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Abstract

Co-simulation is an effective and versatile way to determine the forward-dynamics be-

haviour of complex engineering applications. In co-simulation setups, the overall system

dynamics is split into several subsystems that evolve in time separately. This makes it possi-

ble to use modelling and integration methods that can be tailored to the specific nature and

behaviour of each of them. Co-simulation subsystems coordinate their execution by means

of information exchanges through a discrete-time interface. In some cases, this limited ex-

change of data can cause accuracy and stability issues in the simulation process, especially

when explicit coupling schemes are employed. Correction algorithms are then required to

ensure the accuracy of the obtained results. This paper provides insight into the structure of

explicit co-simulation problems, revealing the effect of input extrapolation at the discrete-

time interface between subsystems. The resulting system equations are formulated in terms

of control theory expressions, which can be then used to develop compensation solutions to

correct the perturbations introduced at the co-simulation interface. The compensator archi-

tecture is chosen to ensure the eigenstructure assignability condition, which has been ad-hoc

developed in this paper. These aspects are illustrated here in the explicit co-simulation of

linear mechanical systems.

Keywords: Co-simulation, Explicit coupling schemes, Pole placement, Eigenstructure assign-

ment, Extrapolation, Linear mechanical systems
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1 Introduction

1.1 Motivations of the paper

The predictive simulation of complex engineering applications is a challenging task that often

requires the coordinated use of modelling and solution approaches for different physical do-

mains. Such system-level simulation needs to consider the dynamics of the components that

are involved in the application, as well as their interactions with each other and the environ-

ment. Developments in hardware and software have made it possible to deal with systems of

considerable complexity using a single simulation tool, following a monolithic approach, e.g.,

[40, 28]. Monolithic solutions employ a common solver for every component in the setup; this

solver typically has access to all the necessary modelling and implementation details used to

define the assembly. Co-simulation, on the other hand, is based on treating each component sep-

arately as a subsystem with its own dynamics description and solver [19]. Subsystems exchange

information at certain instants in time, known as communication points, by means of a set of cou-

pling variables. In the interval between two consecutive communication points, or macro-step,

the integration of the dynamics of each subsystem proceeds without further knowledge of the

evolution of its environment. This makes co-simulation a modular approach to perform the nu-

merical integration of complex system dynamics; at the same time, it requires the intervention

of an orchestrator or co-simulation manager to coordinate the execution of the different solvers.

Co-simulation subsystems can be coupled following a wide variety of schemes; in general,

these can be categorized into two main groups: implicit (iterative) schemes, and explicit or non-

iterative [41]. Implicit co-simulation schemes repeat the integration of the subsystems between

communication points until a certain convergence criterion is satisfied. Explicit schemes do not

allow this iteration. In general, implicit co-simulation features better stability properties [25]

and it is often assumed to yield more accurate results as well. It must be mentioned, however,

that stability and accuracy are not equivalent concepts. A co-simulated system can be made

stable, for instance, introducing dissipation in its numerical integration process, thus compro-

mising the accuracy of the results. Keeping co-simulation not only stable, but accurate as well is

a critical objective when designing a co-simulation environment.

The use of implicit co-simulation is not always possible in practical applications. Sometimes

the repetition of macro-steps may be computationally too expensive; this can be the case, for in-

stance, if real-time execution of the simulation code is a requirement. Repeating the integration
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of subsystem dynamics between communication points also requires subsystem rollback, i.e.,

resetting the subsystem state to a previously calculated point in time. Not every subsystem can

perform rollback; physical components in hybrid co-simulation setups are an example of this.

These reasons make explicit schemes a frequently adopted option in practical implementations

of co-simulation.

Explicit co-simulation solutions, however, may suffer from instability and inaccuracy issues

that stem from the discrete-time interface that connects the subsystems [20]. The identifica-

tion of the sources of this degraded behaviour and the formulation of means to address it are

necessary to ensure the correct operation of practical co-simulation setups that follow explicit

schemes.

1.2 State of the art

The discrete-time interface between co-simulation subsystems gives rise to discontinuities and

delays in the exchange process of the coupling variables [13]. These, in turn, lead to the in-

troduction of errors in the numerical integration process, particularly when direct feedthrough

is present in one or more subsystems [6]. Because subsystem solvers must proceed with their

integration between communication points without knowledge of the state of the rest of the

system, it may occur that some subsystem inputs need to be approximated, e.g., via polynomial

extrapolation; these approximated inputs often do not match the true values actually delivered

by the other subsystems [38]. Implicit co-simulation schemes can reduce these errors carrying

out iterative input evaluations; in explicit ones, conversely, this is not possible and the dynamics

simulation, if left uncorrected, accumulates a deviation from its expected theoretical behaviour.

In order to keep explicit co-simulation setups stable and accurate, it is necessary to remove or

mitigate this deviation.

Input extrapolation [13, 29] is a frequently used means to alleviate the effect of discon-

tinuities in the coupling variables at the co-simulation interface. However, the selection of an

appropriate extrapolation technique is often problem-dependent, and finding the strategy that

delivers the best possible results can become a challenging task [21, 33]. The extrapolation

method can also be adjusted as the simulation progresses, based on previously experienced

system behaviour [8]. When additional information about the subsystems is available, other so-
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lutions to approximate the values of the coupling variables can be proposed, for instance if the

subsystems provide the partial derivatives of their output with respect to their state and input

[24], or if the dynamics of some subsystems are known in detail, so that model-based coupling

techniques can be used [43, 32, 23].

Adjusting the macro step-size to match the frequency of the coupled dynamics is another pos-

sibility to avoid unstable behaviour of explicit co-simulation environments [10]. This adjustment

can also be done using energy-based indicators to determine the step-size [39]. In real-time ap-

plications, however, it may be difficult to modify the macro step-size during runtime, especially

if the co-simulation includes physical components.

Another family of techniques to improve co-simulation quality includes those methods that

rely on performing modifications on the coupling variables to remove artefacts introduced at

the interface. These modifications often incorporate elements from control theory to determine

the corrective actions that need to be carried out on the subsystem inputs, such as passivity

controllers, e.g., [11, 20, 38, 14]. The explicit analysis of the pole-zero structure of the problems,

put forward in this paper, is less frequent in the literature about co-simulation of mechanical

systems. An advantage of input-correction solutions is that they do not require to modify the

macro step-size or the subsystem internals; their applicability, however, is limited by the nature

of the coupling variables and, in physical subsystems, by the configuration and properties of the

sensors and actuators that are mounted on them.

1.3 Contributions of the paper

This paper puts forward a model of explicit Jacobi co-simulated systems. The proposed for-

mulation is developed in terms of the perturbation that co-simulation introduces with respect

to its theoretical monolithic counterpart. Such framework enables one to determine the effect

of the signal exchange at the co-simulation interface between subsystems, revealing the way

in which the system eigenstructure, i.e., the eigenvalues (the poles) and the eigenvectors (the

mode shape), is perturbed. This perturbation, in turn, degrades co-simulation accuracy and may

lead in extreme cases to instability.

A novel compensation algorithm, based on the eigenstructure assignment control technique

for linear systems, is proposed in this paper. A compensator that exploits the feedback of dis-
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placements, speeds, and accelerations is designed to make the eigenstructure of the compen-

sated co-simulated system match that of the theoretical system. Additionally, the poles (the

“latent roots”) due to the time-delay introduced at the coupling interface are accounted for in

the compensator synthesis to make them stable. A relevant feature of the proposed scheme is

that it does not require time-consuming, trial-and-error tuning since the computation of the

compensator gains is based on a rigorous physical base and is, therefore, automatically per-

formed from the eigenstructure of the monolithic system, which can be either directly known or

approximated by means of subsystem identification techniques, e.g., [22].

The proposed method is applicable to linear mechanical systems and its effectiveness is as-

sessed through the numerical simulation of the motion of a two-mass system, a frequently used

benchmark in the co-simulation literature. Besides, the method is extended to the case of co-

simulation with subsystems that feature more than one degree of freedom. Hence, the effective-

ness of the method for systems with more degrees of freedom is corroborated by the numerical

tests performed on a four-mass system model.

2 Analysis of the coupling of subsystems

2.1 Representation of the coupling and general overview of a co-simulated sys-

tem

Let us consider a typical co-simulation setup, composed of two weakly coupled linear time-

invariant subsystems, as shown in Fig. 1. The coupling variables are exchanged among the

subsystems through a co-simulation manager at each communication point. The macro step-size

between two consecutive communication points is Ts. The manager coordinates the numeri-

cal integration of the subsystems and adjusts their inputs extrapolating them from the values

provided at previous communication points.

Thanks to the linearity of the subsystems, a representation in the Laplace s-domain can

be adopted (s is the complex Laplace variable). The Laplace transform is useful to model the

co-simulation manager as well, by means of the extrapolator transfer functions D(s) from the
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Co-simulation
manager

Subsystem 1 Subsystem 2

D(s)

D(s)

y1(s) y1
∗(s)

y2(s)y2
∗(s)

Figure 1: General block scheme of a co-simulated system.

signals sent (y1, y2) to the ones received (y∗1, y∗2):

y∗1 (s) = D (s) y1 (s)

y∗2 (s) = D (s) y2 (s)
(1)

Without loss of generality, in this paper it is assumed that the same D(s) is applied to both

connections, although the proposed theory admits the use of a different extrapolation for each

subsystem.

