
Notes on Co-Simulation

Francisco González, Borja Rodríguez, Alejandro Zar, Miguel Ángel Naya

Laboratorio de Ingeniería Mecánica - LIM

Universidade da Coruña

September 1, 2022

1 Introduction

Since its introduction in industrial environments in the 1960s, computer simulation of engineering sys-

tems has proved itself a valuable tool to reduce R&D costs and shorten product development cycles. In

particular, multibody systems dynamics (MBS) has been successfully used to this end in a wide range of

industrial applications. During the latest decades, hardware and software improvements have made it

possible to effectively represent complex phenomena such as contacts and flexibility in MBS simulations

[11, 12]. Better computational capabilities, however, have also resulted in growing expectations regarding

the performance and results to be delivered by predictive simulation software tools. While early MBS sim-

ulations were limited to dealing with mechanical systems composed of a few rigid bodies, nowadays the

goal is to accurately describe the dynamics of complex engineering applications, which often include non-

mechanical components such as electronics or hydraulics, in an efficient way. Real-time performance is

demanded in many cases, such as Human/Hardware-in-the-Loop (HiL) environments.

This transition from component-level to system-level simulation has motivated the need to develop

formalisms that are able to handle multiphysics systems, in which the governing dynamics equations and

time scales are likely to differ across its components. The methods that have been proposed to address this

task can be categorized into two main groups: monolithic simulation and co-simulation, as discussed in

Section 1.2. These two approaches differ in the way in which they consider and handle the dynamical

systems that describe the application to be simulated.

1

1.1 Dynamical systems 1 INTRODUCTION

1.1 Dynamical systems

A dynamical system is a model that describes a physical system by means of a series of variables, named

the state (in the case of a mechanical system, its generalized coordinates and velocities), and a set of evo-

lution rules that define how this state changes as time progresses [14]. For most mechanical systems,

these evolution rules are given in the form of a set of ordinary differential equations (ODEs) or differential

algebraic equations (DAEs).

Example: continuous dynamical system

As an example, consider the point-mass, simple pendulum moving under gravity effects, shown in Fig. 1.

If the distance between points O and P is L , the mass at point P is m , and the acceleration of gravity along

the negative y -axis is g , then the dynamics of this one-degree-of-freedom mechanical system can be given

by the following equation of motion

m L 2ϕ̈−mg L sinϕ = 0 (1)

which is a second-order ODE expressed in terms of the angleϕ from the vertical axis to the pendulum rod.

O

P

ϕ

x

y

Figure 1: A point-mass simple pendulum.

If the position and velocity of the pendulum, ϕ0 and ϕ̇0, are known for a given time t = t0, then the

motion of the pendulum can be obtained solving the initial value problem defined by these initial condi-

tions and Eq. (1). The pendulum state x, in this case, includes angle ϕ and its derivative with respect to

time, ϕ̇

x =

 ϕ
ϕ̇

 (2)

The evolution rule for this system would be defined by the differential equation of motion (1) and the

2

1.1 Dynamical systems 1 INTRODUCTION

initial conditions, as follows

ẋ =

 ϕ̇
ϕ̈

 =

 ϕ̇

g sinϕ/L

 ; x0 =

 ϕ0

ϕ̇0

 (3)

The dynamical representation of a mechanical system is not unique. The motion of the pendulum in

Fig. 1 can be characterized by means of the x and y coordinates of pointPwith a system of two differential

equations

 m 0

0 m

 ẍ

ÿ

+

 0

mg

 =

 0

0

 (4)

The pendulum state would be in this case x=
�

x , y , ẋ , ẏ
�T

. However, the two coordinates x and y are not

independent; they are related through a kinematic constraint that enforces that the distance between O

and P is always L

Φ = x 2+ y 2− L 2 = 0 (5)

In this case, the motion of the pendulum is described by both the differential equations of motion (4) and

the constraint equation (5), together with the initial conditions x (0) = x0. This means that the evolution

rule of the mechanical system is given as an initial value problem with a system of DAEs instead of ODEs.

The solution of the dynamics of mechanical systems defined by means of either ODEs or DAEs is one of

the key topics addressed in the Multibody Systems (MBS) dynamics literature [4, 13].

Example: discrete dynamical system

Not all dynamical systems are described using differential equations. Some can be expressed using a se-

quence of vectors {qn}∞n=0 generated by an iteration rule. For instance

qn+1 = a sin qn , q0 = Q (6)

where a is a scalar and Q is the initial value of the vector series. The transition from one state to the next one

can be determined by the reaching of a certain instant in time (time-driven system), or by the occurrence

of an event that triggers the transition (event-driven system).

3

1.2 Monolithic simulation and co-simulation 1 INTRODUCTION

Mathematical definition of a dynamical system

The mathematical definition of a dynamical system can be found in [33], in the form of rules that generate

sequences of vectors in a general metric space. Consider a sequence {qn}∞n=0 that satisfies

qn+1 = g (qn) , q0 = Q ∈Rp (7)

whereRp is an Euclidean metric space of dimension p , and function g satisfies g : D →Rp , where D ⊆Rp

is the domain of definition of g. Vector Q is known as the initial data, initial value, or initial condition and

Eq. (7) is the map of iteration. Equation (7) defines a dynamical system on a subset E ⊆ Rp if, for every

Q ∈ E , there exists a unique solution {qn}∞n=0 of Eq. (7) defined and remaining in E for all n ≥ 0.

Note that this definition is only valid for dynamical systems defined using a discrete sequence as evo-

lution rule. However, it can also represent continuous dynamical systems defined by ODEs or DAEs when

numerical integration formulas are used to step forward in time the system dynamics.

Simulators

A simulator or solver is an algorithm that computes the evolution of the state and outputs of a dynamical

system [14]. The set of trajectories followed by the state and outputs is known as the behaviour trace of

the system.

1.2 Monolithic simulation and co-simulation

Nowadays, most applications of industrial interest can only be described using rather complex dynam-

ical systems. Often, such applications include subsystems of disparate natures, with dissimilar physical

behaviours and time scales. An electric road vehicle is a good representative of these multiphysics assem-

blies. While many subsystems in the car fall within the definition of a conventional mechanical system, like

the suspension and the steering mechanism, others like the electronics components in the e-powertrain

and the ADAS, or the hydraulic behaviour of the power brake, cannot be appropriately represented with

conventional MBS formulations. Moreover, while the component-level simulation of these components is

still useful and necessary during the development cycle, the interactions between dissimilar components

need to be understood in detail to ensure that the behaviour of the final product will match the design

specifications. For this reason, full-vehicle models geared towards system-level simulation are nowadays

required at several stages in the development cycle of a new car.

System-level simulation can be addressed following several approaches; most of them can be catego-

4

1.2 Monolithic simulation and co-simulation 1 INTRODUCTION

rized into two major groups: monolithic simulation and co-simulation. The difference between these lies

in the way in which dynamical systems are formulated, solved, and integrated.

