Y. Zhu, A. Sandu, and C. Sandu, 2014 

Direct and adjoint sensitivity analysis of ordinary differential equation multibody 

formulations. 

Journal of Computational and Nonlinear Dynamics, Volume 10, Number 1, 

ASME International. 

DOI: 10.1115/1.4026492 

[31] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso, 2003 

The complex-step derivative approximation. 

ACM Transactions on Mathematical Software, Volume 29, Number 3, pages 

245-262, Association for Computing Machinery (ACM). 

DOI: 10.1145/838250.838251 

[32] C. E. Christoffersen, 2006 

Implementation of exact sensitivities in a circuit simulator using automatic 

differentiation. 

Proceedings of ECMS 20th European Conference on Modelling and Simulation, 

Bonn, Germany. 

DOI: 10.7148/2006-0238 

[33] A. Callejo, S. H. K. Narayanan, J. García de Jalón, and B. Norris, 2014 

Performance of automatic differentiation tools in the dynamic simulation of 

multibody systems. 

Advances in Engineering Software, Volume 73, pages 35-44, Elsevier BV. 

DOI: 10.1016/j.advengsoft.2014.03.002 

[34] B. Minaker and F. González, 2021 

Automatic differentiation in automatic generation of the linearized equations of 

motion. 

17th International Conference on Multibody Systems, Nonlinear Dynamics, and 

Control (MSNDC), Online event, Volume 9, pages DETC2021-69118. 

DOI: 10.1115/detc2021-69118 

[35] J. García Urbieta, P. Díaz, A. J. Rodríguez, I. García, S. Armentia and F. 

González, 2023 

Efficient Calibration of LPTN Models for Digital Twins of ePowertrain Motors. 

Electric Drives Production Conference EDPC, Regensburg. 



32nd Aachen Colloquium Sustainable Mobility 2023 33 

[36] United Nations, 2014 

Global technical regulation 15, Worldwide harmonized Light vehicles Test 

Procedure.  

ECE/trans/180/add.15, pages 5-24 

[37] V. Madonna, P. Giangrande, and M. Galea, 2021  

Influence of insulation thermal aging on the temperature assessment in 

electrical machines. 

IEEE Transactions on Energy Conversion, Volume 36, Number 1, pages 456-

467. 

DOI: 10.1109/TEC.2020.3001053 

[38] D. Simon, 2010  

Kalman filtering with state constraints: a survey of linear and nonlinear 

algorithms. 

IET Control Theory & Applications, Volume 4, Number 8, pages 1303-1318. 

DOI: 10.1049/iet-cta.2009.0032 

[39] A. Boglietti, M. Cossale, M. Popescu, and D. A. Staton, 2019 

Electrical machines thermal model: Advanced calibration techniques. 

IEEE Transactions on Industrial Applications, Volume 55, Number 3, pages 

2620-2628. 

DOI: 10.1109/TIA.2019.2897264 

[40] A. Boglietti, A. Cavagnino, and D. A. Staton, 2008 

Determination of critical parameters in electrical machine thermal models. 

IEEE Transactions on Industrial Applications, Volume 44, Number 4, pages 

1150-1159. 

DOI: 10.1109/TIA.2008.926233 

[41] V. Madonna, P. Giangrande, C. Gerada and M. Galea, 2019 

Thermal analysis of fault-tolerant electrical machines for aerospace actuators. 

IET Electric Power Applications, Volume 13, Number 7, pages 843-852. 

DOI: 10.1049/iet-epa.2018.5153 

[42] V. Madonna, P. Giangrande, and M. Galea, 2020 

Influence of Thermal Aging on the Winding Thermal Conductivity in Low Voltage 

Electrical Machines. 

23rd International Conference on Electrical Machines and Systems (ICEMS), 

Hamamatsu, Japan. 

DOI: 10.23919/ICEMS50442.2020.9291167 

 

https://doi.org/10.1109/TIA.2019.2897264
https://doi.org/10.1109/TIA.2008.926233
https://doi.org/10.23919/ICEMS50442.2020.9291167

