

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

Francisco González, PhD Laboratorio de Ingeniería Mecánica Universidade da Coruña Ferrol, Spain

f.gonzalez@udc.es

McGill University Montréal, June 5th 2015

1. Motivation

- Development of efficient algorithms for multibody system dynamics
- Augmented Lagrangian algorithms
 - Mature (25 years of development by the multibody community)
 - Efficient
 - Successfully used in real-time applications
 - Robust
 - Able to deal with redundant constraints
 - Good performance in systems with singular configurations, impacts, etc.
- Augmented Hamiltonian algorithms
 - A subset of augmented Lagrangian algorithms
 - Relatively less known in the multibody community

F. González

- A relatively large number of augmented Lagrangian algorithms for multibody dynamics currently exists
- Need for benchmarking and guidelines for algorithm selection and parameter tuning
 - Singular configurations

F. González

- Demanding simulation problem
- Numerical difficulties have been observed with existing algorithms
- Simple benchmark problems available (e.g. IFToMM benchmark)
- Identification of sources of numerical difficulties
 - Effect on simulation performance
- Definition of guidelines for algorithm selection and tuning

- First used in multibody system dynamics in the 1980's
- Mechanical system defined by
 - n generalized coordinates \longrightarrow \mathbf{q}
 - m kinematic constraints (holonomic) $\longrightarrow \Phi = \mathbf{0}$
- Dynamics equations can be expressed as

(1a)
$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{c} = \mathbf{f} + \mathbf{f}_c$$
System of $n + m$ DAE's(1b) $\Phi = 0$ System of $n + m$ DAE's

• Differentiation of kinematic constraints w.r.t. time

Velocity level

$$\Phi = \mathbf{0} \xrightarrow{d/dt} \Phi_{\mathbf{q}}\dot{\mathbf{q}} + \Phi_{\mathbf{t}} = \mathbf{0} \xrightarrow{d/dt} \Phi_{\mathbf{q}}\ddot{\mathbf{q}} + \dot{\Phi}_{\mathbf{q}}\dot{\mathbf{q}} + \dot{\Phi}_{\mathbf{t}} = \mathbf{0}$$

Configuration level

Acceleration level

F. González

• The Lagrangian approach

(2a)
$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{c} = \mathbf{f} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\lambda}$$
 $\mathbf{f}_c = -\mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\lambda}$ (2b) $\Phi_{\mathbf{q}}\ddot{\mathbf{q}} + \dot{\Phi}_{\mathbf{q}}\dot{\mathbf{q}} + \dot{\Phi}_{\mathbf{t}} = \mathbf{0}$ $\mathbf{f}_c = -\Phi_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\lambda}$

 λ : Set of *m* Lagrange multipliers

System of n + m ODE's, with n + m unknowns

• The system can be expressed as

(3)
$$\begin{bmatrix} \mathbf{M} & \Phi_{\mathbf{q}}^{\mathrm{T}} \\ \Phi_{\mathbf{q}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{f} - \mathbf{c} \\ -\dot{\Phi}_{\mathbf{q}}\dot{\mathbf{q}} - \dot{\Phi}_{\mathbf{t}} \end{bmatrix}$$

• Some problems

F. González

- Solution drift ($\Phi=0$, $\dot{\Phi}=0$ not imposed)
- The leading matrix is singular if the Jacobian matrix is rank deficient

5/41

A comment on natural coordinates

- Natural coordinates were used for the modelling
 - Usually: position and orientation of a reference frame attached to each body
 - Natural coordinates: using reference points and vectors to describe the system

$$\mathbf{q} = \begin{bmatrix} x & y & z & e_0 & e_1 & e_2 & e_3 \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{q} = \begin{bmatrix} x_1 & y_1 & z_1 & x_2 & y_2 & z_2 & x_{v1} & y_{v1} & z_{v1} & x_{v2} & y_{v2} & z_{v2} \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{q} = \begin{bmatrix} x_1 & y_1 & z_1 & x_2 & y_2 & z_2 & x_{v1} & y_{v1} & z_{v1} & x_{v2} & y_{v2} & z_{v2} \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{rigid body constraint equations}$$

