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Pablo Dı́az, Sergio Armentia, Francisco González
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Sensitivity Analysis of Lumped-Parameter Thermal
Networks for the Experimental Calibration of

eMotor Models
Jon Garcı́a Urbieta, Borja Rodrı́guez, Antonio J. Rodrı́guez, Pablo Dı́az, Sergio Armentia, Francisco González

Abstract—Lumped-parameter thermal networks (LPTNs) are
efficient computational models that can be used to replicate
the thermal behavior of eMotors in a way that is compatible
with real-time execution. The accuracy of the simulation results
delivered by LPTNs relies on the selection of an appropriate
topology and the accurate tuning of their parameters, namely
resistances, capacities and heat sources. It is difficult, however,
to obtain an accurate tuning of the parameters starting from
theoretical expressions, and these often need to be adjusted
based on experimental calibration. Several methods can be
used to this end; among these, finite differences are a popular
option. This paper presents a methodology for the analytical
determination of the sensitivity of LPTN dynamics with respect
to its lumped parameters. The obtained analytical sensitivities
provide information about the effect of the circuit parameters on
the thermal dynamics of the overall system, and can be used to
enable the use of gradient-based optimization methods to adjust
the LPTN parameters. The proposed method overcomes several
limitations of finite difference approaches, like the computational
load incurred when the number of parameters to be adjusted
is large, and the variability of the results with the increment
used to define the finite differences. The analytical sensitivities
were tested in the analysis and optimization of a benchmark
thermal model and the LPTN representation of a permanent-
magnet synchronous motor.

Index Terms—Lumped-parameter thermal network, sensitivity
analysis, parameter calibration, thermal management, eMotor,
ePowertrain.

I. INTRODUCTION

THERMAL effects play a critical role in the operation of
ePowertrains. Components such as eMotors and inverters

can have their performance compromised by the accumulation
of heat; high temperatures can also result in a relevant short-
ening of their useful life if certain thresholds are exceeded
[1]. This is the case of permanent-magnet synchronous motors
(PMSMs), the most frequently used type of electric drive
in automotive ePowertrains: excessive temperature can cause
permanent damage to the motor magnets, rendering them
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useless in extreme cases [2], [3]. Moreover, the accumulation
of thermal cycling also affects PMSMs irreversibly, and the
resulting thermal aging gives rise to the degradation of the
motor properties over time [4], [5]. On the other hand, the
optimal operation of electric drives requires them to perform
as close as possible to their admissible temperature limits.
Attaining this goal requires an accurate knowledge of the
internal temperatures and heat flows of the motor, in order
to define control algorithms to regulate the operation of the
drive or to be able to predict the evolution of the thermal
point of the device during a given manoeuvre.

The thermal dynamics of ePowertrain devices can be de-
scribed by means of numerical methods such as computa-
tional fluid dynamics and finite elements [6], [5], [7]. While
these representations are often detailed and accurate, they are
computationally expensive and cannot be used in real-time
applications. Lumped-parameter thermal networks (LPTNs)
are an alternative modelling approach based on the concen-
tration of the thermal properties of the system in discrete
elements, similar to those used in an electric circuit. Thermal
descriptions based on LPTNs are computationally efficient
and can deliver real-time execution, even when deployed
on hardware architectures with limited resources [8]. This
favourable trade-off between temperature estimation accuracy
and computational resources makes them the option of choice
for monitoring algorithms, e.g., those based on state estimation
from sensor readings through Kalman filtering [9], [10], [11].
However, the use of LPTNs to describe the thermal behaviour
of a system requires the consideration of several issues. First,
although different levels of complexity of the representation
can be used, the thermal dynamics of the physical device are
simplified when using LPTNs. The selection of an appropriate
topology is necessary for the predicted dynamics to correspond
to that of the modelled system. Besides, the parameters of
the thermal circuit need to be carefully adjusted to match
the system dynamics; theoretical expressions can be used to
this end but, in practice, a tuning step based on experimental
results is often needed. Consistently, the selected parameters
are the ones that present ambivalence and that usually do not
interfere with the physical sense of the model. Some examples
are the characterization of the impregnation goodness in the
winding slot, convection heat transfer coefficients, stator-
housing interference gaps, orthotropic properties, and cooling
parameters, among others [12], [13].