Monolithic simulation

Monolithic simulation consists in describing the response of all the components in the system to be stud-

ied with a single, all-encompassing set of equations. When this approach is followed, a single solver takes

care of the integration of the dynamics of every component in the assembly. This solver typically has ac-

cess to the details that describe the dynamic model of each component, as these are often required to

build and solve their dynamics equations.

Component 1
x1

Component 2
x2

Solver
x, h ,
∫

Figure 2: Scheme of a monolithic simulation.

Figure 2 shows the generic scheme of a monolithic simulation environment with two subsystems. Each

component can be understood as a dynamical system with its own state, x1 for component 1 and x2 for

component 2. A single solver, with a given integration method
∫

, is responsible for the assembly of the

equations of motion and their numerical integration, often using a common integrator for all the compo-

nents. The overall assembly is regarded as a single dynamical system; its state x includes the states x1 and

x2 of the individual components, and a common evolution rule governs the change of all of them as time

progresses.

When properly designed, monolithic integration methods tend to be robust and efficient. They have

been successfully used in a wide range of applications, including mechatronics [29] and hydraulically ac-

tuated mechanical systems [21, 27]. Among their drawbacks is the need to develop a dynamic formula-

tion that is able to deal with the behaviour of every subsystem, which can become a complicated task

when these are governed by very dissimilar physical equations. Besides, in many cases the solver needs to

have full access to the implementation details of each component to assemble the dynamics equations of

the whole system. Because of confidentiality reasons, this poses a problem in industrial applications that

combine components from different vendors. An additional difficulty in industry stems from the fact that,

sometimes, companies use for their simulation tasks software models that have been developed over the

years with particular modelling tools. Repeating the development of these models to integrate them in a

5

1.2 Monolithic simulation and co-simulation 1 INTRODUCTION

new monolithic simulation software would be costly and time-consuming. Co-simulation is an alternative

to monolithic implementations that offers a possible answer to the above mentioned problems.

Co-simulation

Instead of viewing the application under study as a single process, co-simulation envisions it as a set of

dynamical systems, each with its own solver, whose integration proceeds independently in time.

Co-simulation
Manager

Subsystem 1
x1, h1,
∫

1

y1

u1

Subsystem 2
x2, h2,
∫

2

u2

y2

Subsystem 3
x3, h3,
∫

3

u3y3

Figure 3: Scheme of a generic co-simulation environment.

A generic co-simulation scheme with three subsystems is shown in Fig. 3. Each subsystem is an inde-

pendent solver, with its own state xi (i = 1, 2, 3), integration method
∫

i
, and step-size hi . The interaction

of each solver with its environment, i.e., the rest of subsystems in the assembly, is represented by a set of

coupling variables that includes its input ui and output yi . The exchange of coupling variables between

the subsystems is coordinated by a co-simulation manager or orchestrator, responsible for the synchro-

nization of the integration processes of the solvers.

The exchange of coupling variables between the subsystems takes place at discrete-time communi-

cation points, at which they receive their input and send their output to the manager. Between two con-

secutive communication points, each subsystem proceeds with the integration of its state without any

interaction with its environment. This means that information about the evolution of the rest of subsys-

tems is generally not available until the next communication point is reached. The time interval between

two communication points is known as a macro time-step.

Co-simulation processes usually consist in two stages. During the initialization phase, a consistent

initialization of the simulators must be ensured. The initial states of the different subsystems may have

to satisfy one or more algebraic constraints, which generally involve the inputs and outputs of the system

and can be expressed as

Φ
�
x1,0, · · ·xn ,0, y1,0, · · ·yn ,0, u1,0, · · ·un ,0

�
= 0 (8)

6

1.2 Monolithic simulation and co-simulation 1 INTRODUCTION

where n is the total number of subsystems in the setup. Solving Eq. (8) may require an iterative procedure

to ensure the consistency of the initial states of all the subsystems. Once the initialization is complete, the

execution phase can begin.

Example: linear oscillator

A two-degree-of-freedom mass-spring-damper linear oscillator, shown in Fig. 4, will be used here as ex-

ample to illustrate the difference between monolithic implementations and co-simulation. This simple

mechanical system has been used several times in the co-simulation literature as benchmark problem,

e.g., [16, 31, 9, 15].

m1 m2

x1 x2

kc

cc

k1

c1

k2

c2

Figure 4: A two-degree-of-freedom linear oscillator.

The dynamics equations for the linear oscillator can be formulated as follows

 m1 0

0 m2

 ẍ1

ẍ2

+

 c1+ cc −cc

−cc c2+ cc

 ẋ1

ẋ2

+

 k1+kc −kc

−kc k2+kc

 x1

x2

 =

 f1

f2

 (9)

where m1 and m2 are the values of the oscillator point masses, k1, k2, and kc represent the stiffness of

the springs that connect the masses to the ground and to each other, and c1, c2, and cc are their damping

coefficients. Variables x1 and x2 denote the displacement of each mass with respect to the equilibrium

configuration, and f1 and f2 contain the forces applied on each point mass. Equation (9) can be expressed

in a more compact form as

Mẍ+Cẋ+Kx = f (10)

where x = [x1 x2]
T is the set of generalized coordinates that define the position of the oscillator, and

M, C, and K are its mass, damping, and stiffness matrices, respectively. Defining some initial conditions

x (t = 0) = x0 , ẋ (t = 0) = ẋ0 , (11)

one obtains a dynamical system, formed by Eqs. (10) and (11), whose motion can be integrated using one

of the many numerical integration formulas that exist in the literature. The resulting forward-dynamics

7

1.2 Monolithic simulation and co-simulation 1 INTRODUCTION

integration is an example of monolithic simulation, in which the dynamics of the whole system is formu-

lated together and handled by a single integrator.

It is also possible to formulate the system dynamics equations following a co-simulation approach.

Figure 5 shows the linear oscillator divided into two subsystems, M1 and M2. The way in which this divi-

sion is conducted is not unique, and many options exist to carry it out, as will be shown in Section 2.

m1 m2

x1 x2

kc

cc

k1

c1

k2

c2

f c
1 f c

2

ξc
1 ξc

2

Subsystem M1 Subsystem M2Manager

Figure 5: Division of the linear oscillator into subsystems.