A general technique for data extrapolation is to use a polynomial to fit from past samples.

If a zero-order polynomial is employed, i.e., the extrapolation is done by keeping the signal

constant during the time-step, then the extrapolator is denoted as the zero-order hold (ZOH),

whose transfer function can be expressed as [9] :

D(s) =
1− e−sTs

sTs
(2)

The transfer function in Eq. (2) is frequently used in the co-simulation literature, e.g., [11, 10].

Indeed, for small enough macro step-sizes, it has been shown to be an acceptable assumption

[11].

Higher-order polynomials are sometimes adopted, such as the first-order hold (FOH) or the

second-order hold (SOH) [16, 9], which exploit linear or quadratic extrapolations, respectively.

Recently, non-polynomial, higher-order extrapolators based on the H∞ synthesis have been pro-

posed as well [14]. Besides the extrapolation model, D(s) should often include time-delay terms

due to sending or receiving latencies (respectively ti and tr), whose transfer functions are expo-
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nentials, e−sti or e−str [43]. Once the co-simulation manager has been properly modelled in the

s-domain, the methods proposed in this paper can be applied regardless of the specific transfer

functions D(s) that describe its behaviour.

2.2 General representation of perturbations due to co-simulation

Figure 1 reveals that a co-simulation can be seen as a closed-loop interconnection of two open-

loop subsystems. Compared to the monolithic formulation, the transfer function of the whole

system should account for the presence of D(s) that perturbs it. First of all, it can be expected

that such a perturbation might deteriorate the simulation accuracy. Second, since D(s) usually

features at least an exponential term e−sTs , the resulting transfer function is not rational; hence

an infinite number of poles is introduced [30, 4].

To clearly evaluate the perturbation introduced by the co-simulation manager, let us first

consider the analytical model of the N -DOF (degrees of freedom) linear time-invariant multi-

body system, in its monolithic representation described by the set of N ordinary differential

equations (ODE) of motion:

Mẍ (t) +Cẋ (t) +Kx (t) = fe (t) (3)

where M,C,K ∈ RN×N are the mass, damping, and stiffness matrices. The generalized, inde-

pendent displacements are collected in vector x ∈ RN and ẋ, ẍ are the velocities and accelera-

tions respectively, while fe ∈ RN are the generalized external forces.

The Laplace transformation of Eq. (3) yields the introduction of the dynamic stiffness ma-

trix Gt (s) =
(
s2M+ sC+K

)
∈ CN×N [44] of the monolithic system, that is in practice the

theoretical model:

Gt (s)x (s) = fe (s) (4)

where vectors x (s) and fe (s) are the Laplace transform of x (t) and fe (t) respectively. The

dynamic behaviour of the monolithic system is completely described by its eigenstructure, i.e.,

the 2N eigenpairs (λi,wi) with λi ∈ C denoting an eigenvalue (also denoted as a pole) and

wi ∈ CN its related eigenvector (also denoted as the mode shape), that are the solutions of the
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eigenproblem:

Gt (λi)wi = 0, i = 1, ..., 2N (5)

In the case of a complex-conjugate pair of eigenvalues (hereafter j denotes the complex num-

ber in this paper), the i-th pair is λi = −ξiωd,i±ωd,ij where the i-th damped natural frequency is

ωd,i = ωn,i

√
1− ξ2i , ξi is its damping ratio and ωn,i the natural frequency. Its related eigenvector

wi is the i-th mode shape and it describes the pattern of vibration through the spatial variation

of the amplitude of the motion across the system, in terms of normalized displacements, when

the system freely evolves at its damped natural frequency. Eigenvalues and eigenvectors are of

fundamental importance to set both the free and the forced response of the system.

If the system is co-simulated as in Fig. 1, its equations of motion are perturbed by the pres-

ence of the extrapolator D(s), and Eq. (4) is no longer a correct representation. Hence, the

dynamic stiffness matrix of the co-simulated system can be notionally written as the sum of the

theoretical transfer function and a non-rational perturbation matrix, ∆Gc (s), that depends on

the features of the coupling, i.e., on the exchanged variables and on D(s):

(Gt (s) +∆Gc (s))x (s) = fe (s) (6)

In this paper it is assumed that the time-discrete interface in co-simulation schemes intro-

duces larger errors than the one caused by the subsystem numerical integration schemes, which

is a reasonable assumption in explicit co-simulation of systems with direct feedthrough [39, 20].

The integration scheme used in the remainder of the paper, both inside the subsystems and for

monolithic implementations, is the single-step, explicit symplectic Euler formula. This simplifies

the interpretation of the coupling error. For instance, if implicit integrators were used, it would

be necessary to consider the effect of input extrapolation on the convergence of their iteration

process. The presence of ∆Gc (s) deteriorates the accuracy of the simulations and, in the worst

case, leads to diverging results, i.e., to instability.

The first issue is related to the eigenproblem:

(
Gt

(
λ̃i

)
+∆Gc

(
λ̃i

))
w̃i = 0 (7)
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The solution of the eigenproblem of the co-simulated system yields 2N perturbed eigenpairs(
λ̃i, w̃i

)
that do not match those of the monolithic system, where λ̃i is the i-th perturbed eigen-

value and w̃i is the perturbed eigenvector. The perturbation of the 2N primary roots (i.e., the

“physical ones”), the so called “pole spillover”, might shift them to the right half plane (i.e.,

with positive real parts), thus destabilizing the co-simulation process. Besides changing the pri-

mary roots, the presence of the exponential terms in D(s) leads to a transcendental form of the

characteristic equation of the co-simulated system, that features an infinite number of roots, the

so-called “secondary” or “latent” roots.

In open loop systems, the presence of such latent roots is not critical since those lie at

s = −∞; unfortunately this is not the case of co-simulated systems. Indeed, since a co-simulated

system behaves as a closed-loop interconnection of subsystems, these roots migrate from −∞

and move towards the low frequency region and might also cross the imaginary axis. This dis-

cussion shows that the eigenstructure analysis reveals a priori and with a systematic approach

the inaccuracy and instability that might arise in co-simulated systems.

Setting D(s) = 1 leads to the monolithic model since ∆Gc (s) = 0. It should also be noted

that, usually, the larger Ts the more the eigenstructure is perturbed, since D(s) differs from the

ideal unitary gain model in a broader range of frequencies in terms of both amplitude and phase.

2.3 Explanatory example: the two-mass system

2.3.1 Two-mass system: theoretical and co-simulated model

A detailed explanation of the general theory developed is proposed in this section through a

simply connected, two-mass linear vibrating system. Such a system is widely employed in the

literature as a benchmark problem for co-simulation [21, 9, 20, 14, 27, 26, 13, 42].

The model of the monolithic system in the Laplace domain, assuming that no external forces

are applied, is:s2

m1 0

0 m2

+ s

c1 + cc −cc

−cc cc + c2

+

k1 + kc −kc

−kc kc + k2



x1 (s)

x2 (s)

 =

0

0

 (8)
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where m1, m2 are the two masses, and c1, c2 and k1, k2 denote the damping and stiffness

parameters of the connections between masses 1 and 2 and the ground. The two masses are

coupled through a spring kc and a damper cc. By exploiting the notation used in Eq. (4), the

following transfer function is obtained:

Gt (s) = s2

m1 0

0 m2

+ s

c1 + cc −cc

−cc cc + c2

+

k1 + kc −kc

−kc kc + k2

 (9)

It should be noted that Gt (s) can be obtained by assembling the transfer functions of the two

decoupled subsystems, respectively denoted as G1 (s) and G2 (s), and the transfer function of

the coupling, i.e., Gc (s). Hence, the knowledge of the monolithic model of the system is not

mandatory. For example, in the case of the two-mass system under consideration it is possible to

define:

G1 (s) = s2m1 + sc1 + k1

G2 (s) = s2m2 + sc2 + k2

Gc (s) = scc + kc

(10)

Hence, the monolithic system transfer function is indirectly obtained by assembling the matrices

in Eq. (10) as follows:

Gt (s) =

G1 (s) +Gc (s) −Gc (s)

−Gc (s) G2 (s) +Gc (s)

 (11)

The co-simulated system is shown in Fig. 2. A force-displacement coupling approach is em-

ployed, hence the coupling variables are fc = −kc (x1 − x∗2)−cc (ẋ1 − ẋ2
∗) and x2. This selection

of coupling variables causes subsystem 1 to suffer from direct feedthrough, because its input x∗2

needs to be known to evaluate its output fc. It can be shown that the force-displacement config-

uration results in worse co-simulation stability and accuracy properties than its displacement-

displacement counterpart [6, 38], which makes it more challenging from the point of view of

compensation.