Determining appropriate parameters for an LPTN represen-
tation can be addressed in several ways. Uncertain parameters
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can be estimated by means of global identification methods
[14] or using extended Kalman filters [11]. Sensitivity analysis
is frequently used as tuning strategy, e.g., [15], [13], [16].
In most cases, a finite differences approach is adopted, in
which a forward-dynamics simulation is repeated several times
after selected parameters have been perturbed. This solution
enables one to obtain an approximation of the sensitivity of
the system dynamics with respect to these parameters, that
can be used to identify the most critical ones and focus the
optimization effort on them. The computational workload of
finite-difference based sensitivity analysis, however, increases
considerably when the number of parameters under study is
large [15]. Additionally, it can lead to inaccurate results if the
selection of the perturbation size is not carefully performed
[17], although this problem can be alleviated through the use of
complex-step differentiation [18]. Another option to evaluate
the system sensitivity is employing automatic differentiation
(AD) methods, based on decomposing computations into ele-
mental mathematical operations with known direct analytical
derivatives [19], [20], [21].

This work describes a methodology for the evaluation of the
sensitivity of LPTNs based on the analytical differentiation
of the circuit dynamics, an approach that delivers both fast
and accurate solutions thanks to the computation of the exact
derivatives of the original equations. The proposed solution is
similar to the direct differentiation strategies that exist in the
field of multibody system dynamics, e.g., [22]. The method
is based on the analytical differentiation of the dynamics
equations with respect to the system parameters, in order to
obtain the sensitivities of the variables that describe the circuit
state. The evaluation of these sensitivities is conducted after
the completion of each integration time step of the LPTN
dynamics through the solution of a system of linear equations,
which results in a moderate overhead in terms of the overall
time elapsed in computations. The resulting sensitivities can
be used as input for gradient-based optimization methods, and
thus be used to adjust the LPTN parameters, for instance in
the calibration of the model from experimental measurements.

This new sensitivity analysis method was assessed in the
study of a benchmark problem and the calibration of the LPTN
of an automotive-grade PMSM from test bench measurements.
Results confirmed that the analytical sensitivities accurately
reflect the effect of the circuit parameters on the temperatures
and heat flows of the system, and that they can be used to
optimize model definition by means of gradient-based methods
in a computationally efficient fashion.

II. MODELLING AND SENSITIVITY ANALYSIS METHODS

Lumped-parameter thermal networks enable the expression
of the thermal dynamics of a physical system by means of
equations similar to those used to describe electric circuits.
These equations can be formulated in different ways; here we
are following the approach put forward in [8], in which the
system dynamics is described using a set of n variables x that
includes nT node temperatures and nQ heat flows through
components, grouped in terms xT and xQ, respectively:

x =
[
xT

T xQ
T

]T
(1)

The definition of the LPTN also includes a set of r parameters
ρ that represent the thermal properties of the components
and their operation conditions. The variables in (1) are not
independent. They are constrained by Kirchhoff’s laws and
the constitutive equations of the circuit components, which
impose a total of m algebraic constraints on x that can be
generally written in the form

Φ (x,ρ, t) = 0 (2)

Some system components, namely thermal capacitors, also
subject the variables x to a set of p first-order ordinary
differential equations (ODEs), which can be expressed as

Γ (x, ẋ,ρ, t) = A (x,ρ, t) ẋ+ b (x,ρ, t) = 0 (3)

where A and b are p×n and p×1 terms, respectively. System
solvability often requires that n = p+m.

The direct sensitivity analysis of the system requires the
numerical integration of the LPTN dynamics prior to the
evaluation of sensitivity quantities. The dynamic formulation
used to this end is presented next.

A. Dynamic formulation

Together, (2) and (3) completely describe the system dy-
namics as a set of differential-algebraic equations (DAEs):[

Φ
Aẋ+ b

]
= 0 (4)

The forward-dynamics simulation of the LPTN response re-
quires the solution of the nonlinear system (4), in which both
x and ẋ are unknowns. This can be achieved introducing a
numerical integration formula in (4) to make the dynamic
equilibrium explicitly dependent on the variables x at time-
step k + 1, but not on their derivatives ẋ,

f
(
xk+1

)
= 0 (5)

In (5), the system variables at time-step k + 1 are the only
unknowns. The system can be solved by means of Newton-
Raphson iteration[

df (x)

dx

]
i

∆xi+1 = −
[
f (x)

]
i

(6)

xi+1 = xi +∆xi+1 (7)

where the subscript i stands for the iteration number.
Backward differentiation formulas (BDF) are used here as

numerical integrator [23]. These express the derivatives of the
system variables at time-step k + 1 as

ẋk+1 = − 1

h

k̂∑
j=0

αjx
k+1−j

= − 1

h

α0x
k+1 +

k̂∑
j=1

αjx
k+1−j


= − 1

h

(
α0x

k+1 + ˆ̇x
k
)

(8)

where h is the integration step-size and αj (j = 1, 2, . . . , k̂)
are scalar coefficients that depend on the BDF order k̂, shown
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TABLE I: Coefficients of BDF integration formulas

k̂ α0 α1 α2 α3

1 −1 1 - -
2 −3/2 2 −1/2 -
3 −11/6 3 −3/2 1/3

in Table I for orders 1 to 3. It must be noted that term ˆ̇x
k

in (8) remains constant during the Newton-Raphson iteration
process, as its value depends only on system variables already
computed in previous integration steps.