- Consequences
 - The mass matrix is constant during motion
 - The Coriolis and velocity-dependent forces term vanishes from the equations
 - Generalized velocities are the derivatives w.r.t. time of the generalized coordinates

- Penalty formulation (Bayo et al., 1988)
 - Starting point for the development of augmented Lagrangian algorithms
 - The kinematic constraints are replaced with mass-spring-damper systems

Reactions are made proportional to the violation of kinematic constraints

(4)
$$\lambda = \alpha \left(\ddot{\mathbf{\Phi}} + 2\xi\omega\dot{\mathbf{\Phi}} + \omega^2\mathbf{\Phi} \right)$$

- α : Penalty factor
- $\xi, \ \omega$: Stabilization parameters (Baumgarte)

Gill F. González

- Penalty formulation (Bayo et al., 1988)
 - From Eqs. (4) and (2a)

(2a)
$$\mathbf{M}\ddot{\mathbf{q}} = \mathbf{f} - \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\lambda}$$

(4) $\boldsymbol{\lambda} = \alpha \left(\ddot{\mathbf{\Phi}} + 2\xi\omega\dot{\mathbf{\Phi}} + \omega^{2}\mathbf{\Phi} \right)$

(5)
$$\left(\mathbf{M} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \mathbf{\Phi}_{\mathbf{q}}\right) \ddot{\mathbf{q}} = \mathbf{f} - \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \left(\dot{\mathbf{\Phi}}_{\mathbf{q}} \dot{\mathbf{q}} + \dot{\mathbf{\Phi}}_{\mathbf{t}} + 2\xi \omega \dot{\mathbf{\Phi}} + \omega^2 \mathbf{\Phi}\right)$$

- System of equations with an n x n, SPD lead matrix
- Solution drift under control
- Able to deal with rank-deficient Jacobian matrices
- Kinematic constraints are never perfectly satisfied
- Choice of penalty factor affects the accuracy of the results

F. González

- Augmented Lagrangian algorithm (Bayo et al., 1988)
 - Starting from the penalty formulation

(6a)
$$\left(\mathbf{M} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \mathbf{\Phi}_{\mathbf{q}}\right) \ddot{\mathbf{q}} = \mathbf{f} - \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \left(\dot{\mathbf{\Phi}}_{\mathbf{q}} \dot{\mathbf{q}} + \dot{\mathbf{\Phi}}_{\mathbf{t}} + 2\xi \omega \dot{\mathbf{\Phi}} + \omega^{2} \mathbf{\Phi}\right) - \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \boldsymbol{\lambda}^{*}$$

(6b)
$$\boldsymbol{\lambda}_{i+1}^* = \boldsymbol{\lambda}_i^* + \alpha \left(\ddot{\boldsymbol{\Phi}} + 2\xi \omega \dot{\boldsymbol{\Phi}} + \omega^2 \boldsymbol{\Phi} \right)$$

F. González

- Lagrange's multipliers are re-introduced in the dynamics equations
- Their value is obtained in an iterative way
- An iterative process is introduced in the solution, but the selection of the penalty factor becomes less critical
- Mass-orthogonal projections can be used to remove the constraint violations completely at the configuration, velocity, and acceleration levels (Bayo and Ledesma, 1996)

9/41

- Augmented Hamiltonian algorithm (Bayo and Avello, 1994)
 - Based on Hamilton's canonical equations
 - The canonical momenta are introduced as system variables, together with the generalized coordinates

$$\mathbf{p} = \frac{\partial L}{\partial \dot{\mathbf{q}}} \longrightarrow H = \mathbf{p}^{\mathrm{T}} \dot{\mathbf{q}} - L$$

Canonical momenta

F. González

AcC till

Hamiltonian

The canonical equations for a constrained system can be expressed as

(7)
$$\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}}; \quad -\dot{\mathbf{p}} = \frac{\partial H}{\partial \mathbf{q}} - \mathbf{f}_{nc} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\lambda}$$

- Augmented Hamiltonian algorithm (Bayo and Avello, 1994)
 - Following an approach similar to the one used for the augmented Lagrangian algorithm in Eqs. (6a) and (6b), the time derivatives of the generalized coordinates can be obtained as