The effect of the discrete-time co-simulation interface and the extrapolation methods, as
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m1
Co-simulation

manager
m2

k1 kc k2

c1 cc c2

Subsystem 1 Subsystem 2

fc

x∗
2

f∗
c

x2

x1 x2

Figure 2: Co-simulated two-mass system with force-displacement coupling.

defined in Eq. (1), results in

f∗c (s) = D (s) fc (s)

x∗2 (s) = D (s) x2 (s)
(12)

where f∗c (s) and x∗2 (s) are respectively the extrapolated coupling force and displacement of mass

2. Hence, the Laplace domain equations describing the dynamic behaviour of the co-simulated

two-mass system are:
(
s2m1 + s(c1 + cc) + k1 + kc

)
x1 (s) = (scc + kc)D (s) x2 (s)(

s2m2 + sc2 + k2
)
x2 (s) = (scc + kc)D (s) x1 (s)− (scc + kc)D

2 (s) x2 (s)
(13)

Finally, the model of the co-simulated two-mass system can be written as done in Eq. (6), as:Gt (s) +

 0 (scc + kc) (1−D(s))

(scc + kc) (1−D(s)) (scc + kc)
(
D2 (s)− 1

)


x1 (s)

x2 (s)

 =

0

0

 (14)

Hence, the perturbation matrix introduced by the co-simulation interface is:

∆Gc (s) =

 0 (scc + kc) (1−D(s))

(scc + kc) (1−D(s)) (scc + kc)
(
D2 (s)− 1

)
 (15)

2.3.2 Two-mass system: numerical analysis

Let us consider the same parameters employed in [20] for the two-mass system, i.e., m1 = m2 =

1 kg, k1 = 10 N/m, k2 = 1000 N/m and kc = 100 N/m. As for the damping, two scenarios are

considered:
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• scenario 1: c1 = c2 = cc = 0 Ns/m;

• scenario 2: c1 = c2 = cc = 0.1 Ns/m.

The macro-step size of the co-simulation is set equal to Ts = 1 ms and ZOH extrapolation is

assumed.

Let us first consider the undamped system (scenario 1). The eigenpairs (λi,wi) of the mono-

lithic system are summarized in Table 1 together with the modal parameters and with the eigen-

pairs
(
λ̃i, w̃i

)
of the co-simulated system. The poles of the co-simulated system are here com-

puted by using the 6-th order Padé approximation of the exponential term that appears in the

ZOH transfer function, see Eq. (2).

The Padé approximant yields a rational transfer function that approximates the exponential

term e−sTs by [45]:

e−sTs ≈
∑mp

i=0 pi (sTs)
i∑np

i=0 qi (sTs)
i

(16)

where pi and qi are defined as follows:

pi = (−1)i
(2np − i)!np!

(2np)!i! (np − i)!
qi =

(2np − i)!np!

(2np)!i! (np − i)!
, i = 1, ..., np (17)

A common choice is to set the order of the Padé approximation mp = np (obviously, mp cannot

be greater than np to obtain a proper transfer function). High-order Padé approximations pro-

duce transfer functions with clustered poles; since such pole configurations are very sensitive

to perturbations, such as round-off errors, it is usually suggested using the Padé approximation

with np ≤ 10 [18].

The poles listed in Table 1 evidence that co-simulation causes spillover on the primary poles

of the monolithic system λi, whose counterparts in the co-simulated system are λ̃i, as shown in

Fig. 3. The latent roots due to co-simulation at higher natural frequencies are separately shown

in Fig. 4.

The pole analysis reveals that the co-simulated pole pair λ̃3,4 lies on the right-half of the

complex plane, thus making the co-simulated system unstable (i.e., diverging even with bounded

input), as will be confirmed by the numerical experiments carried out in Section 5.2.
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Figure 3: Primary poles of the monolithic and co-simulated undamped two-mass system.

Figure 4: Latent roots of the co-simulated undamped two-mass system.
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Table 1: Eigenstructure and modal parameters of the undamped two-mass system: monolithic
and co-simulated.

Monolithic Co-simulated

λ1,2 λ3,4 λ̃1,2 λ̃3,4

±10.00j ±33.32j −0.19± 9.51j 0.52± 33.27j

ωn1,2 [rad/s] ωn3,4 [rad/s] ω̃n1,2 [rad/s] ω̃n3,4 [rad/s]

10.00 33.32 9.51 33.27

ξ1,2 ξ3,4 ξ̃1,2 ξ̃3,4

0 0 0.020 −0.015

w1,2 w3,4 w̃1,2 w̃3,4

−0.9950j −0.0995j −0.9950j −0.0995j

−0.0995j 0.9950j +0.0013− 0.0994j −0.004 + 0.9950j

Let us now consider the second scenario, i.e., the damped two-mass system. The co-simulated

system with ZOH extrapolation and Ts = 1 ms leads to the poles summarized in Table 2 together

with the related eigenvectors. The pole analysis highlights that, even though instability does not

arise, the perturbation due to co-simulation alters the dynamics with respect to the monolithic

system, as it will be assessed through the time-domain analysis in Section 5.2. Indeed, the co-

simulated system features different damping ratios and natural frequencies because of the co-

simulation interface. The same holds for the mode-shape perturbations, that change the spatial

pattern of vibration.

Figure 5: Primary poles of the damped two-mass system varying Ts.
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Let us now increase Ts from 1 ms up to 4 ms. The eigenvalues of such a co-simulated system

are listed in Table 2. The second pole pair λ̃3,4 is particularly affected by the increase of Ts in

the data exchange at the co-simulation interface. In particular its real part is the most affected,

whose sign varies from negative to positive once Ts increases. It is evident that this co-simulated

system, i.e., the one with Ts = 4 ms, features an unstable pole pair λ̃3,4. Indeed, the phase lag

introduced by ∆Gc (s) is larger, and the phase and gain perturbations affect a broader range of

frequencies. The monolithic system poles together with the co-simulated system poles varying

the macro-step size Ts from 0 to 5 ms are shown in Fig. 5.

Table 2: Eigenstructure and modal parameters of the damped two-mass system: monolithic and
co-simulated, Ts = 1 ms and Ts = 4 ms.

Monolithic
Co-simulated
Ts = 1 ms

Co-simulated
Ts = 4 ms

λ1,2 λ3,4 λ̃1,2 λ̃3,4 λ̃1,2 λ̃3,4

−0.09± 10.00j −0.11± 33.32j −0.11± 10.00j −0.05± 33.32j −0.11± 10.00j 0.12± 33.31j

ωn1,2 [rad/s] ωn3,4 [rad/s] ω̃n1,2 [rad/s] ω̃n3,4 [rad/s] ω̃n1,2 [rad/s] ω̃n3,4 [rad/s]

10.00 33.32 10.001 33.32 10.001 33.31

ξ1,2 ξ3,4 ξ̃1,2 ξ̃3,4 ξ̃1,2 ξ̃3,4

0.009 0.0033 0.011 0.0015 0.011 −0.0036

w1,2 w3,4 w̃1,2 w̃3,4 w̃1,2 w̃3,4

−0.097 + 0.990j 0.0001− 0.0995j −0.097 + 0.990j 0.0001− 0.0995j −0.097 + 0.990j 0.0001− 0.0995j

−0.011 + 0.099j 0.0312 + 0.9945j −0.011 + 0.099j −0.0026 + 0.9945j −0.015 + 0.098j −0.014 + 0.9950j

3 Compensation through eigenstructure assignment

3.1 Objectives of the control

The perturbation introduced by ∆Gc (s) should be compensated to enhance the accuracy of the

co-simulation by making the monolithic and the co-simulated systems feature the same eigen-

structure. Therefore, this paper here proposes a co-simulation compensation strategy based on

the technique of eigenstructure assignment: to the best of the authors’ knowledge, this approach

has never been explored in the field of co-simulation. This method is sometimes adopted in the

field of feedback control design [2, 3, 31, 46, 1, 7, 35, 4], although more attention is usually paid

to just pole placement, while mode-shape assignment is often neglected due to larger difficulties

in achieving the desired eigenvectors.
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The co-simulation compensation is interpreted as a feedback control scheme, as shown in

Fig. 6, that sketches the block-scheme representation in the Laplace domain of the co-simulated

system together with the compensation ∆GR (s). The goal of ∆GR is to compute proper

“virtual” forces u (s) to be distributed along the system through matrix B, to correct the co-

simulated model (described in Fig. 6 by its receptance matrix Hc (s) = (Gt (s) +∆Gc (s))
−1).

It should be noted that the proposed control scheme does not use any reference to track, thus

treating control as a regulation problem.

Hc (s)

∆GR(s)B

−
fe (s)+ x (s)

Co-simulated model
Compensation loop

Figure 6: General block-scheme of the co-simulation model with the compensator.

An effective way to perform eigenstructure assignment is exploiting the displacement-velocity-

acceleration feedback [36], i.e., the so-called state plus state-derivative feedback. Hence, u (s) is

a linear function of x (s), sx (s), and s2x (s) through the compensation gains d, f , g, respectively

the acceleration, velocity and displacement control gain matrices. In the field of vibration control

with “perfect measurement” (i.e., feedback of the actual variables), u (s) would have been com-

puted as u (s) = −R (s)x (s) = −
(
s2d+ sf + g

)
x (s), where R (s) is the feedback controller

(often denoted as the compensator). In the case of co-simulation, some variables are replaced

by those exchanged by the co-simulation manager and hence perturbed by D(s). Therefore, in

a general form, the control law is:

u (s) = −∆GR (s)x (s) (18)

where ∆GR (s) depends on the co-simulation compensator R (s) and D(s). The explicit struc-

ture of ∆GR (s) is not provided here since it depends on the system to be compensated as well

as on the number of the compensation forces that will be adopted, hence it will be described

in the following examples. Such a compensator has been chosen since it allows assigning the

eigenstructure with low order controllers, i.e., without the introduction of several poles and ze-
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ros due to the controller itself, as it might happen by using lead-lag transfer functions. If the full

state and its derivative are not available to compute u (s) (i.e., some entries of d, f , g are forced

to be zero), the compensator is said to be an output feedback controller, and some limitations

on the achievable results are expected, as discussed in Section 4.1.