Replacing the expression of the system derivatives ẋ with
the integration formula in (8), the nonlinear system of equa-
tions to be solved in (5) becomes

f
(
xk+1

)
=

[
Φ

− 1

h
A

(
α0x

k+1 + ˆ̇x
k
)
+ b

]k+1

= 0 (9)

The corresponding tangent matrix required by (7) is

df (x)

dx
=

[
Φx

− 1

h

(
α0A+Ax

(
α0x

k+1 + ˆ̇x
k
))

+ bx

]
(10)

where subscript ()y = ∂ () /∂y indicates a partial derivative
with respect to variable y.

B. Sensitivity analysis

The optimization problem of an LPTN consists of obtaining
values of the system parameters ρ such that a certain set
of conditions is satisfied during simulation. The satisfaction
of these conditions can be expressed by means of cost or
objective functions ψ, written in terms of the parameters, the
system variables, and their derivatives as

ψ = w (xq, ẋq,ρq) +

∫ tq

t0
g (x, ẋ,ρ) dt (11)

where w is the part of the cost function associated with the
state of the system at final time tq , and g is another part
related to its transient response. Term t0 stands for the initial
time and superscript ()q denotes values at tq . The optimization
can be performed using gradient methods, which require the
evaluation of the gradient of the objective function with respect
to the parameters as

∇ρψ
T =

∂ψ

∂ρ
= ψρ (12)

Introducing (11) in (12), the gradient of the objective function
is expressed as

∇ρψ
T = (wxxρ + wẋẋρ + wρ)

+

∫ tq

t0
(gxxρ + gẋẋρ + gρ) dt (13)

In (13), the derivatives of functions w and g are known,
because the objective function ψ is defined by the analyst.
However, terms xρ, ẋρ ∈ Rn×r need to be determined. These
are the matrices that provide the sensitivity of the variables and

their derivatives with respect to the system parameters ρ, and
represent the unknowns that are obtained through the solution
of the sensitivity problem.

In order to determine the sensitivities xρ and ẋρ, we start by
highlighting the dependence of the system dynamics terms in
(4) from the parameters ρ, variables, and derivatives, rewriting
the general problem statement as

f
(
xk+1

)
=

[
Φ (x,ρ, t)
Γ (x, ẋ,ρ, t)

]k+1

= 0n×1 (14)

The differentiation of (14) with respect to the system param-
eters ρ results in

df
(
xk+1

)
dρ

=

[
Φxxρ +Φρ

(Axxρ +Aρ) ẋ+Aẋρ + bxxρ + bρ

]k+1

= 0n×r (15)

Equation (15) describes a system of n× r linear equations in
which the unknowns are xρ and ẋρ, known in the literature
as Tangent Linear Model (TLM). The number of equations
is not enough, however, to solve uniquely for xρ and ẋρ, as
each of these unknown terms is of size n × r. However, the
system sensitivities xk+1

ρ and ẋk+1
ρ can be related by means of

a numerical integration formula. It is possible, but not strictly
necessary, to use the same integrator that was selected for the
dynamics; if this is the case, using the BDF formula leads to
the relation

ẋk+1
ρ = −α0

h
xk+1
ρ − 1

h
ˆ̇x
k

ρ ; where ˆ̇x
k

ρ =
k̂∑

j=1

αjx
k+1−j
ρ

(16)
Term ˆ̇x

k

ρ is known at time step k + 1. Introducing the expres-
sion of the integrator (16) into the TLM (15) results in

Φxx
k+1
ρ +Φρ = 0 (17a)

(
Axx

k+1
ρ +Aρ

)
ẋk+1 − α0

h
Axk+1

ρ

− 1

h
Aˆ̇x

k

ρ + bxx
k+1
ρ + bρ = 0n×r (17b)

The product Axxρẋ can be rewritten using tensor-matrix
product rules as (Axẋ)xρ, in which the hypermatrix Ax is
considered as a stack of two-dimensional matrices. This makes
it possible to express system (17) in the form

Mxk+1
ρ = m (18)

with

M =

 Φx

Axẋ
k+1 − α0

h
A+ bx

 (19)

m =

 −Φρ

−Aρẋ
k+1 +

1

h
Aˆ̇x

k

ρ − bρ

 (20)

Note that terms x and ẋ are already known at time tk+1,
because the evaluation of the sensitivities takes place after the
solution of the system dynamics.
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C. Initialization