(8a)
$$\left(\mathbf{M} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \mathbf{\Phi}_{\mathbf{q}}\right) \dot{\mathbf{q}} = \mathbf{p} - \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \left(\mathbf{\Phi}_{\mathbf{t}} + 2\xi\omega\mathbf{\Phi} + \omega^{2}\int_{t_{0}}^{t}\mathbf{\Phi}dt\right) - \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\sigma}$$

(8b)
$$\sigma_{i+1} = \sigma_i + \alpha \left(\dot{\Phi} + 2\xi \omega \Phi + \omega^2 \int_{t_0}^t \Phi dt \right)$$
 $\sigma: \text{ Set of } m \text{ multipliers}$
 $\dot{\sigma} = \lambda$

 The derivatives with respect to time of the canonical momenta are obtained explicitly from

(8c)
$$\dot{\mathbf{p}} = \mathbf{f} + \dot{\mathbf{\Phi}}_{\mathbf{q}}^{\mathrm{T}} \alpha \left(\dot{\mathbf{\Phi}} + 2\xi\omega\mathbf{\Phi} + \omega^2 \int_{t_0}^t \mathbf{\Phi} dt \right) + \dot{\mathbf{\Phi}}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\sigma}$$

F. González

11/41

• Integration formulas

- Forward Euler
 - Explicit, single step

(9)
$$\begin{cases} \dot{\mathbf{q}}^{k+1} = \dot{\mathbf{q}}^k + h \ddot{\mathbf{q}}^k \\ \mathbf{q}^{k+1} = \mathbf{q}^k + h \dot{\mathbf{q}}^k \end{cases}$$

Newmark formulas

• Implicit, single-step

(10)
$$\begin{bmatrix} \dot{\mathbf{q}}^{k+1} = \dot{\mathbf{q}}^k + \frac{h}{2} & (\ddot{\mathbf{q}}^k + \ddot{\mathbf{q}}^{k+1}) \\ \mathbf{q}^{k+1} = \mathbf{q}^k + \frac{h}{2} & (\dot{\mathbf{q}}^k + \dot{\mathbf{q}}^{k+1}) \end{bmatrix}$$

McGill F. González

UNIVERSIDADE DA CORUÑA

• Benchmark examples (from IFToMM examples library)

F. González

McGill

Double four-bar linkage

http://iftomm-multibody.org/benchmark/

6-link Bricard mechanism

13/41

F. González

Benchmark examples (from IFToMM examples library) •

These systems result in a rank-deficient Jacobian matrix at some point during the motion

$$\left[egin{array}{cc} \mathbf{M} & \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \\ \mathbf{\Phi}_{\mathbf{q}} & \mathbf{0} \end{array}
ight] \left[egin{array}{c} \ddot{\mathbf{q}} \\ oldsymbol{\lambda} \end{array}
ight] = \left[egin{array}{c} \mathbf{f} - \mathbf{c} \\ -\dot{\mathbf{\Phi}}_{\mathbf{q}} \dot{\mathbf{q}} - \dot{\mathbf{\Phi}}_{\mathbf{t}} \end{array}
ight]$$

- The penalty, augmented Lagrangian, and augmented Hamiltonian methods can carry out the numerical simulation in spite of that
 - The simulation can start from a singular configuration

• Benchmark examples (from IFToMM examples library)

- Rank-deficient Jacobian stemming from redundant constraints, not singular configurations
- The rank of the Jacobian matrix does not change during motion
- All the algorithms were able to simulate its motion correctly

F. González

• Benchmark examples (from IFToMM examples library)

Slider-crank mechanism

- Singular configuration when rods are aligned on the *y*-axis
- Jacobian matrix suddenly loses rank
- The system gains one extra d.o.f.
- Singular configuration as bifurcation point
- Numerical problems observed with all the methods, for certain combinations of parameters

F. González

• Benchmark examples (from IFToMM examples library)

F. González

McGill

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

17/41

• Benchmark examples (from IFToMM examples library)

- Singular configuration when rods are aligned on the *x*-axis
- The system gains two extra d.o.f.