In this particular example, subsystem M1 evaluates the coupling force between the two point masses

and sends it to subsystem M2, which in turn returns its position to M1. The dynamics of each subsystem

can be formulated separately. For subsystem M1

m1 ẍ1+ (c1+ cc) ẋ1− cc ξ̇
c
1+ (k1+kc) x1−kcξ

c
1 = f1 (12)

where ξc
1 is the position of the point mass in subsystem M2, received by M1 as an external input. The

coupling force, f c
1 is evaluated by subsystem M1 as

f c
1 = kc

�
x1−ξc

1

�
+ cc

�
ẋ1− ξ̇c

1

�
(13)

The dynamics of subsystem M2, in turn, can be written as

m2 ẍ2+ c2 ẋ2+k2 x2 = f2+ f c
2 (14)

where f c
2 is the coupling force, received from M1. The output of subsystem M2 is its position with re-

spect to the equilibrium configuration ξc
2 = x2. The block labelled as “Manager” in Fig. 5 is responsible

for scheduling and synchronizing the execution of the numerical integration processes of the two subsys-

tems, and coordinating the exchange of coupling variables, and maybe performing some manipulations

on them to improve the accuracy or stability of the overall process. For this reason, in general, f c
1 ̸= f c

2 and

ξc
1 ̸= ξc

2.

With this approach, each subsystem becomes a dynamical system on its own. The dynamics equations

of M1 and M2, (12) and (14), can now be integrated separately, using different integrator formulas and

8

1.2 Monolithic simulation and co-simulation 1 INTRODUCTION

step-sizes if needed. On the other hand, it is necessary to define the management methods that will take

care of the coordination of these integration procedures.

9

2 CO-SIMULATION SCHEMES

2 Co-simulation schemes

Solver coupling can be carried out following a wide variety of approaches. The most commonly used co-

simulation schemes and configuration options are summarized in this Section. It must be noted that the

nomenclature and notation in this area have not fully converged yet [17], and so the names given to the

methods here described may not match those used in some publications in the literature.

2.1 Continuous and event-driven co-simulation

When a subsystem in a co-simulation environment has its evolution rule described by differential equa-

tions it is called a continuous subsystem. Such a system can be described with the following initial value

problem

ẋ = f (x, u)

y = g (x, u) (15)

x (t = 0) = x0

where x is the system state, u and y stands for the inputs and the outputs, respectively, and f and g are, in

general, nonlinear functions. Simulation tools often integrate the differential equation in (15) by means

of a time discretization. For instance, with a Taylor series expansion

x (t +h) = x t +h f (x(t) , u (t))+η (16)

where h is the integration step-size andη is the approximation error incurred by the discretization with re-

spect to time. The behaviour trace obtained this way is an approximation of the one that the system would

theoretically have. From this point of view, most time-driven subsystems can be considered continuous

subsystems.

A discrete-event subsystem, on the other hand, has its change of state triggered by an external event.

These subsystems feature a limited set of possible states, input events, and output events. While continu-

ous subsystems have states that evolve continuously over time and outputs that have to obey the physical

laws of continuity, discrete-event subsystems can have states that assume multiple values at the same

time (transiency) and discontinuous outputs [14].

The term hybrid co-simulation refers to co-simulation environments in which some subsystems can

be considered continuous and others are discrete-event ones. There are two general approaches to tack-

ling these problems. A possibility is formulating the continuous subsystems as discrete-event ones, and

10

2.2 Jacobi and Gauss-Seidel schemes 2 CO-SIMULATION SCHEMES

using a discrete-event manager to orchestrate the simulation. Conversely, the discrete-event subsystems

can be converted into continuous subsystems; in this case a continuous manager will be used to coordi-

nate the numerical integration.

2.2 Jacobi and Gauss-Seidel schemes

The order in which subsystems are evaluated during execution has an important effect on the accuracy

and stability of the results.

The Jacobi scheme executes the subsystems in parallel. At each communication instant tn the man-

ager receives the outputs from the subsystems and sends them their corresponding inputs. Then, every

subsystem moves forward in time until the next communication point at time tn+1 without further inter-

action with its environment.

S1

S2

tn tn+1

1 2

3

3

4Manager

y1

y2

u1

u2

y1

y2

∫
1

∫
2

Figure 6: Diagram of a Jacobi coupling scheme.

Figure 6 shows a diagram of the Jacobi coupling scheme applied to the co-simulation of two subsys-

tems S1 and S2. At time tn both systems send their outputs y1 and y2 to the manager (step 1). The manager

processes the information and sends the inputs u1 and u2 to the subsystems (step 2). Then, both subsys-

tems advance in time until the next communication point at time tn+1 (step 3). This step can be performed

in parallel, because each subsystem does not require any additional information from its environment un-

til the macro-step is completed. The process begins again at time tn+1 with the subsystems sending their

outputs to the manager at the new communication point (step 4).

The Gauss-Seidel scheme, also called zigzag approach, executes the subsystems sequentially, so that

the outputs of one of them obtained upon completion of a macro time-step are available when the other

starts its integration. The scheme is illustrated in Fig. 7. At communication point tn , one of the subsystems

11

2.3 Iterative and non-iterative co-simulation 2 CO-SIMULATION SCHEMES

S1

S2

tn tn+1

1

2

3

4

5Manager

u1

y2 u2

y1
u1

y2

∫
1

∫
2

Figure 7: Diagram of a Gauss-Seidel coupling scheme.

–S2, in this case– sends its outputs y2 to the manager, which processes the information and sends the

corresponding inputs u1 to the other subsystem (step 1). Then, subsystem S1 proceeds with its integration

until the next communication point, at time tn+1 (step 2) and evaluates its outputs y2 at this time. These

and can now be used to evaluate (step 3) the inputs u2 that subsystem S2 will use during its integration

from tn to tn+1 (step 4). Finally, once the integration of S2 is complete, the procedure starts again for the

next macro time-step when S2 sends its outputs and S2 receives its inputs (step 5).

In general, Gauss-Seidel schemes tend to be more stable than Jacobi ones; on the other hand, they hin-

der the parallel execution of the simulators for the different subsystems. The coupling scheme selection

will depend on the efficiency, accuracy, and stability needs of each particular application.

2.3 Iterative and non-iterative co-simulation

In the coupling schemes described in Section 2.2, the time integration from tn to tn+1 is performed only

once in each subsystem. It is also possible, however, to retake either or both integration steps, using the

now known subsystem outputs at time tn+1 to obtain a more accurate solution in a predictor-corrector

fashion. This way, both Jacobi and Gauss-Seidel schemes can be turned into iterative coupling algorithms

[30], as shown in Fig. 8. Rollback here refers to the restart of the integration steps in the subsystems, after

their outputs at tn+1 have been obtained.

Iterative co-simulation schemes are also referred to as implicit coupling or waveform relaxation.

Less frequently, they are also called strong coupling, although this may lead to confusion with monolithic

schemes. Non-iterative co-simulation schemes, on the other hand, are also called explicit coupling . They

12

2.4 Selection of coupling variables 2 CO-SIMULATION SCHEMES

S1

S2
tn tn+1

1 2

3

3

4

5

5

Manager

y1

y2

u1

u2

y1

y2

∫
1

∫
2

Rollback to tn

(a) Jacobi.