The forward-dynamics simulation that results from the
numerical integration of (4) needs to start from a set of
variables x0 that is compatible with the algebraic constraints
Φ = 0 in (2). The number of constraints, however, will be
smaller than the number of variables (m < n) if the LPTN
includes thermal capacitors, which do not introduce algebraic
constraints but differential ones. In this case, it is necessary to
specify the initial temperatures of these components by means
of equations in the form ξa = Ta − T 0

a = 0, where Ta is the
temperature of the node to which the capacitor is connected,
to arrive at a system of equations with a unique solution[

Φ
Ξ

]0
= 0 (21)

where Ξ is the p×1 term that groups all the initial temperature
equations ξ = 0. Once a valid initial configuration x0 has
been determined, the corresponding initial derivatives ẋ0 can
be computed imposing the satisfaction of Φ̇ = 0 and the
differential equations (3) at time t = 0. For the case in which
ρ̇0 = 0, [

Φx

A

]0

ẋ0 = −
[

Φt

b

]0

(22)

In a similar way, the sensitivities of the variables and their
derivatives, xρ and ẋρ, must also be compatible with the initial
conditions of the LPTN. The initial sensitivity of the variables
is obtained from the differentiation of (21) with respect to the
system parameters,[

Φx

Ξx

]0

x0
ρ = −

[
Φρ

Ξρ

]0

(23)

The differentiation of (22) with respect to ρ provides the
initial value of the sensitivity of the derivatives[

Φx

A

]0

ẋ0
ρ = −

[
(Φxxxρ +Φxρ) ẋ+Φtxxρ +Φtρ

(Axxρ +Aρ) ẋ+ bxxρ + bρ

]0

(24)

D. Algorithm overview

The steps required by the sensitivity analysis put forward
in this Section are summarized in Algorithm 1.

III. BENCHMARK PROBLEM

A simple RC thermal circuit, introduced in [11] and shown
in Fig. 1, was used to benchmark the behaviour of the
sensitivity analysis method described in Section II-B.

The circuit features a heat source Q0 connected to three
thermal resistors R1 = 1 K/W, R2 = 2 K/W, and R3 =
3 K/W. Two thermal capacitors, C1 = 0.1 J/K and C2 =
0.2 J/K are connected to nodes 2 and 3 of the circuit,
respectively; the initial temperatures of these nodes are set
to T 0

2 = 299 K and T 0
3 = 301 K. The temperature of node

4 is constrained to match a fixed value T f
4 = 300 K. The

benchmark RC thermal circuit can be modelled with a set
of n = 10 dependent generalized variables x. Of these, four

Algorithm 1 Sensitivity analysis procedure
t = 0
x← x0, ẋ← ẋ0 ▷ Initialize dynamic solver
xρ ← x0

ρ, ẋρ ← ẋ0
ρ ▷ Initialize sensitivities, (23), (24)

while t < tend do
t = t+ h
Evaluate residual f , (9)
while ∥f∥ ≥ tolerance do ▷ Solve dynamics

Evaluate tangent matrix df/dx, (10)
Update variables, (7)
Evaluate residual f , (9)

end while
Evaluate xρ, (18)
Evaluate ẋρ, (16)

end while

1 2 3 4

Q0

QS

R1

QR1

R2

QR2

R3

QR3

C1

QC1

C2

QC2

Fig. 1: Benchmark RC thermal circuit

correspond to the temperatures of the nodes and the other six
to the heat flows through the components,

x =
[
xT
T xT

Q

]T
where

xT =
[
T1 T2 T3 T4

]T
xQ =

[
QS QR1 QR2 QR3 QC1 QC2

]T
(25)

The system dynamics is also described by a set of r = 9
parameters ρ that, besides the coefficients of the heat source,
the thermal resistors, and the capacitors, includes the fixed
temperature of node 4 and the initial temperatures of nodes 2
and 3,

ρ =
[
Q0 R1 R2 R3 C1 C2 T f

4 T 0
2 T 0

3

]T
(26)

The variables x are subjected to the following set of m = 8
algebraic constraints

Φ =



QS −QR1

QR1 −QR2 −QC1

QR2 −QR3 −QC2

T4 − T f
4

Q0 −QS

T1 − T2 −QR1R1

T2 − T3 −QR2R2

T3 − T4 −QR3R3


= 0 (27)

The first three rows in Φ stem from Kirchhoff’s laws. The
fourth equation imposes a constant temperature on node 4.
The last four rows correspond to the constitutive relations of
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the heat source and the resistors. Moreover, the capacitors in
the circuit introduce p = 2 differential equations in the form

Γ =

[
QC1 − C1Ṫ2
QC2 − C2Ṫ3

]
= 0 (28)

A reference solution for this circuit was obtained setting
a constant value Q0 = 10 W, finding an initial system
state compatible with the algebraic and differential constraints
and initial conditions, and running a 10-s forward-dynamics
simulation, long enough for the system to reach steady-state
operation. The evolution of the temperatures and heat flows
through the components is shown in Figs. 2 and 3.