F. González

/IcC+ill

18/41

F. González

McGill

• Benchmark examples (from IFToMM examples library)

19/41

• Enlarged Subspace of Admissible Motion (SAM) at singular configurations

One-d.o.f. system modelled with three generalized coordinates (x₂, y₂, x₃)

$$x_2^2 + y_2^2 - l^2 = 0$$
$$(x_3 - x_2)^2 + y_2^2 - l^2 = 0$$

Subspace of constrained motion (SCM) defined by the Jacobian matrix of the constraints

$$\dot{\Phi}^{sc} = \begin{bmatrix} 2x_2 & 2y_2 & 0\\ 2(x_2 - x_3) & 2y_2 & 2(x_3 - x_2) \end{bmatrix} \begin{bmatrix} \dot{x}_2\\ \dot{y}_2\\ \dot{x}_3 \end{bmatrix} = \Phi_{\mathbf{q}}^{sc} \dot{\mathbf{q}}^{sc} = \mathbf{0}$$

$$\Phi_{\mathbf{q}} \dot{\mathbf{q}} = \mathbf{u}_c \qquad \longrightarrow \qquad \dot{\mathbf{q}}_a^{sc} = \eta \begin{bmatrix} 1\\ -x_2/y_2\\ x_3/(x_3 - x_2) \end{bmatrix} \qquad \text{Admissible velocities}$$
SAM has dimension 1

F. González

• In a singular configuration the Jacobian suddenly loses rank

UNIVERSIDADE DA CORUÑA

F. González

McGill

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

21/41

• Two velocity components can exist simultaneously in the singularity

F. González

- Secondary components may be introduced by the numerical integration process
- After the singularity only one can remain, because the Jacobian matrix recovers its original rank
- The other component becomes a violation of the velocitylevel constraints
 - Not necessarily a "small" violation of constraints
 - Projections do not remove the secondary component in the singularity: it does not violate the constraints at that point
- Augmented Lagrangian methods transform constraint violations in reactions

 $\lambda = \alpha \left(\ddot{\mathbf{\Phi}} + 2\xi \omega \dot{\mathbf{\Phi}} + \omega^2 \mathbf{\Phi} \right) \longrightarrow$ Impulsive discontinuities in reactions

• Introduction of impulsive discontinuities in reaction forces

y-reaction at P_1 , after starting from the singular configuration; $\eta_1 = 2 \text{ m/s}$

F. González

McGill

Introduction of impulsive discontinuities in reaction forces

y-reaction at P_1 , after starting from the singular configuration ($\eta_2 = 0$)

McGill F. González

UNIVERSIDADE DA CORUÑA

• Effects on simulation

x-reaction at P_0 , during motion of the four-bar linkage

Mechanical energy of slider-crank mechanism

F. González

McGill

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

25/41

- Requirements for the algorithm to meet
 - Able to keep the violation of kinematic constraints under a certain threshold
 - Robust enough to withstand impact forces
- Algorithms with implicit integrators initially implemented in fixed-point iterative scheme
 - They tend to fail near singular configurations
- Implementation in Newton-Raphson iterative scheme
 - Expected to show a more robust behaviour
 - Already done for augmented Lagrangian methods (although not in a general way)
 - New for augmented Hamiltonian algorithms

F. González

• Fixed-point iteration

F. González

McGill

Newton-Raphson iteration

- The dynamics equations are combined with the numerical integration formulas to obtain a system of nonlinear equations
- (11) $\mathbf{g}\left(\mathbf{q},\dot{\mathbf{q}}
 ight)=\mathbf{0}$
 - The generalized coordinates at the next integration time-step become the system unknowns
 - The system is solved by means of Newton-Raphson iteration

(12a)
$$\left[\frac{d\mathbf{g}\left(\mathbf{q},\dot{\mathbf{q}}\right)}{d\mathbf{q}}\right]_{i}\Delta\mathbf{q}_{i+1} = -\left[\mathbf{g}\left(\mathbf{q},\dot{\mathbf{q}}\right)\right]_{i}$$

Tangent matrix

RHS (residual)

(12b)
$$\mathbf{q}_{i+1} = \mathbf{q}_i + \Delta \mathbf{q}_{i+1}$$

- Augmented Lagrangian algorithm in Newton-Raphson form
 - Proposed in Bayo, 1996 and Cuadrado, 1997
 - General form not published yet
- Numerical integration formulas: Newmark