3.2 Compensator design

The dynamics of the compensated co-simulated system matches that of the monolithic one if

the two systems have the same eigenstructure and the same static gain. It should be noted that

matching the poles, i.e., natural frequencies and damping, is not enough since the compensation

might lead to two isospectral systems with significantly different mode shapes. As far as the

secondary roots are concerned, since they are not present in the monolithic model, these should

simply lie in the left half complex plane, as discussed separately.

Let us analyze the dynamics of the compensated co-simulated system through the Laplace

domain representation:

(Gt (s) +∆Gc (s))x (s) = fe (s)−B∆GR (s)x (s) (19)

Therefore the compensator ∆GR (s) should be designed by imposing that all the eigenpairs

(λi,wi) of the monolithic system must solve the eigenproblem of the co-simulated compensated

one:

(Gt (λi) +∆Gc (λi) +B∆GR (λi))wi = 0, i = 1, ..., 2N (20)

The eigenproblem of the monolithic system in Eq. (5) points out that Gt (λi)wi = 0 for i =

1, ..., 2N . Hence Eq. (20) becomes:

(∆Gc (λi) +B∆GR (λi))wi = 0, i = 1, ..., 2N (21)

The eigenpairs (λi,wi) to be assigned are obtained through the eigenstructure analysis of Gt (s).

However, it is important to remark that it not necessary to know a-priori the monolithic system

model, indeed the transfer function Gt (s) can be obtained by assembling the transfer functions

of the subsystem and the one of the coupling as already shown through Eq. (11). Furthermore,
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in this work, we assume that all subsystem internals are fully known for the sake of clarity. In

practice, subsystems can behave as black boxes, and the compensation solution would require

the use of subsystem characterization or identification, e.g., by means of approaches like the

ones in [33] or [22].

Since the eigenpairs λi and wi are imposed as the ones solving the eigenproblem of the

monolithic system, ∆GR (s) becomes a linear function of the gains d, f and g. Hence, Eq. (21)

is cast as a linear system whose unknowns are d, f , and g, that is summarized in the following

form:

Lk = n (22)

where L ∈ C(2N ·p)×(m·3r), n ∈ C2N ·p, and k =


d

f

g

 ∈ R3mr. p, m and r are three variables here

exploited to define the dimensions of the matrices and vectors involved in Eq. (22). Sizes p, m,

and r depend on the co-simulated system under investigation and on the choice of the compen-

sator. It follows that a clearer explanation on the typical topology of L and n is provided through

the examples along the paper. However, some observations can be carried out already. The size

p is not smaller than the number of non-zero rows of ∆Gc. The number of feedback variables

is 3r, where r ≤ N is the number of coordinates that are available in terms of both position,

speed, and acceleration. The number of independent compensation forces is m = rank (B), the

so-called “rank of the control”.

The terms r and m should be chosen to ensure that the number of gains of the compensator

is greater than the number of equations, i.e., the linear system is underdetermined, to allow

for the stabilization of the secondary roots [7]. Hence, m · 3r > 2N · p. For example, if full

state plus derivative control is assumed, then r = N , hence it must hold that 3m > 2p, i.e.,

matrix B should be chosen such that the number of independent actuation forces should be

greater than the number of non-zero rows in ∆Gc, that are in practice the rows that perturb

the eigenstructure of the monolithic system.

Under the assumption that m · 3r > 2N · p, the solution of Eq. (22) is formulated in the
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general form [7]:

k = k0 +Vkr (23)

The particular solution of the non-homogeneous Eq. (23) is k0, that can be computed through

several methods (such as through the pseudoinverse or the QR decomposition). Vkr is the

solution of the homogeneous equation LVkr = 0. Matrix V ∈ R3mr×(3mr−2Np) belongs to the

null-space of L, while kr ∈ R3mr−2Np is an arbitrary vector which can be chosen to exploit the

redundancy in the solution of Eq. (23). In this way, any choice of kr does not cause spillover on

the primary poles, and related eigenvectors, assigned through k0. In this paper kr is exploited

to place the latent roots due to time-delay in the left half of the complex plane, to make the

compensated co-simulated system stable.

3.3 Compensator synthesis for the two-mass system

Let us consider the model of the two-mass system analyzed in Section 2.3. The compensation

consists of two independent forces computed through position, speed, and acceleration feedback

of both the coordinates, defined in the Laplace domain as follows:
u1 (s) = −

((
s2d1 + sf1 + g1

)
x1 (s) +

(
s2d2 + sf2 + g2

)
x∗2 (s)

)
u2 (s) = −

((
s2d3 + sf3 + g3

)
x∗1 (s) +

(
s2d4 + sf4 + g4

)
x2 (s)

) (24)

where di, fi, and gi, with i = 1, ..., 4 are respectively the i-th acceleration, velocity, and dis-

placement compensation gain. Hence, they are the entries of vectors d, f , and g. Further,

x∗1 (s) = D (s) x1 and x∗2 (s) = D (s) x2, as shown in Eq. (12). Eq. (24) can be written with

the general notation employed in Eq. (18) as:u1 (s)

u2 (s)

 = −

 s2d1 + sf1 + g1
(
s2d2 + sf2 + g2

)
D(s)(

s2d3 + sf3 + g3
)
D(s) s2d4 + sf4 + g4


x1 (s)

x2 (s)

 (25)
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with B = I2, i.e., the size-two identity matrix. The eigenproblem in Eq. (21) can be formulated

using the following matrices:

∆Gc (λi) =

 0 (λicc + kc) (1−D(λi))

(λicc + kc) (1−D(λi)) (λicc + kc)
(
D2 (λi)− 1

)


∆GR (λi) =

 (λi)
2 d1 + λif1 + g1

(
(λi)

2 d2 + λif2 + g2

)
D(λi)(

(λi)
2 d3 + λif3 + g3

)
D(λi) (λi)

2 d4 + λif4 + g4


(26)

Finally, the substitution of Eq. (26) into Eq. (21), yields the linear system that represents the

eigenstructure assignment problem to be solved for co-simulation compensation:


...

...
...

La,i Lv,i Ld,i

...
...

...



d

f

g

 =

n1,i

n2,i

 , i = 1, ..., 2N (27)

with:

La,i =

λ2
iw

(1)
i λ2

iw
(2)
i D(λi) 0 0

0 0 λ2
iw

(1)
i D(λi) λ2

iw
(2)
i


Lv,i =

λiw
(1)
i λiw

(2)
i D(λi) 0 0

0 0 λiw
(1)
i D(λi) λiw

(2)
i


Ld,i =

w(1)
i w

(2)
i D(λi) 0 0

0 0 w
(1)
i D(λi) w

(2)
i


n1,i

n2,i

 = −

 (λicc + kc) (1−D(λi))w
(2)
i

(λicc + kc) (1−D(λi))w
(1)
i + (λicc + kc)

(
D2 (λi)− 1

)
w

(2)
i


d =

{
d1 . . . d4

}T

, f =

{
f1 . . . f4

}T

, g =

{
g1 . . . g4

}T

(28)

where w
(j)
i denotes the j-th entry of wi.
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The solution of the linear system in Eq. (27) is obtained as follows: the particular solution

k0 has been computed through the MATLAB function mldivide, by recasting the linear system

in Eq. (22) into a numerically robust form [7, 35]:

Real (L)

Imag (L)

k0 =

Real (n)

Imag (n)

 (29)

Indeed, the obtained compensation gains should be real to make feasible the controller imple-

mentation in the time-domain [34]. Matrix V has been computed through the MATLAB function

null and vector kr has been obtained through random search algorithms, until a solution that

stabilizes the secondary roots has been found.

All the equations proposed so far hold for both the damped and undamped systems. Let us

first consider the undamped two-mass system (scenario 1). The solution of the linear system in

Eq. (27) has led to the following control gains:

• d =

{
−0.0035 0.0004 −0.0108 −0.0012

}T

;

• f =

{
0.0000 −0.0498 −0.0499 0.0994

}T

;

• g =

{
−0.4222 0.7846 −1.0729 −0.1962

}T

.

The compensated co-simulated system features the 2N eigenpairs
(
λ̄i, w̄i

)
listed in Table 3:

the correct assignment of the eigenstructure is clearly obtained since the N pairs
(
λ̄i, w̄i

)
match

those of the theoretical, monolithic model (λi,wi) , i = 1, ..., 2N . This result is corroborated by

the analysis of the eigenloci in Fig. 7, that highlights the primary poles. The latent roots due to

the exponential terms of the co-simulation manager are shown in Fig. 8, that clearly shows that

the compensated system is stable since all the roots are clustered in the left half of the complex

plane. Table 3 collects also the modal parameters (natural frequencies and damping ratios) and

the percentage error of the i-th natural frequency of the co-simulated system with respect to

those of the monolithic one denoted through eωi . Further, it lists also the difference between the

i-th modal damping of the monolithic system with respect to the co-simulated system denoted

by eξi . The effectiveness of the proposed compensation approach is corroborated by these two

indexes whose values approach zero, i.e., the eigenstructure of the co-simulated system with

compensation matches the eigenstructure of the monolithic system.
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Figure 7: Eigenloci of the undamped two-mass system: monolithic and co-simulated without
and with compensation.

Figure 8: Latent roots of the undamped two-mass system: monolithic and co-simulated without
and with compensation.
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Table 3: Eigenstructure and modal parameters of the undamped two-mass system: monolithic
and co-simulated without and with compensation.