0 2 4 6 8 10

300

320

340

360

t (s)

T
em

p
er
at
u
re

(K
)

T1 T2

T3 T4

Fig. 2: Temperatures in the simulation of the benchmark
circuit.

0 2 4 6 8 10

0

 

10

t (s)

H
ea
t
fl
ow

(W
)

QR1 QR2

QR3 QC1

QC2

Fig. 3: Heat flows in the simulation of the benchmark circuit.

Figs. 4 and 5 display the sensitivities of the temperature of
node 2, T2, with respect to relevant circuit parameters, namely
the values of the thermal resistances and capacitors, evaluated
with (18). The shown values agree with the fact that thermal
inertias are most relevant during the transient phases, but they
have no impact on the steady-state temperatures. Also, the
computed sensitivities agree with the expected behaviour of
the benchmark circuit; it can be shown that R1 does not have
any effect on T2, and that at steady state T2 = Q0 (R2 +R3)+
T f
4 .

A. Adjustment of circuit parameters

The sensitivity values xρ of the benchmark circuit can be
used to perform an optimization of the system parameters from
temperature readings from a reference circuit. To this end,

0 2 4 6 8 10

0

 

10

t (s)

S
en
si
ti
v
it
y
(W

)

R1 R2

R3

Fig. 4: Sensitivities of the temperature of node 2, T2, with
respect to thermal resistances.

0 2 4 6 8 10

−100

− 0

0

t (s)

S
en
si
ti
v
it
y
(K

2
/J

)

C1 C2

Fig. 5: Sensitivities of the temperature of node 2, T2, with
respect to thermal capacities.

some values in the reference solution circuit were modified
to obtain a perturbed system; this perturbed circuit was then
adjusted to match the reference values of the original circuit,
by means of an optimization process that received as input
temperature readings from the ideal benchmark, assumed to
be noiseless and accurate. Three optimization scenarios were
defined:

• Case 1: Adjustment of thermal resistors. The three ther-
mal resistances were modified and set to R∗

1 = 80 K/W,
R∗

2 = 20 K/W, and R∗
3 = 50 K/W. Temperature sensors

were placed at nodes 1, 2, and 3.
• Case 2: Adjustment of thermal capacitors. The thermal

capacitances were set to C∗
1 = 2 J/K and C∗

2 = 5 J/K.
Temperature readings from nodes 1 and 2 were used.

• Case 3: Adjustment of heat source. A modified value
Q∗

0 = 530 W was set for the perturbed circuit. A
temperature sensor was placed at node 1.

The objective function ψ1 to be minimized in all cases con-
sisted in the square of the differences between sensor readings
and model predictions during the duration of a 10-s simulation,

ψ1 =

∫ tq

t0

s∑
i=1

(
Ti − T̂i

)2

dt (29)

where s is the number of sensors used in each scenario, Ti is
the temperature in the reference circuit, obtained through the
ideal sensor i, and T̂i is the temperature at the same location
predicted by the perturbed circuit. The integral in (29) was
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evaluated in a discrete form, and temperatures were sampled
every 0.001 s. A Levenberg-Marquardt (LM) optimization
scheme [24], [25], [26], an algorithm that belongs to the
nonlinear least squares solution family, was used to conduct
the parameter adjustment in the defined cases.

The optimization procedure consisted in an iterative process
that started with the execution of the 10-s forward-dynamics
simulation and the evaluation of the sensitivities with the
method described in Section II-B. Next, the objective function
ψ1 and its gradient ψ1ρ were evaluated using the time-history
of the system variables and their sensitivities, and updated
values of the benchmark parameters were obtained by means
of the LM algorithm. The process was repeated until the value
of the objective function went below a threshold. Because the
temperatures Ti retrieved by the ideal sensors were not affected
by noise, the stopping criterion was set to ψ1 = 10−10 K2, a
rather stringent condition.

1 2 3 4  

0

20

40

60

80

Iterations

R
(K

/W
)

R1 R2 R3

2 3 4  
0

1

2

3

Fig. 6: Benchmark problem: convergence of resistances in
scenario 1.

2 4 6 8

0

1

2

3

4

 

Iterations

C
(J
/K

)

C1 C2

2 3 4  6 7 8
0

0.1

0.2

0.3

Fig. 7: Benchmark problem: convergence of capacitances in
scenario 2.