(13)
$$\begin{bmatrix} \dot{\mathbf{q}}_{k+1} = \frac{\gamma}{\beta h} \mathbf{q}_{k+1} - \hat{\mathbf{q}}_k \\ \ddot{\mathbf{q}}_{k+1} = \frac{1}{\beta h^2} \mathbf{q}_{k+1} - \hat{\mathbf{q}}_k \end{bmatrix} \quad \hat{\mathbf{q}}_k = \frac{\gamma}{\beta h} \mathbf{q}_k + \left(\frac{\gamma}{\beta} - 1\right) \dot{\mathbf{q}}_k + h\left(\frac{\gamma}{2\beta} - 1\right) \ddot{\mathbf{q}}_k \\ \hat{\mathbf{q}}_k = \frac{1}{\beta h^2} \mathbf{q}_k + \frac{1}{\beta h} \dot{\mathbf{q}}_k + \left(\frac{1}{2\beta} - 1\right) \ddot{\mathbf{q}}_k$$

• The integrator formulas are introduced in the augmented Lagrangian expressions (6) and equilibrium is established at time k+1

$$\left(\mathbf{M} + \boldsymbol{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\alpha} \boldsymbol{\Phi}_{\mathbf{q}}\right) \ddot{\mathbf{q}} = \mathbf{f} - \boldsymbol{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\alpha} \left(\dot{\boldsymbol{\Phi}}_{\mathbf{q}} \dot{\mathbf{q}} + \dot{\boldsymbol{\Phi}}_{\mathbf{t}} + 2\xi \boldsymbol{\omega} \dot{\boldsymbol{\Phi}} + \boldsymbol{\omega}^{2} \boldsymbol{\Phi} \right) - \boldsymbol{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\alpha} \boldsymbol{\lambda}^{*}$$

F. González

- Augmented Lagrangian algorithm in Newton-Raphson form
 - We obtain a system of non-linear equations

(14)
$$\mathbf{g} \left(\mathbf{q}, \dot{\mathbf{q}} \right) = \left(\mathbf{M} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \mathbf{\Phi}_{\mathbf{q}} \right) \left(\frac{1}{\beta h^{2}} \mathbf{q}_{k+1} - \hat{\mathbf{\ddot{q}}}_{k} \right) - \mathbf{f} \\ + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \left[\dot{\mathbf{\Phi}}_{\mathbf{q}} \left(\frac{\gamma}{\beta h} \mathbf{q}_{k+1} - \hat{\mathbf{\dot{q}}}_{k} \right) + \dot{\mathbf{\Phi}}_{\mathbf{t}} + 2\omega \xi \left(\mathbf{\Phi}_{\mathbf{q}} \left(\frac{\gamma}{\beta h} \mathbf{q}_{k+1} - \hat{\mathbf{\dot{q}}}_{k} \right) + \mathbf{\Phi}_{\mathbf{t}} \right) + \omega^{2} \mathbf{\Phi} \right] \\ + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\lambda}_{k+1}^{*} = \mathbf{0}$$

With the approximated tangent matrix

(15)
$$\begin{bmatrix} \frac{d\mathbf{g} (\mathbf{q}, \dot{\mathbf{q}})}{d\mathbf{q}} \end{bmatrix} \cong \mathbf{M} + \beta h^2 \mathbf{K} + \gamma h \mathbf{C} \qquad \mathbf{K} = -\partial \mathbf{f} / \partial \mathbf{q} \\ + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \mathbf{\Phi}_{\mathbf{q}} \left(1 + 2\omega \xi \gamma h + \omega^2 \beta h^2 \right) + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \dot{\mathbf{\Phi}}_{\mathbf{q}} \gamma h \\ + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \left(\beta h^2 \left(\dot{\mathbf{\Phi}}_{\mathbf{t}} \right)_{\mathbf{q}} + 2\omega \xi \beta h^2 \left(\mathbf{\Phi}_{\mathbf{t}} \right)_{\mathbf{q}} \right)$$

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

00/0.