Monolithic Co-simulated
Co-simulated
compensated

λ1,2 λ3,4 λ̃1,2 λ̃3,4 λ̄1,2 λ̄3,4

±10.00j ±33.32j −0.19± 9.51j 0.52± 33.27j ±10.00j ±33.32j

w1,2 w3,4 w̃1,2 w̃3,4 w̄1,2 w̄3,4

-0.9950 -0.0995 −0.9951 −0.9951± 0.0004j -0.9950 -0.0995
-0.0995 0.9950 −0.09948∓ 0.0013j 0.9951 -0.0995 0.9950

ωn1,2 [rad/s] ωn3,4 [rad/s] ω̃n1,2 [rad/s] ω̃n3,4 [rad/s] ω̄n1,2 [rad/s] ω̄n3,4 [rad/s]

10.00 33.32 9.51 33.27 10.00 33.32

eω1,2 [%] eω3,4 [%] eω1,2 [%] eω3,4 [%] eω1,2 [%] eω3,4 [%]

− − −4.88 −0.14 0.00 0.00

ξ1,2 ξ3,4 ξ̃1,2 ξ̃3,4 ξ̄1,2 ξ̄3,4

0 0 0.020 −0.015 0 0

eξ1,2 eξ3,4 eξ1,2 eξ3,4 eξ1,2 eξ3,4

− − 0.020 −0.015 0.00 0.00

Let us now consider the damped two-mass system (scenario 2). In this case, two values of

macro-step size are considered Ts = 1 ms and Ts = 4 ms, to discuss the effect of the step size. The

dominant poles of the monolithic and the co-simulated compensated systems are listed in Table 4

together with the compensator gains. It is evident that the compensated system dynamics, i.e.,

natural frequencies, modal damping, and eigenvectors, fulfills the specifications. This result is

corroborated by the pole map provided in Fig. 9, indeed the poles spillover due to co-simulation

vanishes. The analysis of the latent roots due to time-delay, here omitted for brevity, highlights

that those lie in the left half of the complex plane, hence the compensated system is stable, as it

will be shown through the time domain simulations proposed in Sections 5.2.2 and 5.2.3.

4 Controllability and eigenstructure assignability

4.1 General discussion and theoretical concepts

Two cruxes of eigenstructure assignment through active control, that should be carefully ad-

dressed in co-simulation compensation too, are controllability and eigenstructure assignability.
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Table 4: Compensator gains and dominant poles of the damped two-mass system: monolithic
and co-simulated with compensator, Ts = 1 ms and Ts = 4 ms.

Ts Monolithic
Co-simulated
compensated

λ1,2 λ3,4 λ̄1,2 λ̄3,4

1 ms −0.1± 10.00j −0.1± 33.32j −0.1± 10.00j −0.1± 33.32j

d =
{
−0.0036 0.0003 0.0018 0.0001

}T

f =
{
−0.0007 −0.0494 −0.0497 0.100

}T

g =
{
−0.4357 0.7596 0.1896 −0.0743

}T

4 ms −0.1± 10.00j −0.1± 33.32j −0.1± 10.00j −0.1± 33.32j

d =
{
0.0042 −0.0003 0.0009 −0.0004

}T

f =
{
0.0008 −0.2011 −0.1997 0.3994

}T

g =
{
0.4564 −0.3928 0.1230 0.0528

}T

(a) Ts = 1 ms (b) Ts = 4 ms

Figure 9: Primary poles of the monolithic and co-simulated damped two-mass system without
and with compensation: (a) Ts = 1 ms, (b) Ts = 4 ms.

In this Section, a brief general discussion is provided by recalling some meaningful results with

reference to the typical state-feedback control architecture for the linear system in Eq. (3), that

leads to the following equations governing the closed-loop system (without loss of generality, it

is set fe (t) = 0):

Mẍ (t) +Cẋ (t) +Kx (t) = −B
(
fs

T ẋ (t) + gs
Tx (t)

)
(30)
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where fs and gs are respectively the state-feedback velocity and displacement gain vectors.

A linear system is said to be controllable if, for any initial state, there exists a sequence of

inputs that leads to any arbitrarily chosen final state [17]. This is equivalent to the property

that the poles of the controlled system can be arbitrarily assigned through state feedback, i.e.,

through displacement and speed feedback as in Eq. (30). Acceleration feedback is here omitted

for brevity, however state-derivative feedback has been proved to be equivalent to state-feedback

(see e.g., [5]). An effective way to assess controllability for second order systems is through the

following condition [15]:

rank
([

λ2
iM+ λiC+K B

])
= N, ∀λi (31)

Equation (31) shows that controllability depends on the number and on the placement of the

control forces. The wide literature of control shows, however, that usually “few” forces suffice

to ensure controllability, i.e., m ≪ N often allows assigning all the poles, provided that a wise

placement of the actuators is done. This is typical in underactuated systems, where rank-one

control is widely adopted [31, 37, 35, 4].

It should be noted that the assumption of displacement and speed feedback of all the coordi-

nates is of fundamental importance: removing some of the feedback variables, i.e., performing

output feedback, severely affects the possibility of arbitrarily assigning the poles.

As far as eigenstructure assignability is concerned, controllability is not enough [2]. Hence,

a more severe condition is to be satisfied to ensure that the arbitrary eigenpair (λi,wi) can be as-

signed. Let us introduce the receptance matrix of the open loop system H (λi) =
(
λ2
iM+ λiC+K

)−1;

an arbitrary eigenpair is assignable if and only if [37]:

wi ∈ span (H (λi)B) (32)

Such a condition reveals that the i-th eigenvector wi related to the eigenvalue λi is assignable

if and only if it belongs to the subspace spanned by the columns of H (λi)B. Eq. (32) shows,

again, that the choice of B is crucial. However, compared to controllability, the rank of B has a

drastic effect on the assignability since span (H (λi)B) ∈ CN×m. Hence, the number of entries of

each eigenvector that can be exactly assigned is m. For example, if m = 1, there is no possibility

of assigning the eigenvector. If the complete eigenstructure should be assigned through state-

feedback control, N control forces are therefore required.
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Again, as in the discussion of controllability, if output feedback is used instead of state feed-

back, the possibilities of eigenvector assignment are further reduced.

4.2 On the eigenstructure assignability in co-simulation

The conditions provided in the previous Section are useful in the case of state-feedback control of

the monolithic system, and provide a general explanation of these two concepts. However, in the

ad-hoc framework developed in this paper for the co-simulation compensation, the application

of both conditions is not straightforward. On the other hand, eigenstructure assignability cannot

be assessed through the monolithic model, since the perturbation due to B∆GR (s) should be

accounted for as well.

An effective approach to assess if the primary eigenvalues and the related eigenvectors are

assignable through the chosen correction forces is based on the analysis of Eq. (22). Indeed, the

linear system Lk = n has a solution if and only if:

rank (L) = rank
([

L n

])
(33)

as stated by the well known Rouché-Capelli theorem.

Hence, the eigenstructure assignment problem in the presence of the chosen compensation,

formulated in Eq. (22), admits a solution if and only if vector n belongs to the subspace spanned

by the columns of matrix L. In practice, such a condition summarizes the assessment of both

controllability and eigenvector assignability.

It is worth noticing that L depends upon B, R (s), and D(s) and on the variables assumed

for feedback in the case of output feedback, as it will be shown for the two-mass system in

Section 3.3. Hence, both the choice of the distribution of the forces along the system through B,

and the choice of the feedback signals to compute u (s) play a fundamental role in the problem

solvability.

Equation (33) is therefore a relevant tool to understand which is the right number of in-

dependent forces (the so-called control rank) and their proper placement in the system. Addi-

tionally, if the full state is not available, it allows one to understand if more variables should be

exchanged by the manager to allow the compensator exactly assigning the eigenstructure.
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Finally, it should be pointed out that Eq. (33) does not predict whether or not the secondary

roots can be stabilized. The stabilization of such roots exploits the redundancy of the linear

system, and the higher the degree of redundancy, i.e., the size of kr, the more likely stabilization

is.

4.3 Eigenstructure assignability in the two-mass system

This Section investigates eigenstructure assignability through the topology of B∆GR (s) chosen

in Section 3.3 for the two-mass system.

Let us first assume that two independent compensation forces are applied through the force

distribution matrix B = I2, and those feedback variables include position, speed and accelera-

tion feedback of all the coordinates (x1, x∗2, x
∗
1 and x2), as defined in Eq. (24). The application

of the assignability test in Eq. (33) yields: rank (L) = rank
([

L n

])
= 8. This result holds for

both the undamped and damped systems (the latter ones have been investigated for both Ts = 1

ms and Ts = 4 ms). Hence, the design of B∆GR (s) as proposed in Section 3.3 is adequate to

compensate co-simulation through the proposed eigenstructure assignment technique.

Let us now investigate the effect of removing one of the signals fed back to the compensator,

which leads to an output-feedback control scheme. By means of example, let us omit x∗2. In

this case, and for all the three systems previously investigated, the assignability condition is not

fulfilled since rank (L) = 7 ̸= rank
([

L n

])
= 8. It can be shown that in the general case of a

damped two-mass system, to ensure eigenstructure assignability, it is not possible to neglect any

of the above mentioned signals to tune the compensator.