Fig. 6 shows the convergence of the resistance values during
the optimization process in scenario 1. Even though the initial
parameters differed from the correct ones by an order of
magnitude, the algorithm converged in five iterations. In fact,
after three steps the difference between the obtained values

and the reference was less than 0.2% of the correct value. A
similar behaviour was observed during the adjustment of the
thermal capacitors in scenario 2. Again, the initial values C∗

1

and C∗
2 were an order of magnitude larger than the reference

values. The method converged to the correct capacitances in
eight iterations, as shown in Fig. 7. The tuning of the heat
source parameter Q0 in case 3 required three iterations of
the method as confirmed by Fig. 8, starting from a value
that was fifty times larger than the correct one. These results
confirmed the suitability of analytically evaluated sensitivities
to be used in optimization algorithms for the adjustment
of LPTNs, provided that an appropriate number of sensor
measurements are available to guide the optimization process.

1 2 3

0

200

400

Iterations
Q

0
(W

)

Q

Fig. 8: Benchmark problem: convergence of heat source in
scenario 3.

IV. INDUSTRIAL EXAMPLE: EPOWERTRAIN MOTOR

The sensitivity analysis method presented in Section II-B
was also evaluated in the calibration process of the LPTN of an
automotive-grade PMSM. The following main parts were iden-
tified in the eMotor topology: shaft, bearings, rotor, magnets,
end-plates, end-rings, stator iron, active winding, endwindings,
housing with heat extraction sinks, cooling jacket, and internal
air cavities. These are shown in Fig. 9 together with the
heat paths between them; dashed and solid lines represent
convection and conduction, respectively.

Stator
iron

Housing

A Internal air cavity

B Internal air cavity

W
a
te

r ja
ck

e
t co

o
lin

g

A Bearing

B Bearing

Shaft Rotor

A end 
winding

B end 
winding

Active 
winding

Magnets

Magnets

Fig. 9: eMotor LPTN modular scheme.

The LPTN consists in a 23-node, 60 components network.
Its initial lumped parameters (R, C) were estimated based
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on material properties and motor geometry. Heat sources
were modeled using commercial multi physics simulation
software. The model includes 13 heat sources to account
for the electromagnetic and mechanical energy losses in the
motor, 22 constant-value resistors to represent heat transfer by
conduction, 15 variable resistors to represent convection, and
10 thermal capacitors. The dependence of the heat losses with
component temperature was considered in this study; however,
the thermal resistance and capacity of the circuit elements were
treated as independent from their temperatures.

Fig. 10: Testing of the eMotor in a bench.

In order to verify the goodness of fit for the initial LPTN
model, the motor was mounted on a test bench as shown in
Fig. 10. The two eMotors rest on a metallic base platform,
assembled in a back-to-back configuration, mechanically cou-
pled by a torque sensor between their shafts. Two commercial
inverters are used to control the motors commanding speed
or torque to each of them. The communication between the
inverters and the eMotors is performed by a commercial con-
troller via controller area network (CAN) protocol. The tested
motor was subjected to a WLTP (Worldwide Harmonised
Light Vehicles Test Procedure) cycle, a commonly used 1800-
s long homologation test [27]. The angular speed and torque
of the selected eMotor during this cycle are shown in Figs. 11
and 12.
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Fig. 11: Speed of the eMotor during the WLTP cycle.

Type K thermocouples were used to measure temperatures at
3 locations: the rotor magnets and the A and B endwindings.
Sixteen sensors were installed in the stator, in the locations
shown in Fig. 13. Besides, eight thermocouples were placed
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Fig. 12: Torque of the eMotor during the WLTP cycle.

in the rotor in two different stacks, as presented in Fig. 14.
Data from the latter are retrieved by means of a commercial
wireless system consisting of two parts: emitter and receiver.
The emitter is introduced in the shaft cavity, connected to the
thermocouples at the measurement points, and rotates solidary
to the rotor. The receiver is static and is separated by an air
gap from the emitter and retrieves the data wirelessly.

Fig. 13: Location of the sensors in the stator: B-side endwind-
ing (left) and A-side endwinding (right).

Fig. 14: Location of the sensors in the rotor.

In order to illustrate the ability of the formulation in
Section II-B to determine the sensitivities of the system
variables with respect to its parameters, the thermal dynamics
of the eMotor LPTN was simulated during the test cycle.
The procedure was then repeated adding the evaluation of
the sensitivity of the 20 temperatures and 60 heat flows in
the circuit with respect to its 73 parameters, which included
thermal loss values Q, the resistance R and capacity C
parameters of the components, the initial temperatures of the
capacitors, and the fixed temperatures at those points of the
LPTN that represent refrigerant fluid temperatures.
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Fig. 15: Magnet temperatures during the WLTP cycle: com-
parison of experiments and initial simulation results.

The experimental results confirmed the existence of differ-
ences between the predictions of the LPTN of the eMotor and
the sensor readings. Fig. 15 shows that the initial simulation re-
sults regarding magnet temperatures differ up to 20 K from the
sensor readings at that location. These differences remained
below 12 K for the sensors placed at the endwindings.
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Fig. 16: Sensitivity of magnet temperature during the WLTP
cycle with respect to conduction resistances.