- Augmented Lagrangian algorithm in Newton-Raphson form
 - The original expressions can be simplified
 - Augmented Lagrangian of index-3 with projections of velocity and acceleration
 - Projections enforce $\dot{\Phi} = 0$ and $\ddot{\Phi} = 0$

(16)
$$\mathbf{g}\left(\mathbf{q},\dot{\mathbf{q}}\right) = \mathbf{M}\mathbf{q}_{k+1} + \beta h^2 \mathbf{\Phi}_{\mathbf{q}\,k+1}^{\mathrm{T}} \left(\boldsymbol{\lambda}_{k+1}^* + \alpha \mathbf{\Phi}_{k+1}\right) - \beta h^2 \mathbf{f}_{k+1} - \beta h^2 \mathbf{M}\hat{\ddot{\mathbf{q}}}_k = \mathbf{0}$$

(17)
$$\left[\frac{d\mathbf{g}(\mathbf{q},\dot{\mathbf{q}})}{d\mathbf{q}}\right] \cong \mathbf{M} + \gamma h\mathbf{C} + \beta h^2 \left(\mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}}\alpha\mathbf{\Phi}_{\mathbf{q}} + \mathbf{K}\right)$$

- ALi3 algorithm (Cuadrado et al., 2000)

F. González

AcGill

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

31/41

- Augmented Hamiltonian algorithm in Newton-Raphson form
 - New development
- Numerical integration formulas: Trapezoidal rule

• The integrator formulas are introduced in the augmented Hamiltonian expressions (8) and equilibrium is established at time k+1

$$\left(\mathbf{M} + \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \mathbf{\Phi}_{\mathbf{q}} \right) \dot{\mathbf{q}} = \mathbf{p} - \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \alpha \left(\mathbf{\Phi}_{\mathbf{t}} + 2\xi\omega \mathbf{\Phi} + \omega^{2} \int_{t_{0}}^{t} \mathbf{\Phi} dt \right) - \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\sigma} \longrightarrow \mathbf{g}_{1}$$
$$\dot{\mathbf{p}} = \mathbf{f} + \dot{\mathbf{\Phi}}_{\mathbf{q}}^{\mathrm{T}} \alpha \left(\dot{\mathbf{\Phi}} + 2\xi\omega \mathbf{\Phi} + \omega^{2} \int_{t_{0}}^{t} \mathbf{\Phi} dt \right) + \dot{\mathbf{\Phi}}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\sigma} \longrightarrow \mathbf{g}_{2}$$

AcGill ^{F.}

F. González

- Augmented Hamiltonian algorithm in Newton-Raphson form ٠
 - The system of nonlinear equations has two parts now —

(19)
$$\mathbf{g}_{h}(\mathbf{y}) = \begin{bmatrix} \mathbf{g}_{1}(\mathbf{y}) \\ \mathbf{g}_{2}(\mathbf{y}) \end{bmatrix} = \mathbf{0}; \text{ where } \mathbf{y} = \begin{bmatrix} \mathbf{q} \\ \mathbf{p} \end{bmatrix}$$

The tangent matrix is evaluated as follows —

(0)
$$\left[\frac{d\mathbf{g}_{h}\left(\mathbf{y}\right)}{d\mathbf{y}}\right] = \left[\begin{array}{cc} \frac{d\mathbf{g}_{1}\left(\mathbf{y}\right)}{d\mathbf{q}} & \frac{d\mathbf{g}_{1}\left(\mathbf{y}\right)}{d\mathbf{p}} \\ \frac{d\mathbf{g}_{2}\left(\mathbf{y}\right)}{d\mathbf{q}} & \frac{d\mathbf{g}_{2}\left(\mathbf{y}\right)}{d\mathbf{p}} \end{array}\right]$$

F. González

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

(2

McGill

- Summary of tested algorithms
 - Penalty formulation
 - Integration with forward Euler
 - Integration with Newmark
 - Augmented Lagrangian algorithm (AL)
 - Integration with forward Euler
 - Integration with Newmark
 - Augmented Hamiltonian algorithm (AH)
 - Integrated with forward Euler
 - Integrated with trapezoidal rule
 - Augmented Lagrangian algorithm (Newton-Raphson) (ALNR)
 - Integrated with Newmark
 - Augmented Lagrangian algorithm (Newton-Raphson) with projections (ALi3)
 - Integrated with Newmark
 - Augmented Hamiltonian algorithm (Newton-Raphson) (AHNR)
 - Integrated with trapezoidal rule