S1

S2
tn tn+1

1

2

3

4

5Manager

u1

y2 u2

y1

y2

∫
1

∫
2

Rollback to tn

(b) Gauss-Seidel.

Figure 8: Diagrams of iterative coupling schemes.

can also be labelled as weak coupling, although this term is often employed to denote co-simulation in

general. In some publications, semi-implicit coupling means an iterative coupling scheme in which the

iteration procedure is interrupted after a fixed number of repetitions of the macro step, as opposed to

iterating until a certain convergence error below a given tolerance is attained.

In general, implicit schemes are more stable than explicit ones [18]. Iterating over the macro-step until

convergence removes most of the problems associated with explicit co-simulation, such as the need to

perform input extrapolation (see Section 2.5). On the other hand, implicit schemes cannot be used with

subsystems that do not allow rollback –for instance real-time components– or in some applications that

impose limitations on the computational resources that can be used.

2.4 Selection of coupling variables

In most cases, the selection of coupling variables for a given co-simulation application can be done in

many different ways. Frequently, there are several possibilities to divide a system and represent the con-

nection between the resulting subsystems. For instance, in the simulation of mechanical systems, the

interaction between components is commonly represented by forces. However, sometimes the selection

of other kinds of variables for the exchange of information may be more convenient.

x1 x2

m1 m2

k

Figure 9: A two-mass mechanical system.

13

2.4 Selection of coupling variables 2 CO-SIMULATION SCHEMES

Consider the mechanical system composed of two masses, m1 and m2, connected by a spring with

stiffness constant k , shown in Fig. 9. It is possible to co-simulate its dynamics dividing it into two subsys-

tems, each containing one of the two masses, and defining their inputs and outputs in different ways.

x1 x2

m1 m2

k

fc fc

x2 x2

Subsystem 1 Subsystem 2Manager

Figure 10: A two-mass mechanical system in a force-displacement co-simulation setup.

Figure 10 shows a setup in which subsystem 1 contains information about mass m1 and the stiffness

k of the spring. Subsystem 2 only contains the information about mass m2. The equation of motion for

subsystem 1 is

ẍ1 =
k (x2− x1)

m1
(17)

and its output is the coupling force, fc = k (x1− x2). On the other hand, for subsystem 2

ẍ2 =
fc

m2
(18)

and its output is the position of the mass, x2. Here, for the sake of simplicity, we are assuming that the man-

ager does not modify at all the information contained in the coupling variables. The inputs required by

each subsystem in Eqs. (17) and (18) are highlighted red. The arrangement in Fig. 10 is a force-displacement

coupling .

x1 x2

m1 m2

k k

x1 x1

x2 x2

Subsystem 1 Subsystem 2Manager

Figure 11: A two-mass mechanical system in a displacement-displacement co-simulation setup.

Other selections of coupling variables, however, can be used as well. Consider the arrangement shown

in Fig. 11, a displacement-displacement coupling . Now, the subsystems exchange their positions x1 and

14

2.4 Selection of coupling variables 2 CO-SIMULATION SCHEMES

x2 as output variables. Their dynamics equations are in this case

ẍ1 =
k (x2− x1)

m1
; ẍ2 =

k (x1− x2)
m2

(19)

The expression of Eqs. (19) requires that information about the stiffness k of the spring is available for

both subsystems. Additional selections of coupling variables are also possible, such as force-force cou-

pling arrangements, in which the coupling force would be evaluated externally, e.g., by the co-simulation

manager as in Fig. 12, and both subsystems would receive it as input. In this case, the dynamics equations

would be

ẍ1 =
− fc

m1
; ẍ2 =

fc

m2
(20)

and the coupling force would be computed by the manager as fc = k (x1− x2). This approach requires that

information regarding the stiffness properties of the coupling interface is available to the co-simulation

orchestrator.

x1 x2

m1 m2

x1 fc

fc x2

k

Subsystem 1 Subsystem 2Manager

Figure 12: A two-mass mechanical system in a force-force co-simulation setup, where the coupling force is evaluated by the co-
simulation manager.

It is difficult to make an all-encompassing classification of the existing options for the selection of

coupling variables, because the subsystems coupled in co-simulation setups can represent a very wide

variety of physical entities, and their inputs and outputs can be pretty much any imaginable physical

quantity, from angular velocities and torques to temperatures and heat flows. However, it is possible to

make some generally valid statements about variable selection.

Advantages and disadvantages of some coupling variable choices

Using a force-displacement approach –or an equivalent one, such as torque-angular speed– can be advan-

tageous because it expresses the connection between subsystems in terms of a pair of coupling variables

that provide information about the energy exchanged at the co-simulation interface. For instance, in the

simple mechanical system shown in Fig. 10, the product P = fc·ẋ2 is directly the power exchanged between

the two subsystems through the coupling interface. Even if x2 is the variable actually exchanged between

15

2.4 Selection of coupling variables 2 CO-SIMULATION SCHEMES

subsystems, it is possible to obtain the value of its derivative, ẋ2, by differentiation of the inputs of subsys-

tem 1. The evaluation of the power exchanged at the coupling interface is the basis for the development of

indicators for co-simulation accuracy and correction methods to keep the numerical integration precise

and stable, e.g., [28], [15]. These will be discussed in further detail in Section 3.1.

However, displacement-displacement coupling schemes can also be beneficial in certain cases. Let

us consider the two-mass example in Fig. 9 and formulate the equations of its subsystems in state-space

form

 ż

y

 =

 A B

C D

 z

u

 (21)

where z is the subsystem state, y includes the outputs, u is the subsystem inputs, and A, B, C, and D are

the state, input, output, and feedthrough matrices, respectively. If the co-simulation takes place according

to a non-iterative Jacobi scheme, in which both subsystems are stepped forward in time with the same

communication macro-step, the numerical integration process of a subsystem between communication

points can be summarized in four stages, as shown in Fig. 13.

1

2
3

4

tn tn+1

u1

y1

y2

u2

Subsystem 1

Subsystem 2

Manager

Figure 13: Stages in the integration of a subsystem between two communication points in a single-step Jacobi scheme

At the beginning of macro time step (tn , tn+1), both subsystem receive their inputs u1 and u2 from the

manager (stage 1). Before, at the end of the previous macro step, the subsystems had sent their outputs

y1 and y2 to the manager. The next steps for each subsystem are the evaluation of the derivatives of its

state, ż, (stage 2) and their integration to step forward in time the subsystem from tn to tn+1 (stage 3).