The formulation in Section II-B was used to determine
the sensitivities of the 20 temperatures and 60 heat flows in
the circuit with respect to the 73 parameters in the LPTN.
Figs. 16 and 17 show the sensitivity of the magnet temperature
with respect to the most critical system parameters. The plots
in Fig. 16 represent the sensitivity of this temperature with
respect to conduction resistances. Terms R15 and R20 stand
for the resistance associated to the thermal paths between
the stator teeth and yoke, and between the stator and its
housing, respectively. Terms R1 and R3 are located between
the magnets and the rotor axis. The capacities to which Fig. 17
refers are related to the rotor axis (C2), the rotor (C27) and the
endwindings (C78 and C81). Figs. 16 and 17 highlight the fact
that sensitivities vary considerably depending on the operation
point of the motor; for instance, the resistance of the thermal
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Fig. 17: Sensitivity of magnet temperature during the WLTP
cycle with respect to thermal capacitors.

TABLE II: Operation speeds during continuous service tests.

Test 1 2 3 4 5 6

ω (rpm) 3500 4000 6000 7000 8000 9000

path between the stator teeth and the refrigerant fluid becomes
more relevant during the last stages of the WLTP cycle, when
the motor operates under more demanding conditions.

In the light of the results of the sensitivity analysis, four
LPTN parameters were selected as target for optimization,
namely resistances R20 and R15, corresponding to the heat
flow path between the stator teeth and the water jacket, and
capacities C27 and C2, that represent the thermal inertia of the
rotor and its shaft, respectively.

The optimization procedure adjusted the values of these
four parameters using the sensor data obtained during a series
of continuous service tests, during which the motor was
commanded to operate at a fixed angular speed while exerting
a constant torque value, until its internal temperatures reached
a steady state. The operation speeds ω of the performed
tests are shown in Table II. Temperature readings for these
experiments were gathered from the same locations as in the
initial WLTP cycle.

Each continuous service experiment was simulated using
the dynamic formulation in Section II-A; a sensitivity anal-
ysis was performed simultaneously with the formulation in
Section II-B. The obtained results were used to determine
the Jacobian matrix of an objective function consisting in the
aggregate of the squared differences between sensor readings
and simulation results of the six experiments in Table II,

ψcs =
6∑

j=1

∫ tqj

t0

s∑
i=1

(
Ti,j − T̂i,j

)2

dt (30)

where Ti,j denotes the reading of sensor i during experiment j
and T̂i,j is the corresponding simulation result. The number of
sensors was s = 3. The problem was optimized by means of
a constrained Levenberg-Marquardt algorithm. The variation
of each tuned parameter with respect to its initial value was
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penalized when it exceeded a factor of 3 or 1/3, in order
to prevent the optimized solution to drift too far from the
initial estimation, which corresponded to physical calculations.
The iteration process of the algorithm was stopped when the
variation of the square root of ψcs dropped below a value
of 10 K over a window of ten consecutive iteration steps. The
algorithm converged after 16 iterations. Then, the WLTP cycle
was repeated with the adjusted LPTN parameters.
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Fig. 18: Temperature of the magnets during the WLTP cycle.
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Fig. 19: Temperature of the B endwinding during the WLTP
cycle.

Figs. 18 and 19 compare the experimental temperatures
at the magnets and the B endwinding to those delivered by
simulation with the initial and adjusted LPTN. Results for
the A endwinding showed a similar behaviour to those of its
B counterpart. The differences between sensor readings and
simulation descended below 5 K at the magnets, as shown
in Fig. 20. The agreement also improved at the endwindings,
although moderately, as confirmed by Fig. 21. This stems from
the fact that only the most critical parameters for the tempera-
ture of the magnets were chosen as optimization targets; even
though, the overall LPTN implementation benefited from the
optimization, as confirmed by the endwinding results.

It must be stressed that other optimization schemes, different
from the one here proposed, could have been used to adjust
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Fig. 20: Differences between sensor readings and simulation
at the magnets in the WLTP cycle.
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Fig. 21: Differences between sensor readings and simulation
at the B endwinding in the WLTP cycle.

the parameters of the motor LPTN. The method reported in
this Section is meant to confirm the ability of the analytical
sensitivities here presented to be used as input for the gradient-
based optimization of thermal circuits; these sensitivities can
be evaluated at a reduced computational cost with the exact
formulation introduced in Section II-B.