Let us now assume that only one force is employed to compensate the co-simulation. This

is the so-called “rank-one” control, i.e., rank (B) = 1, and we assume B =

{
1 −D(s)

}T

,

meaning that one compensation force is applied to both masses with opposite signs. Clearly,

the compensation term acting on the second mass is multiplied by D(s) since, once the control

force is computed in subsystem 1, it must be communicated to subsystem 2 to be applied, i.e., it

behaves as a coupling variable. In this scenario the compensation forces in Eq. (24) become:

u (s) = −
((
s2d1 + sf1 + g1

)
x1 (s) +

(
s2d2 + sf2 + g2

)
x∗2 (s)

)
(34)
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Hence B∆GR (s) becomes:

B∆GR (s) =

 s2d1 + sf1 + g1
(
s2d2 + sf2 + g2

)
D(s)

−
(
s2d1 + sf1 + g1

)
D(s) −

(
s2d2 + sf2 + g2

)
D2 (s)

 (35)

Obviously ∆Gc (s), describing the perturbation due to co-simulation, is not affected by the

variation of the compensator architecture.

Once the compensation eigenproblem (∆Gc (λi) +B∆GR (λi))wi = 0 is written for the

2N theoretical eigenpairs to be assigned, it is possible to formulate the linear system for the

eigenstructure assignment with the canonical form Lk = n adopted in this paper, where k

collects in this case the 6 unknown control gains. The mathematical manipulations are here

omitted for brevity.

The application of the Rouché-Capelli theorem in the case of rank-one control gives: rank (L) =

4 ̸= rank
([

L n

])
= 5 for the three systems under investigation. Hence, rank-one control is

not adequate to perform eigenstructure assignment.

To briefly summarize the analysis proposed in this Section, it is proved that co-simulation

compensation through eigenstructure assignment for the two-mass system under investigation

is achievable through the compensator architecture proposed in Section 3.3. In contrast, neglect-

ing compensation forces or feedback signals is not possible as evidenced by the eigenstructure

assignability condition.

5 Co-simulation examples: the two-mass system

5.1 Co-simulator implementation details

A software code has been developed in MATLAB to carry out the co-simulation of the linear sys-

tems used as benchmarks in this paper. This co-simulation framework consists of a co-simulation

manager to orchestrate the data exchange and synchronize the subsystem integrations following

an explicit Jacobi scheme. The definitions of the subsystems have been particularized for each

example, complying with the interface definition imposed by the co-simulation manager.

In general co-simulation implementations, the subsystems are often treated as black boxes,
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in which only a reduced set of coupling variables are exposed. This assumption simplifies the

definition of co-simulation standards, such as FMI (Functional Mockup Interface) [12]. However,

for academic purposes, in this case the co-simulation manager has full access to the subsystem

definitions, e.g., system parameters, states, extrapolation method, and internal step-sizes. The

evaluation of the eigenstructure is performed once the system parameters are defined and the

co-simulation manager is created, and therefore the model of the co-simulated system is known.

The compensation scheme, as well as the compensator gains, are computed automatically before

starting the co-simulation.

The compensator is implemented in the MATLAB co-simulation discrete-time software as

sketched in Fig. 10 (where continuous-time notation is kept for uniformity with the paper text),

with fe,i (s) denoting the i-th external force, and where the following transfer functions are

defined:

h1 (s) =
1

s2m1 + s (c1 + cc) + (k1 + kc)

h2 (s) =
1

s2m2 + sc2 + k2

gc (s) = scc + kc

(36)

Co-simulation
manager

Subsystem 1

Subsystem 2

h1(s) h2(s)

D(s)

D(s)

gc(s)

fe,1(s) fe,2(s)

x1(s)
−

fc(s) f̃c(s) f̃∗c (s)

x2(s)x2
∗(s)

∆GR,21 (s)

∆GR,1 (s) ∆GR,22 (s)

u1 (s)

u2,1 (s)

u2,2 (s)

Co-simulated model
Compensation loop

Figure 10: Implementation of the co-simulation model with the compensator for the two-mass
system.

Since x1
∗ (s) is not fed to subsystem 2 by the co-simulation manager, the compensation force

u2 (s) applied to subsystem 2, as defined in Eq. (24), is split into two contributions to allow its
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implementation:

u2 (s) = u2,1
∗ (s) + u2,2 (s) (37)

u2,1
∗ (s) is the non-collocated term, i.e., the contribution of x1 (s):

u2,1
∗ (s) = −

(
s2d3 + sf3 + g3

)
x1 (s)D (s) (38)

u2,2 (s) is the collocated one, i.e., the contribution of x2 (s):

u2,2 (s) = −
(
s2d4 + sf4 + g4

)
x2 (s) (39)

In turn, u2,1∗ can be written as the product between D(s) and the compensation force computed

through x1 (s), referred to as u2,1:

u2,1 (s) = −
(
s2d3 + sf3 + g3

)
x1 (s) (40)

By adding u2,1 (s) to fc (s), the corrected coupling force f̃c (s) is computed in Subsystem 1 and

communicated to Subsystem 2 through the co-simulation manager, leading to f̃c
∗
(s). u2,2 (s) is,

instead, computed in Subsystem 2 and treated as an external force.

5.2 Co-simulations: free evolution

This Section compares the time-domain results of the simulations of the reference solution, the

monolithic model, the co-simulated model without any compensation (i.e., in an “open loop”

simulation), and the compensated co-simulated model (i.e., with the “closed loop” correction).

These four scenarios will be henceforth denoted as “ref”, “mono”, “O.L.” and “C.L.” respectively.

The reference solution is computed as [17]:

z (t) = eAtz0 (41)

where the state-space representation is adopted, with A the state-matrix, z (t) =

{
x (t) ẋ (t)

}T

the state vector and z0 = z (0) =

{
x0 ẋ0

}T

the state initial condition.
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The free evolution from the sample initial conditions x0 =

{
0 0

}T

m and ẋ0 =

{
100 −100

}T

m/s, proposed in [42] and adopted also in [20, 38], is simulated for the three different scenarios

already discussed along the paper

• Undamped two-mass system with Ts = 1 ms (Section 5.2.1);

• Damped two-mass system with Ts = 1 ms (Section 5.2.2);

• Damped two-mass system with Ts = 4 ms (Section 5.2.3);

The system parameters and the compensation gain vectors for the three scenarios are those

introduced in Sections 2.3.2 and 3.3.

The symplectic Euler formula was used as numerical integrator inside both subsystems in the

co-simulation and also in the evaluation of the monolithic solution. The microstep size for each

subsystem is set equal to Ts. In all the scenarios, ZOH extrapolation is assumed. The normalized

root mean square (NRMS) error of a signal x (t), with respect to its reference solution xref (t), is

employed to evaluate the accuracy of the simulation results [14]:

exNRMS =

√∑T
t=0 (x (t)− xref (t))

2

T

xmax
ref − xmin

ref

(42)

The maximum and minimum value of xref (t) over the simulation time T , denoted xmax
ref and xmin

ref

respectively, are assumed for normalization.

5.2.1 Free evolution: undamped two-mass system

The time-domain simulations in Figs. 11 and 12 highlight that the co-simulated undamped

system without compensation is unstable, i.e., leads to diverging values of the coordinates. This

result confirms the analysis of the eigenstructure, as proposed in Section 2.3.2, that yields a pole

pair in the right half of the complex plane.

The application of the proposed co-simulation compensation scheme stabilizes the co-simulation

and ensures accurate estimates that almost match the one provided by the reference solution

and by the monolithic model, as expected by the matching of the eigenstructures. This result
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(a) (b)

(c) (d)

Figure 11: Undamped two-mass system time-domain free evolution co-simulation with and with-
out compensation: (a) x2, (b) fc, (c) x2 magnified view, (d) fc magnified view.

Figure 12: Undamped two-mass system time-domain free evolution co-simulation with and with-
out compensation: mechanical energy.
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is clearly shown in Figs. 11 and 12, and through the NRMS errors listed in Table 5. The mono-

lithic solution is omitted from the following figures, since it visually overlaps with the analytical

solution in all cases, as corroborated by the low values of the NRMS errors listed in the tables.

Table 5: Free evolution NRMS errors with respect to the analytical solution for the two-mass
system with and without compensation: undamped and damped system with Ts = 1 ms and
Ts = 4 ms.

Undamped Damped

Ts = 1 ms Ts = 1 ms Ts = 4 ms

ex2
NRMS efcNRMS ex2

NRMS efcNRMS ex2
NRMS efcNRMS

Monolithic 0.027 0.004 0.010 0.010 0.031 0.005

Without
compensation 5.159 1.614 0.582 0.171 4.909 1.939

With
compensation 0.047 0.038 0.003 0.001 0.032 0.016

The increase of the computational effort due to the higher number of calculations employed

during the co-simulation compensation process is evaluated comparing the CPU time resulting

from 1000 co-simulations performed without and with the compensation algorithm. A laptop

equipped with an Intel i7-950H 2.60 GHz CPU and 16GB RAM has been used. Figure 13 high-

lights that for the co-simulation without compensation the average CPU time is 1.60 s (dashed

line) with ±0.03 s standard deviation (dotted lines) while for the co-simulation with compen-

sation the average CPU time is 1.92 s with ±0.03 s of standard deviation. Hence the CPU time

increases about 20% in the studied case.