- Simulation of benchmark examples and comparison of algorithms
 - Elapsed time in the simulation of a 10 s motion
- Best results for double four-bar linkage

Method	Integrator	<i>h</i> (ms)	α	ω	ξ	Elapsed time (s)
Penalty	FE	0.02	107	30	1	2.5
AL	FE	0.005	107	10	1	12.21
AH	FE	1	10 ⁹	0.1	1000	0.07
Penalty	TR	5	10 ⁸	25	1	0.04
AL	TR	5	10 ⁸	20	1	0.05
AH	TR	5	10 ⁹	0.1	1000	0.10
ALNR	TR	5	107	100	1	0.05
AHNR	TR	5	10 ⁸	1	10000	0.08
ALi3	TR	10	10 ⁹	-	-	0.02

F. González

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

 $\Delta E < 0.1 \text{ J}$

- How to adjust the algorithm parameters?
- Stabilization parameters ω and ξ

$$\mathbf{\sigma} = \alpha \left(\ddot{\mathbf{\Phi}} + 2\xi \omega \dot{\mathbf{\Phi}} + \omega^2 \mathbf{\Phi} \right) \qquad \mathbf{\sigma} = \alpha \left(\dot{\mathbf{\Phi}} + 2\xi \omega \mathbf{\Phi} + \omega^2 \int_{t_0}^{t} \mathbf{\Phi} dt \right)$$

Constraint violations should be kept low especially at the configuration level

Constraint violations with AL, $\alpha = 10^7$, $\xi = 1$, h = 1ms

CGill F. González

- How to adjust the algorithm parameters?
- Penalty factor α

Energy drift with h = 5 ms, $\xi = 1 - Lagrangian algorithms$

37/41

IcGill F. González

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations

UNIVERSIDADE DA CORUÑA

- How to adjust the algorithm parameters?
- Penalty factor α

AH, trapezoidal rule

 P_{J}

 $\widehat{}$

AHNR, trapezoidal rule

 P_4

$\Delta E < 0.1 \; \mathrm{J}$

 P_2

McGill F. González

- How to adjust the algorithm parameters?
- Penalty factor α

Time history of energy drift, $\alpha = 10^8$

Strain McGill

F. González

- Singular configurations cause numerical difficulties in forward-dynamics simulations
 - Sudden enlargement of SAM at singularities
 - With augmented Lagrangian methods this gives rise to
 - Discontinuities in reaction forces and mechanical energy
 - Possible changes of branch and eventual failure of the simulation
 - Augmented Lagrangian methods tested in the simulation benchmark examples
 - Newton-Raphson forms of the algorithms developed and implemented
 - Hamiltonian methods showed good energy-conserving properties with forward Euler integration
 - Guidelines for the tuning of algorithm parameters
 - Dependent on the problem and integrator used
 - Violation of configuration-level constraints should be kept below a threshold
 - Newton-Raphson methods feature a more robust behaviour

F. González

- E. Bayo, J. García de Jalón, and M. A. Serna, A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. *Computer Methods in Applied Mechanics and Engineering*, 71 (2), pp. 183-195, 1988.
- E. Bayo and A. Avello, Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics. *Nonlinear Dynamics*, 5(2), pp. 209-231, 1994.
- E. Bayo and R. Ledesma, Augmented Lagrangian and mass-ortogonal projection methods for constrained multibody dynamics. *Nonlinear Dynamics*, 9(1-2), pp. 113-130, 1996.
- J. Cuadrado, J. Cardenal, and E. Bayo, Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody System Dynamics, 1(3), pp. 259-280, 1997.
- J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo, Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments. Multibody System Dynamics, 4(1), pp. 55-73, 2000.
- F. González, D. Dopico, R. Pastorino, and J. Cuadrado, Benchmarking of augmented Lagrangian and Hamiltonian formulations for multibody system dynamics. To be presented at the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain, June 29 – July 2, 2015.

41/41