Once the subsystem has received its inputs at time tn , un , this is equivalent to the conventional numerical

16

2.4 Selection of coupling variables 2 CO-SIMULATION SCHEMES

integration of a dynamic system. The derivatives at time tn are obtained as

żn = Azn +Bun (22)

which is an exact equation, because z and u are known at time tn . The derivatives żn can now be used to

integrate the state of the system until tn+1 to obtain zn+1. So far, the only numerical error in the process has

been introduced by the time discretization of the system dynamics and the use of a numerical integrator

during stage 3. At stage 4, the subsystem must evaluate its outputs at time tn+1 before sending them to the

manager

yn+1 = Czn+1+Dun+1 (23)

The problem is that un+1 are not known yet. They will remain undetermined until the next macro step

begins and the manager sends them to the subsystems. Usually, their value is extrapolated from the pre-

viously known values of the subsystem inputs, so Eq. (23) actually becomes

yn+1 = Czn+1+Dũn+1 (24)

where ũn+1 is the approximated value of the inputs at time tn+1. Equation (24) highlights that, besides

the numerical integration, the need to extrapolate the inputs introduces an additional source of errors

in the co-simulation process. However, in those cases in which the feedthrough matrix D is empty, the

subsystem outputs can be evaluated without knowing the inputs un+1

yn+1 = Czn+1 (25)

which would reduce again the total error of the co-simulation process to that of the numerical integrator.

This explains the deterioration of error convergence properties observed in [3] for co-simulation arrange-

ments that involve subsystems with D ̸= 0.

In a Jacobi scheme with a force-displacement coupling like the one in Fig. 10, the subsystem that re-

turns force as an output (subsystem 1) needs to use Eq. (24), because the coupling force fc = k (x1− x2)

depends on input x2. In this case, the feedthrough matrix D is not zero. However, if a displacement-

displacement coupling is used, the outputs of both subsystems are just identical to their states. In this

case, D = 0 and there is no need to extrapolate subsystem inputs, because they can be calculated with

Eq. (25). It can be shown that, in examples like those introduced in Sections A.1 and A.4, selecting the

coupling variables such that D = 0 results in better energy conservation and stability properties. On the

other hand, such an approach usually requires that both subsystems have access to information about

the physical properties of the coupling interface, which is not always possible. For example, both subsys-

17

2.5 Extrapolation and interpolation of coupling variables 2 CO-SIMULATION SCHEMES

tems in the two-mass problem would need to know the stiffness k of the coupling spring, as evidenced by

Eqs. (19).

Coupling via algebraic constraints

Up to this point, only coupling through constitutive relations has been considered in this Section. The

interface between subsystems has a certain flexibility, in the sense that the coupling variables are used to

determine a term that will enter the differential equations of at least one of the subsystems. For example,

in the case of the linear oscillator in Section 1.2, the interface between the two subsystems is compliant

and can described by a spring.

It is also possible to use a rigid coupling between subsystems. Mathematically, this is done using al-

gebraic constraints to characterize the interface. In this case, explicit co-simulation schemes cannot be

directly used without modifications. Coupling via algebraic constraints requires either the use of implicit

co-simulation methods or the knowledge of partial derivatives of the system states with respect to the

coupling variables, as shown for instance in [31, 32]. In some cases, algebraic couplings can be replaced

with compliant spring-damper systems, thus obtaining an approximation of the dynamics of the overall

system. This approach, however, introduces artificial dynamics in the solution and can result in the need

to decrease the macro step-size to obtain accurate enough results [19].

2.5 Extrapolation and interpolation of coupling variables

Explicit co-simulation schemes frequently need to have recourse to extrapolation methods to evaluate

subsystem inputs. The Jacobi scheme diagram shown in Fig. 13 illustrates this issue. In step 4, subsystem

1 must evaluate its outputs at time n + 1 without having access to the value of its inputs at this instant,

un+1, as confirmed by Eq. (23). An approximated value of the inputs, ũn+1, must be used instead; several

ways exist to determine this value.

Polynomial extrapolation is a popular way to approximate unknown input values in co-simulation

applications, e.g., [22, 25]. Constant extrapolation, also known as zero order hold (ZOH), is commonly

used because of its simplicity. With ZOH, the unknown inputs at time n +1 are simply

ũZOH
n+1 = un (26)

Higher extrapolation orders, such as linear extrapolation or first order hold (FOH) and quadratic

extrapolation or second order hold (SOH) are often used in an attempt to make the integration process

18

2.5 Extrapolation and interpolation of coupling variables 2 CO-SIMULATION SCHEMES

more stable [8], especially in multi-rate co-simulation environments (see Section 2.6). Higher order poly-

nomials are expected to increase the coupling bandwidth [6] and accuracy, although they are also more

sensitive to discontinuities in subsystem dynamics. The use of FOH to evaluate the inputs at time n + 1

would result in the following approximated values

ũFOH
n+1 = un + (tn+1− tn)

un −un−1

tn − tn−1
(27)

Similarly, SOH would require to adjust the coefficients of a second order polynomial to perform the ex-

trapolation, using the known values of the inputs at time steps tn , tn−1, and tn−2. Other methods, such

as least square approximation [16] or polynomial approximations that result in smooth input evolution

[9] have been proposed as well. Extrapolation methods do not need any information other than the pre-

viously received input values to operate; they are also generally easy to implement and can be used with

almost any type of subsystem in a co-simulation setup, regardless of its nature or internal behaviour.

ZOH FOH Actual input

tn−1 tn tn+1

tn +hh tn + b hh

un−1

un

un+1

ũ ZOH
n+1

ũ FOH
n+1

t

u

Figure 14: Effect of ZOH and FOH extrapolation on the prediction of subsystem inputs

It is important to note that all the above mentioned approximation and extrapolation methods are

signal reconstruction techniques that build on previously received input values, but do not use informa-

tion from the subsystem dynamics to predict future input values. As such, they may deliver unrealistic

predictions, especially when applied to co-simulation environments subjected to sudden changes in the

dynamics, e.g., impacts and discontinuities. Figure 14 highlights the fact that extrapolation may lead to

inaccurate input prediction: the extrapolated values at time tn+1 may not follow the actual evolution of

the input variable, and increasing the polynomial order does not necessarily improve the results. Along

these lines, as noted in [16], the selection of the extrapolation method often has a critical and strongly

case-dependent impact on the accuracy and robustness of the co-simulation process, and it is difficult

to select the most favourable extrapolation method for a given application without a previous evaluation

19

2.6 Time grids 2 CO-SIMULATION SCHEMES

of its behaviour [25]. This has led to the development of methods that adaptively select the polynomial

degree to be used for extrapolation during runtime [5].

2.6 Time grids

The concept time grid denotes the time discretization obtained in each subsystem as a result of setting its

internal integration step-size, and also those that result from establishing the communication intervals

between the manager and the subsystems. Time grids can be equally spaced, if all their time intervals are

of the same size, or not. Co-simulation time grids are matching grids if the communication intervals of

all the subsystems are multiples of each other. In this document, only constant and matching grids are

discussed; however, non-matching grids can also be found in co-simulation applications [16].