5.2.2 Free evolution: damped two-mass system with Ts = 1 ms

Let us consider the two-mass damped system with Ts = 1 ms. In this case, the eigenstructure

analysis provided in Section 2.3.2 reveals that the co-simulated system is stable even if no com-

pensation is adopted. However, the spillover on the primary poles deteriorates the accuracy of

the co-simulation, leading therefore to unreliable results. The time-domain simulations shown

in Fig. 14 and in Fig. 15 confirm the expectations: both fc and x2, as well as the mechanical

energy, do not diverge, albeit they clearly do not match those sported by the reference model

due to spillover on the primary poles.

If the compensator gains provided in Table 4 are applied to correct the co-simulation, sta-
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Figure 13: Normal distributions of the co-simulation CPU time for 1000 free-evolution co-
simulations with and without compensation algorithm for the two-mass undamped system.

(a) (b)

(c) (d)

Figure 14: Damped two-mass system with Ts = 1 ms time-domain free evolution co-simulation
with and without compensation: (a) x2, (b) fc, (c) x2 magnified view, (d) fc magnified view.

34



Eigenstructure assignment and compensation of explicit co-simulation

(a) Ts = 1 ms (b) Ts = 4 ms

Figure 15: Mechanical energy of the damped two-mass system time-domain free evolution co-
simulation with and without compensation: (a) Ts = 1 ms, (b) Ts = 4 ms.

ble and accurate estimates are obtained, as shown in Figs. 14 and 15. As expected, the exact

assignment of the eigenstructure makes the corrected co-simulated model almost match those

obtained through the reference solution and the monolithic model. This is corroborated by the

NRMS errors listed in Table 5: just some small residual errors remain in the compensated co-

simulated system, that are hard to see in the time histories in Figs. 14 and 15. These errors are

caused by the unavoidable presence of the secondary roots due to the exponential term in D(s),

that are not present in the case of the monolithic model.

5.2.3 Free evolution: damped two-mass system with Ts = 4 ms

This Section provides the co-simulation results in the challenging scenario of the damped two-

mass system simulated using a macro-step size of 4 ms. As shown in Section 2.3.2, the increase

of Ts shifts the second pair of primary poles towards the unstable half-plane, thus causing insta-

bility. This fact is experienced in the co-simulation of the uncompensated system, that features

diverging coupling signals x2 and fc (see Fig. 16) and hence diverging mechanical energy (see

Fig. 15).

The application of the proposed compensation technique overcomes this issue, leading to

a stable behaviour for the co-simulated system that accurately matches the theoretical model,

as shown by the time-domain simulations in Figs. 15 and 16, as well as by the low values of

eNRMS , as summarized in Table 5.
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(a) (b)

(c) (d)

Figure 16: Damped two-mass system with Ts = 4 ms time-domain free evolution co-simulation
with and without compensation: (a) x2, (b) fc, (c) x2 magnified view, (d) fc magnified view.

5.3 Co-simulations: forced response

The systems analyzed in the previous Sections were also co-simulated in the presence of a chirp

excitation applied to mass m2, with amplitude 1 N, and frequency ranging from 1 Hz to 10 Hz.

The initial conditions for displacement and velocity are set equal to zero. This test is challenging

since all the vibrational modes are excited and therefore the frequency response over a broad

range can be evaluated.

The reference solution is computed through the numerical integration of the algebraic equa-

tion governing the forced response of the system, i.e., [17]:

z (t) = eAtz0 +

∫ t

0
eA(t−τ)Bssfe (τ) dτ (43)

where Bss is the input matrix in the state-space representation and τ denotes the integration
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time that spans the interval [0, t].

(a) Undamped, Ts = 1 ms

(b) Damped, Ts = 1 ms (c) Damped, Ts = 4 ms

Figure 17: Mechanical energy, time-domain forced response co-simulation with and without
compensation: (a) undamped system and damped system (b) Ts = 1 ms and (c) Ts = 4 ms.

The time histories of the mechanical energy are compared in Fig. 17, to provide an abstract

representation of all the tests. The instability of the undamped system and of the damped system

with Ts = 4 ms are properly compensated through the proposed approach, as corroborated

by the NRMS errors summarized in Table 6: just small residual errors affect the corrected co-

simulated system, because of the unavoidable presence of the secondary poles.

5.4 Co-simulation examples: random parameter systems

The proposed compensation technique is computed automatically, without the need for empiri-

cal or trial-and-error tuning: once the analytical model of the system and the transfer function

of the co-simulation manager are available, a routine for the off-line computation of the gains
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Table 6: Forced response NRMS errors with respect to the reference solution for the two-mass
system with and without compensation: undamped and damped system with Ts = 1 ms and
Ts = 4 ms.

Undamped Damped

Ts = 1 ms Ts = 1 ms Ts = 4 ms

ex2
NRMS efcNRMS ex2

NRMS efcNRMS ex2
NRMS efcNRMS

Monolithic 0.024 0.021 0.040 0.042 0.097 0.095

Without
compensation 0.262 0.239 0.155 0.122 0.232 0.182

With
compensation 0.150 0.138 0.099 0.084 0.007 0.008

can be executed. The proposed compensation technique can therefore handle arbitrary model

parameters. This relevant feature is corroborated in this Section by considering a set of 100 ran-

dom combinations of the parameters of the mechanical system, generated within the following

ranges:

• m1,m2 ∈
[
1 10

]
kg;

• k1, k2, kc ∈
[
1 1000

]
N/m;

• ξ1, ξ2 ∈
[
0.001 0.1

]
;

with ξ1 = c1/2
√
m1k1, ξ2 = c2/2

√
m2k2 and cc ∈

[
0 c1

]
. Free evolution from the same initial

conditions adopted in Section 5.2 is considered. For all the tests, the macro step-size was set to

Ts = 5 ms and ZOH extrapolation was used.

The performances of the uncompensated and compensated co-simulated systems are com-

pared in Fig. 18 through the mechanical energy NRMS error in logarithmic scale. It is evident

that the compensated co-simulation outperforms the uncompensated, being able to get rid of

the perturbation introduced by the co-simulation scheme, the result is highlighted by the aver-

age (AVG) NRMS error for 100 simulations displayed in Fig. 18 using a bar plot. The inspection

of each co-simulation shows that 13 unstable noncompensated co-simulations arise, as marked

through over bar ’*’ in Fig. 18. In these cases the application of the proposed compensation

method enables one to stabilize the co-simulation and to obtain a remarkable accuracy.
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Figure 18: Summary of the mechanical energy NRMS errors in the co-simulation with 100 sets
of randomly generated parameter sets. Unstable uncompensated co-simulations are marked by
a ’*’.

6 Example of application to multi-DOF subsystems

6.1 Eigenstructure assignment

The proposed compensation algorithm is extended in this Section in the case of multi-DOF

subsystems.

Let us consider, by means of example, the four-mass system sketched in Fig. 19. Let us assume

that both subsystems have two DOFs, exchanging one coupling force fc and one displacement

x3 through the co-simulation interface.

m1 m2
Co-simulation

manager
m3 m4

k1 k2 k3 k4 k5

c1 c2 c3 c4 c5

Subsystem 1 Subsystem 2

fc

x∗
3

f∗
c

x3

x1 x2 x3 x4

Figure 19: Co-simulated four-mass system with force-displacement coupling.
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The theoretical model of the monolithic system is:

Gt (s) =



gt,11 (s) gt,12 (s) 0 0

gt,21 (s) gt,22 (s) gt,23 (s) 0

0 gt,32 (s) gt,33 (s) gt,34 (s)

0 0 gt,43 (s) gt,44 (s)


(44)

where each entry of the dynamic stiffness matrix is:

gt,11 (s) = s2m1 + s (c1 + c2) + k1 + k2

gt,22 (s) = s2m2 + s (c2 + c3) + k2 + k3

gt,33 (s) = s2m3 + s (c3 + c4) + k3 + k4

gt,44 (s) = s2m4 + s (c4 + c5) + k4 + k5

gt,12 (s) = gt,21 = − (sc2 + k2)

gt,23 (s) = gt,32 = − (sc3 + k3)

gt,34 (s) = gt,43 = − (sc4 + k4)

(45)

Since f∗c (s) = D (s) fc (s) and x∗3 (s) = D (s) x3 (s), the perturbation introduced by the co-

simulation interface is:

∆Gc (s) =



0 0 0 0

0 0 (sc3 + k3) (1−D(s)) 0

0 (sc3 + k3) (1−D(s)) (sc3 + k3)
(
D2 (s)− 1

)
0

0 0 0 0


(46)

Hence, two independent control forces are here adopted, i.e., B is selected such that its rank is

2. The two independent compensation forces, denoted u1 and u2, are assumed to be applied to

mass 2 and mass 3 respectively, and, in accordance with the variables exchanged by the manager,

the following definitions are adopted:



u1 (s) = −

(
n1∑
i=1

(
s2di + sfi + gi

)
xi (s) +

(
s2dn1+1 + sfn1+1 + gn1+1

)
x∗3 (s)

)

u2 (s) = −

n1,2n1+1∑
i=1

j=n1+2

(
s2dj + sfj + gj

)
x∗i (s) +

n2,2n1+n2+1∑
i=n1+1
j=2n1+2

(
s2dj + sfj + gj

)
xi (s)


(47)
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It is worth mentioning that the proposed control scheme is not a full state feedback, since u1

does not exploit any information on x4. Indeed, on the one hand, x4 is not exchanged through

the manager; on the other hand, subsystem 2 does not send back any reaction force to subsystem