V. DISCUSSION

The proposed sensitivity method was compared to a finite-
differences approach, a commonly used solution in the liter-
ature for sensitivity computation, e.g., [12], [28], in terms of
efficiency and accuracy. The dynamic simulation was repeated
introducing a perturbation in each of the parameters of the
LPTN. The sensitivity of each variable was evaluated as
the difference between its values in the original and the
perturbed simulation, divided by the value of the perturbation.
In the benchmark circuit, the sensitivities of its ten variables
were calculated with respect to the nine parameters of the
model. For the motor LPTM, sensitivities of all variables were
calculated with respect to the constant parameters alone: 22
resistors and 10 capacitors.
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Fig. 22: Analytical (R) and finite-difference (R̄) sensitivity
of the magnet temperature in the PMSM with respect to
conduction resistances.

TABLE III: Maximum differences between analytical and
finite-difference sensitivity of temperature T2 in the benchmark
problem with respect to LPTN parameters.

Param. R1 R2 R3 C1 C2

0 W 10−5 W 10−5 W 10−3 K2/J 10−4 K2/J

Fig. 22 compares the sensitivity of the magnet temperature
in the PMSM model obtained by both methods, with respect
to resistance values. A similar agreement was obtained for
the sensitivities with respect to capacitances, also with the
benchmark problem. Tables III and IV show the maximum
differences between the sensitivities delivered by both methods
in the benchmark and the PMSM analysis.

In order to assess their computational efficiency, the sim-
ulation and sensitivity analysis methods were coded in C++,
compiled with GNU gcc 11.3.0, and run in a desktop computer
with an AMD Ryzen 5 5600X 6-core processor and 16GB
RAM, running Ubuntu 22.04. The integration step-sizes were
h = 0.001 s and h = 0.5 s for the benchmark and the PMSM,
respectively. The elapsed times are shown in Table V.

TABLE IV: Maximum differences between analytical and
finite-difference sensitivity of the magnet temperature in the
PMSM with respect to LPTN parameters.

Parameter R20 R15 R3 R1

Difference (W) 0.59 0.31 2.6 · 10−3 3.0 · 10−3

Parameter C2 C27 C81 C78

Difference (K2/J) 1.9 · 10−6 2.4 · 10−6 5.3 · 10−6 3.9 · 10−6

TABLE V: Elapsed times in the computation of the dynamics
simulation and the sensitivity analysis of the examples.

Dynamics Sensitivity Finite differences
Benchmark circuit (10 s) 0.023 s 0.062 s 0.345 s
Motor circuit (1800 s) 0.112 s 1.041 s 3.076 s

TABLE VI: Maximum difference between finite-difference
and analytical sensitivity of the magnet temperature with
respect to R20 in the PMSM model, for different values of
the perturbation δR in the finite differences method.

δR (K/W) 1 10−3 10−6 10−9 10−12 10−15

Difference (W) 403.10 4.31 0.59 0.59 2.63 648.06

The use of analytical sensitivities features two important ad-
vantages with respect to finite differences: it is computationally
advantageous and it removes the need to select the numerical
differentiation approach and perturbation size to arrive perform
the analysis. As an example, Table VI shows the difference
between analytical and finite differences results caused by the
use of different perturbation sizes in the evaluation of the
sensitivity of the magnet temperature with respect to R20 in
the PMSM model. The perturbation size must remain within
a certain, a priori unknown range to avoid numerical issues.
The use of analytical sensitivities does not suffer from this
problem.

VI. CONCLUSIONS

The sensitivity analysis of lumped-parameter thermal net-
works (LPTN) can be conducted in an accurate and efficient
way by means of the evaluation of the analytical sensitivities of
the system variables with respect to the model parameters. This
approach is computationally advantageous when compared to
strictly numerical methods and does not rely on perturbations
of the initial solution. Moreover, it provides an expression
of the evolution of the sensitivity as the system dynamics
progresses in time.

In this work, a formulation for the sensitivity analysis of
LPTN models has been put forward. This method is based
upon the expression of the thermal dynamics of the circuit as
a system of differential-algebraic equations and its integration
by means of BDF. The ability of the sensitivity formulation
to deliver a meaningful prediction of the evolution of the
system sensitivities over time was evaluated by means of a
benchmark RC thermal circuit and the LPTN representation
of a permanent-magnet synchronous motor. Moreover, the
obtained sensitivity values were used as input for optimization
algorithms during the adjustment of the model parameters. In
the case of the RC benchmark, the parameters were tuned to
match those of a known computational model. For the PMSM
model, representative thermal resistance and inertia values
were modified to capture the thermal behaviour of the motor
during experimental tests that consisted in continuous ser-
vice and WLTP cycles. Results confirmed that the sensitivity
method is able to correctly capture the effect of the variations
of the system parameters; additionally, the computation of
sensitivities takes place at a minimal computational cost and
can be conducted simultaneously with the integration of the
circuit dynamics.
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[8] B. Rodrı́guez, F. González, M. Á. Naya, and J. Cuadrado, “Assessment
of methods for the real-time simulation of electronic and thermal
circuits,” Energies, vol. 13, no. 6, p. paper 1354, 2020.
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