The concepts of single-rate and multirate co-simulation are related to the time grids used in the cou-

pling scheme. In a single-rate co-simulation algorithm, all the subsystems use the same macro step-size H

to communicate with the manager. In multirate co-simulation, conversely, at least two subsystems have

different macro step-sizes. Using multirate schemes is advantageous sometimes when the co-simulated

subsystems have very different time scales. In such cases, slow subsystems can be simulated using large

integration steps while using a smaller step-size for subsystems with faster dynamics. This often results

in a more efficient execution from a computational point of view: if small communication steps were to

be used for every subsystem, this would increase the number of integration steps taken to solve the slow

subsystem dynamics, consequently causing a computational overhead.

In spite of making it possible to decrease the overall computational effort required to integrate the

dynamics, multirate co-simulation schemes have the disadvantage of needing input extrapolation in cases

in which their single-rate equivalent would not.

Figure 15 shows a multirate co-simulation scheme in which subsystem 1 (SS1) and subsystem 2 (SS2)

use macro step-sizes H1 and H2 = H1/2. Subsystem 1 exchanges information with the manager at com-

munication points tn and tn+1; subsystem 2, besides, has an intermediate communication point tb . The

integration of the dynamics of SS2 between tn and tn+1 is performed in two consecutive integration steps:

from tn to tb and from tb to tn+1. This multirate scheme decreases the number of integration steps re-

quired to solve the dynamics of SS1, compared to a single-rate scheme in which H = H2. On the other

hand, however, input extrapolation is likely to be required at time tb in SS2. Let us assume that the dy-

namics of this subsystem can be expressed in state-space form as

 ẋ2

y2

 =

 A2 B2

C2 D2

 x2

u2

 (28)

20

2.7 Real-time co-simulation 2 CO-SIMULATION SCHEMES

tn tn+1tb

u1 (tn)y1 (tn) u1 (tn+1)y1 (tn+1)

u2 (tn) y2 (tn) u2 (tb) y2 (tb) u2 (tn+1) y2 (tn+1)

SS1

SS2

Manager

Figure 15: Example of explicit multi-rate co-simulation scheme

At time tb , input u2 is required to evaluate the output y2 if SS2 has direct feedthrough, i.e., D2 ̸= 0. However,

even in systems without direct feedthrough, u2 (tb) is still required to evaluate ẋ2 (tb), necessary in turn to

complete the integration step between tb and tn+1. It must be stressed that subsystem 1 only needs to

extrapolate its inputs if D1 ̸= 0, but not to evaluate the derivative of its state.

In fact, this problem exists whenever the integration step-sizes within the subsystems do not match

the macro step-size used to communicate with the co-simulation manager. Input extrapolation will be

required to evaluate the state derivatives at intermediate times between communication points, except in

the rather infrequent case in which B= 0.

2.7 Real-time co-simulation

The term real-time (RT) co-simulation is used to describe those applications in which all computations

and information transfers between two consecutive communication points tn and tn+1 must be con-

ducted in a real-world (wall-clock time) time span shorter than the length of the macro time step, H .

The simulation outputs not only have to be correct: they also have to be delivered at the right time [23].

Fast code execution is essential for RT co-simulation, but so is predictability regarding the duration of the

computation intervals.

RT co-simulation setups make it possible to interface simulated environments to physical compo-

nents to deliver physical-virtual applications, such as test benches. Haptic simulators, for instance, can be

regarded as a particular type of RT co-simulation setup, in which a human being specifies the desired mo-

tion of a part of a mechanical system in a virtual environment and receives the simulated force that should

be experienced if the operation took place in the physical world. Other examples of RT co-simulation in-

21

2.7 Real-time co-simulation 2 CO-SIMULATION SCHEMES

clude HiL simulators, like testing microprocessors with vehicle ADAS (Advanced Driver-Assistance Sys-

tems) with a virtual model of the vehicle on which they will be mounted, and System-in-the-Loop (SITL)

test benches, in which the physical component under test is interfaced to a simulated, virtual environ-

ment 1. The latter is the case of physical-virtual test benches, which are gaining momentum in automotive

applications, for instance test benches for e-powertrain components. Simulators that interact with real-

world subsystems are very often subjected to RT execution constraints, because physical systems cannot

“pause” or “slow down” their execution.

Besides the pointed out limitation regarding the available time for computations, RT co-simulation

setups frequently present the following features:

• They use constant communication macro step-sizes H and matching time grids. Physical com-

ponents are often sampled at constant rates that cannot be modified. Even though variable step

integrators can still be used within the virtual subsystems, it is rather complicated to modify the

macro step-size.

• Explicit co-simulation schemes are almost exclusively used. Physical components cannot perform

rollback and re-take their “integration steps” between communication points. Among these, Jacobi

schemes are the most frequent, although Gauss-Seidel algorithms can also be used.

1The term hybrid simulation is often used to refer to the integration of physical testing and numerical simulations. Please
note that hybrid co-simulation has a different meaning, as noted in Section 2.1.

22

3 NON-ITERATIVE CO-SIMULATION

3 Non-iterative co-simulation

As highlighted in Section 2.7, many applications of industrial interest require the use of non-iterative (ex-

plicit) co-simulation. The following points must be taken into consideration in these cases:

• As pointed out in Section 2.3, explicit co-simulation schemes are prone to become unstable, espe-

cially when one or more subsystems have direct feed-through. This can be alleviated with a proper

selection of coupling variables, see Section 2.4.

• It is possible to apply correction methods to enhance simulation stability. Besides conventional

polynomial extrapolation, energy-based and frequency analysis methods have been employed in

the literature.

• Rollback is not possible and macro steps cannot be re-taken in the majority of cases.

• Multirate co-simulation schemes can be used.

• In RT applications, the additional requirement that the communication macro step-size H is kept

constant is often enforced. Besides, all the computations required to complete a macro time-step,

including communication overheads, must be completed in less time than the duration of the macro

step, H .

A common concern in applications that employ explicit co-simulation is being able to predict when

the numerical integration will become unstable or unreliable. This is critical for RT applications that in-

clude physical components, as unstable behaviour can develop into a hazard for the machinery and also

people. A second desirable ability is being able to correct these instabilities and inaccuracies once they

are detected.

3.1 Error monitoring in explicit co-simulation

Ideally, error indicators in non-iterative co-simulation should be derived exclusively from the information

contained in the coupling variables exchanged between the subsystems and the co-simulation manager;

in most cases, it cannot be assumed that the subsystems internals are known.