1 through the manager, and hence the “trick” adopted in the two-mass system to perform full

state feedback is not allowed. In contrast, the “output feedback” compensator in the form of

Eq. (47) can be implemented with the same approach proposed in Section 5.1, leading to the

following correction (with rj (s) = s2dj + sfj + gj):

B∆GR (s) =



0 0 0 0

r1 (s) r2 (s) r3 (s)D (s) 0

r4 (s)D (s) r5 (s)D (s) r6 (s) r7 (s)

0 0 0 0


(48)

By formulating the eigenproblem of the compensated system, as provided in Eq. (21), the linear

system of Eq. (27) is formulated to compute the gains:

La,i =

λ2
iw

(1)
i λ2

iw
(2)
i λ2

iw
(3)
i D(λi) 0 0 0 0

0 0 0 λ2
iw

(1)
i D(λi) λ2

iw
(2)
i D(λi) λ2

iw
(3)
i λ2

iw
(4)
i


Lv,i =

λiw
(1)
i λiw

(2)
i λiw

(3)
i D(λi) 0 0 0 0

0 0 0 λiw
(1)
i D(λi) λiw

(2)
i D(λi) λiw

(3)
i λiw

(4)
i


Ld,i =

w(1)
i w

(2)
i w

(3)
i D(λi) 0 0 0 0

0 0 0 w
(1)
i D(λi) w

(2)
i D(λi) w

(3)
i w

(4)
i


n1,i

n2,i

 = −

 (λic3 + k3) (1−D(λi))w
(2)
i

(λic3 + k3) (1−D(λi))w
(2)
i + (λic3 + k3)

(
D2 (λi)− 1

)
w

(3)
i


d =

{
d1 . . . d7

}T

, f =

{
f1 . . . f7

}T

, g =

{
g1 . . . g7

}T

(49)

The rank analysis of the linear system reveals that this control architecture satisfies the assignabil-

ity condition.
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6.2 Co-simulation examples

Let us consider the following parameters for the simply-connected chain of the four-mass system

sketched in Fig. 19: m1 =
1
2m2 =

1
3m3 =

1
4m4 = 1 kg, k1 = 1

2k2 =
1
3k3 =

1
4k4 =

1
5k5 = 100 N/m,

c1 =
1
2c2 =

1
3c3 =

1
4c4 =

1
5c5 = 0.01 Ns/m. The macro-step size Ts is 3 ms.

The eigenvalue analysis of the co-simulated system, summarized in Table 7, highlights that

the uncompensated co-simulated system will be unstable due to the presence of three pole

pairs that lie in the right half of the complex plane, as shown in Fig. 20. The instability of the

co-simulated system without compensation is confirmed also by the negative damping ratios

obtained for the higher frequency pole pairs as summarized in Table 8.

Table 7: Primary poles of the four-mass system: monolithic and co-simulated without and with
compensation.

Eigenvalue Monolithic Co-simulated
Co-simulated
compensated

λ1,2 −0.002± 6.586j −0.011± 6.586j −0.002± 6.586j

λ3,4 −0.009± 13.120j 0.031± 13.120j −0.009± 13.120j

λ5,6 −0.017± 18.206j 0.017± 18.206j −0.017± 18.206j

λ7,8 −0.023± 21.479j 0.063± 21.479j −0.023± 21.479j

Table 8: Modal parameters of the four mass system: monolithic and co-simulated without and
with compensation.

ωn1,2 [rad/s] ξ1,2 ωn3,4 [rad/s] ξ3,4 ωn5,6 [rad/s] ξ5,6 ωn7,8 [rad/s] ξ7,8

Monolithic 6.59 0.0003 13.1 0.0007 18.2 0.0009 21.5 0.0011

Co-simulated 6.59 0.0017 13.1 -0.0024 18.2 -0.0009 21.5 -0.0029

Co-simulated
compensated 6.59 0.0003 13.1 0.0007 18.2 0.0009 21.5 0.0011

The application of the eigenstructure assignment strategy compensates for the perturbation

caused by the co-simulation interface, indeed the natural frequencies and damping ratios of the

co-simulated system with compensation match those of the monolithic system as summarized

in Table 8. Figure 20 shows that the primary poles in the compensated co-simulation are shifted

back to their theoretical locations in the complex plane, i.e., those of the monolithic system.

The effectiveness of the proposed compensation strategy in the presence of multi-DOF sub-

systems is corroborated by the co-simulation of the free evolution of the system from a sample

set of initial conditions, that includes null initial displacement and ẋ0 =

{
1 −2 3 −4

}T
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Figure 20: Primary poles of the monolithic and co-simulated four-mass system without and with
compensation.

m/s.

The mechanical energy of the system is shown in Fig. 21 and confirms that the original co-

simulated system is unstable. Once the compensation is implemented, the co-simulated system

is stabilized and its dynamics matches that of its theoretical counterpart as corroborated by the

coupling signals x3 and fc shown in Fig. 22 and by the NRMS errors listed in Table 9.

Figure 21: Mechanical energy in the co-simulation of the four-mass system with and without
compensation.

The computational effort of the co-simulation with compensation is evaluated comparing
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(a) (b)

(c) (d)

Figure 22: Four-mass system co-simulation with and without compensation: (a) x3, (b) fc, (c)
x3 magnified view, (d) fc magnified view.
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Table 9: NRMS errors with respect to the analytical solution for the four-mass system with and
without compensation.

ex3
NRMS efcNRMS

Monolithic 0.024 0.053
Co-simulated 1.906 0.230

Co-simulated compensated 0.136 0.046

the CPU time resulting from 1000 co-simulations performed without and with the compensation

algorithm for this test-case as done in Section 5.2 for the two-mass system. The CPU times shown

in Figure 13 evidence that for the co-simulation without compensation the average CPU time

is 0.35 s with ±0.03 s standard deviation while for the co-simulation with compensation the

average CPU time is 0.41 s with ±0.04 s of standard deviation. Hence the CPU time increases

about 17%. Clearly, the CPU time is smaller with respect to the two mass system since the system

is simulated for 10 s and with a larger step size.

Figure 23: Normal distributions of the co-simulation CPU time for 1000 free-evolution co-
simulations with and without compensation algorithm for the four-mass system.

7 Conclusions

In this paper the stability and accuracy of explicit co-simulation are discussed. The dynamics

of co-simulated systems in explicit Jacobi schemes is formulated taking into account the effect

of the signal exchange between subsystems through the co-simulation manager. This yields a

model of the co-simulated system that explicitly expresses the perturbation with respect to its
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monolithic counterpart introduced by the signal coupling interface. The adopted mathematical

formulation enables one to exploit a novel approach based on the analysis of the co-simulated

system eigenstructure, which in turn allows the evaluation of the alteration of the system dy-

namics due to the spillover of the system eigenvalues and eigenvectors. In addition, since co-

simulation is expressed as the closed-loop interconnection between subsystems, the presence

of time-delays due to the signal exchange process introduces an infinite number of secondary

poles, the latent roots, which may compromise co-simulation stability. The effectiveness of the

analysis of the system eigenstructure to predict instability and inaccuracy during co-simulation

is corroborated by some numerical examples performed on a widely adopted benchmark taken

from the literature.

A novel co-simulation compensation strategy, based on the linear control theory, is adopted

to perform the eigenstructure assignment, i.e., to compensate for the perturbation on the system

poles (i.e., natural frequencies and damping) and eigenvector (i.e., mode shapes) due to the co-

simulation. The compensator is designed by considering an ad-hoc developed condition to verify

the assignability of the system eigenstructure through the designed compensation architecture.

The proposed compensation strategy effectiveness is assessed by several numerical co- sim-

ulations performed on a two-mass system with different parameters and by varying both the

system initial conditions as well as the excitation force. Several macro-step sizes were used in

the verification process as well. The method has been further extended to compensate the co-

simulation of linear mechanical systems with several degrees of freedom and its effectiveness in

this scenario is assessed by a numerical example that consists of a four-mass system.

The generalization of the proposed approach for its use in a wider scope of problems rep-

resents a currently open line of research. The method could be extended to nonlinear systems

by means of piecewise linearization of the subsystem dynamics. It would also be possible to use

the proposed compensation solution when the internals of the subsystems are not disclosed, us-

ing identification techniques and preliminary test runs of the subsystems. These improvements

will make it possible to expand the applicability of the method to wider areas of multi-domain

co-simulation.
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F. González acknowledges the support of the Ministry of Economy of Spain through the Ramón

y Cajal research program, contract no. RYC-2016-20222, and of the Government of Galicia

through grant ED431F2021/04.

References

[1] Adamson, L., Fichera, S., Mottershead, J.: Receptance-based robust eigenstructure as-

signment. Mechanical Systems and Signal Processing 140, 106,697 (2020). DOI

10.1016/j.ymssp.2020.106697

[2] Andry, A.N., Shapiro, E.Y., Chung, J.: Eigenstructure assignment for linear systems. IEEE

Transactions on Aerospace and Electronic Systems AES-19(5), 711–729 (1983). DOI

10.1109/TAES.1983.309373

[3] Apkarian, P., Tuan, H.D., Bernussou, J.: Continuous-time analysis, eigenstructure as-

signment, and H2 synthesis with enhanced linear matrix inequalities (LMI) character-

izations. IEEE Transactions on Automatic Control 46(12), 1941–1946 (2001). DOI

10.1109/9.975496
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