The residual power indicatorδP was introduced by Sadjina in [28] to quantify the energy error caused

by the time-discrete exchange of coupling variables at the co-simulation interface. Consider a co-simulation

setup with two subsystems 1 and 2 that exchange energy with the rest of the co-simulation environ-

ment through their coupling interfaces. In theory, the total sum of the energy that flows through the co-

simulation interface should be zero, because energy is neither generated nor removed there. As a con-

23

3.1 Error monitoring in explicit co-simulation 3 NON-ITERATIVE CO-SIMULATION

sequence, at any time t , the total power exchanged between the subsystems through the co-simulation

interface should amount to zero

P1+P2 = 0 (29)

tn tn+1

u1 (tn)y1 (tn) u1 (tn+1)y1 (tn+1)

u2 (tn) y2 (tn) u2 (tn+1) y2 (tn+1)

Subsystem 1

Subsystem 2

Manager

Figure 16: Exchange of coupling variables during an explicit co-simulation macro-step

In practice, however, this is not the case, because each subsystem evaluates its interface power in a

different way. Let us assume that the product of the coupling variables exchanged at the interface has

power units, e.g., as in a force-velocity coupling. At the end of a macro-step like the one shown in Fig. 16,

at time tn+1, subsystem 1 will evaluate the power that it exchanges through the interface as

P1 (tn+1) = − (ũ1 (tn+1))
T y1 (tn+1) (30)

where notation ũ1 highlights the fact that inputs u1 at time tn+1 are unknown for subsystem 1 and must

be approximated somehow, e.g., by means of polynomial extrapolation, to complete the evaluation of

y1 (tn+1). Similarly, for subsystem 2

P2 (tn+1) = − (ũ2 (tn+1))
T y2 (tn+1) (31)

The addition of the two power values in Eqs. (30) and (31) is no longer zero

δP = − (P1+P2) ̸= 0 (32)

and this deviation from zero becomes the residual power, which indicates the co-simulation quality. The

closer the residual is to zero, the more accurate the co-simulation is. The integral over a given time interval

24

3.1 Error monitoring in explicit co-simulation 3 NON-ITERATIVE CO-SIMULATION

of δP is the residual energy

δE (tn+1) =

∫ tn+1

tn

δP (t)dt (33)

and both quantities, δP and δE , can be used as an indicator of the coupling error caused by the time-

discrete interface [25, 26]. It is noteworthy that these indicators were originally defined assuming that

every subsystem extrapolated its inputs using ZOH extrapolation.

If the coupling variables include information that makes it possible to determine the overall energy

of the system, then a more precise energy balance can be established [15]. This can be used to monitor

energy errors at the coupling interface. This method, though, requires a computational model of each

subsystem involved in the co-simulation; if physical components exist, e.g., in a SiTL test bench, then an

all-encompassing energy balance cannot be evaluated, unless means exist to estimate the energy of the

physical subsystem components. This would require either precise and comprehensive sensor readings

or the use of digital twins of these components.

25

4 IMPLEMENTATION

4 Implementation

Implementation is a crucial step in co-simulation applications. The schemes and correction methods de-

scribed in the previous Sections need to be coded in an effective, robust, and easy to use way to be used

to their full potential. Conversely, a poor implementation may overweight the advantages of a given co-

simulation approach, rendering it useless for its intended application.

In general, a certain co-simulation scheme can be implemented using a wide range of implementation

techniques, which will have an impact on the overall performance and stability of the numerical integra-

tion. The different solvers in a co-simulation environment may be executed in the same computer or over

a network, employing homogeneous or heterogeneous computer architectures. In certain co-simulation

applications, some components are physical, non-simulated elements, that interact with the virtual ones

represented by the simulators. The implementation techniques to be used will need to address specific

requirements depending on the configuration of the simulation environment.

In all cases, a necessary requirement to couple different solvers in a coordinated integration process

is that the exchange of information between them takes place through a protocol that all of them can

understand and use to communicate with their environment.

4.1 The FMI standard

When coupling subsystems in a co-simulation environment, it is desirable that the communication be-

tween solvers takes place via an unambiguous interface with minimal specifications and impact on the in-

ternals of the subsystems. This interface must be general enough to be used with subsystems of all natures

and physical behaviours, so that it can be widely accepted both in academic and industrial environments.

The Functional Mock-up Interface (FMI) was conceived to address these needs: it is a tool indepen-

dent standard to support both model exchange and co-simulation of dynamic models using a combina-

tion of XML files and compiled C code [1]. Its first version was published in 2010; FMI 2.0 was released

in 2014. The development of the standard was started by Daimler AG to ease the exchange of simulation

models between suppliers and manufacturers, and is currently fostered by the Modelica Association [2].

26

5 SELECTION OF CO-SIMULATION CONFIGURATIONS

5 Selection of co-simulation configurations

As shown in Section 2, many different options to couple subsystems in a co-simulation setup exist. Select-

ing the right ones for a given application is not straightforward; it often requires prior knowledge of the

subsystems behaviour or some trial and error parameter tuning [25]; moreover, generally valid guidelines

are difficult to arrive at, and exceptions to the general rules exist in many occasions. When setting up a

co-simulation environment, it is necessary to answer the following questions.

• How to define the subsystems?

In some cases, it is straightforward to draw the boundaries between subsystems in a co-simulation

setup. When the dynamics of the parts of an engineering application are governed by dissimilar

equations, it is natural to assign different solvers to each of them. Often, however, several splitting

options are available. In general, it is advisable to avoid coupling subsystems via algebraic con-

straints, especially in explicit schemes, as explained in Section 2.4. Coupling subsystems by means

of a constitutive relation, e.g., a spring-damper element, works better from a stability and solvability

standpoint, especially for moderate and low values of the coupling stiffness.

• Continuous or event-driven co-simulation?

This depends on the nature of the subsystems in the setup. If there is a mix of continuous and event-

driven subsystems is used, the user must select an approach and adapt the dynamics of the sub-

systems that do not comply with the selected paradigm. Some authors affirm that a discrete-event

framework may just be enough to appropriately manage any co-simulation environment [20].

• Implicit or explicit co-simulation?

Implicit co-simulation schemes are more stable than their explicit counterparts [18]. They are of-

ten more accurate too. However, they impose on the subsystems the need to be able to repeat their

integration process between communication points, which is not always possible. Moreover, itera-

tive procedures can be time consuming and thus incompatible with the RT requirements of some

applications.

• Jacobi or Gauss-Seidel schemes?

Jacobi schemes enable the parallelization of subsystem integration between communication points.

Gauss-Seidel ones, on the other hand, require the sequential execution of the integration proce-

dures.

While implicit co-simulation algorithms often lead to the convergence of Jacobi and Gauss-Seidel

schemes to the same solution, this is not the case with explicit coupling schemes. Regarding co-

simulation stability and accuracy, the performance of explicit Jacobi schemes can be severely de-

graded if one or more subsystems present direct feedthrough. In these cases, correction algorithms

27

5 SELECTION OF CO-SIMULATION CONFIGURATIONS

at the coupling interface are necessary to prevent the numerical integration from going unstable.

Gauss-Seidel approaches seem to benefit from the stabilizing properties of the sequential execu-

tion of the integration of the subsystems, at the cost of introducing small variations in the system

energy as a consequence.

• Extrapolation method

When input extrapolation is required, the selected approach has a noticeable impact on the accu-

racy and stability of the results. Studies exist that show that higher order polynomials result in a

higher usable bandwidth of the coupling signal when compared to ZOH extrapolation [6, 7]. How-

ever, the actual performance of an extrapolation approach is case-dependent and also modified by

the selection of the communication step-size; extrapolation orders are often chosen following trial-

and-error procedures or adjusted during operation based on system behaviour [5, 25]. In most cases,

prior knowledge of the simulated system is required to achieve effective co-simulation configura-

tions.

• Selection of coupling variables

The way in which the application under study is split into subsystems has an important impact on

co-simulation behaviour [26]. As a general guideline, whenever possible these should be selected to

avoid having subsystems with direct feedthrough.

• Single-rate or multirate co-simulation?

The use of multirate schemes can be used to improve computational efficiency. However, as shown

in Section 2.6, this may work against the accuracy of the results, as it may introduce the need to

perform input extrapolation in subsystems that do not have to use it in single-rate schemes.

28

REFERENCES

References

[1] FMI - Functional Mock-up Interface (2019). URL https://fmi-standard.org/

[2] Modelica (2019). URL https://www.modelica.org/

[3] Arnold, M., Clauss, C., Schierz, T.: Error analysis and error estimates for co-simulation in FMI for

model exchange and co-simulation V2.0. Archive of Mechanical Engineering 60(1), 75–94 (2013).

DOI 10.2478/meceng-2013-0005

[4] Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht, The Netherlands (2011). DOI

10.1007/978-94-007-0335-3

[5] Ben Khaled-El Feki, A., Duval, L., Faure, C., Simon, D., Ben Gaid, M.: CHOPtrey: contextual online

polynomial extrapolation for enhanced multi-core co-simulation of complex systems. Simulation

93(3), 185–200 (2017). DOI 10.1177/0037549716684026

[6] Benedikt, M., Watzenig, D., Hofer, A.: Modelling and analysis of the non-iterative coupling process for

co-simulation. Mathematical and Computer Modelling of Dynamical Systems 19(5), 451–470 (2013).

DOI 10.1080/13873954.2013.784340

[7] Benedikt, M., Watzenig, D., Zehetner, J., Hofer, A.: Macro-step-size selection and monitoring of the

coupling errof for weak coupled subsystems in the frequency-domain. In: International Conference

on Computational Methods for Coupled Problems in Science and Engineering - Ibiza, Spain (2013)

[8] Burger, M., Steidel, S.: Local extrapolation and linear-implicit stabilization in a parallel coupling

scheme. In: IUTAM Symposium on Solver-Coupling and Co-Simulation, pp. 43–56. Springer Inter-

national Publishing (2019). DOI 10.1007/978-3-030-14883-6_3

[9] Busch, M.: Continuous approximation techniques for co-simulation methods: Analysis of numerical

stability and local error. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für

Angewandte Mathematik und Mechanik 96(9), 1061–1081 (2016). DOI 10.1002/zamm.201500196

[10] Cardona, A., Geradin, M.: Modeling of a hydraulic actuator in flexible machine dynamics simulation.

Mechanism and Machine Theory 25(2), 193–207 (1990). DOI 10.1016/0094-114X(90)90121-Y

[11] Dopico, D., Luaces, A., González, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-

the-loop application. Multibody System Dynamics 25(2), 167–183 (2011). DOI 10.1007/s11044-010-

9230-y

[12] García de Jalón, J.: Twenty-five years of natural coordinates. Multibody System Dynamics 18(1), 15–33

(2007). DOI 10.1007/s11044-007-9068-0

29

REFERENCES

[13] García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. The Real–Time

Challenge. Springer–Verlag, New York, USA (1994). DOI 10.1007/978-1-4612-2600-0

[14] Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: A survey. ACM Com-

puting Surveys 51(3), 49:1–49:33 (2018). DOI 10.1145/3179993

[15] González, F., Arbatani, S., Mohtat, A., Kövecses, J.: Energy-leak monitoring and correction to enhance

stability in the co-simulation of mechanical systems. Mechanism and Machine Theory 131, 172–188

(2019). DOI 10.1016/j.mechmachtheory.2018.09.007

[16] González, F., Naya, M.Á., Luaces, A., González, M.: On the effect of multirate co-simulation techniques

in the efficiency and accuracy of multibody system dynamics. Multibody System Dynamics 25(4),

461–483 (2011). DOI 10.1007/s11044-010-9234-7

[17] Hafner, I., Popper, N.: On the terminology and structuring of co-simulation methods. In: Proceed-

ings of the 8th International Workshop on Equation-Based Object-Oriented Modeling Languages and

Tools - EOOLT’17, pp. 67–76. Weßling, Germany (2017). DOI 10.1145/3158191.3158203

[18] Kübler, R., Schiehlen, W.: Modular simulation in multibody system dynamics. Multibody System Dy-

namics 4(2), 107–127 (2000). DOI 10.1023/A:1009810318420

[19] Lacoursière, C., Härdin, T.: FMI Go! A simulation runtime environment with a client server architec-

ture over multiple protocols. In: Proceedings of the 12th International Modelica Conference, Prague,

Czech Republic, May 15-17, 2017 (2017). DOI 10.3384/ecp17132653

[20] Lacoursière, C., Sjöström, T.: A non-smooth event-driven, accurate, adaptive time stepper for simu-

lating switching electronic circuits. Tech. Rep. UMINF 16.15, Umeå University (2014)

[21] Naya, M.A., Cuadrado, J., Dopico, D., Lugrís, U.: An efficient unified method for the combined sim-

ulation of multibody and hydraulic dynamics: Comparison with simplified and co-integration ap-

proaches. Archive of Mechanical Engineering 58(2), 223–243 (2011). DOI 10.2478/v10180-011-0016-

4

[22] Oberschelp, O., Vöcking, H.: Multirate simulation of mechatronic systems. In: Proceedings of

the IEEE International Conference on Mechatronics, ICM’04. Istanbul, Turkey (2004). DOI

10.1109/icmech.2004.1364473

[23] Pastorino, R., Cosco, F., Naets, F., Desmet, W., Cuadrado, J.: Hard real-time multibody simulations

using ARM-based embedded systems. Multibody System Dynamics 1(37), 127–143 (2016). DOI

10.1007/s11044-016-9504-0

30

REFERENCES

[24] Peiret, A., González, F., Kövecses, J., Teichmann, M.: Multibody system dynamics interface modelling

for stable multirate co-simulation of multiphysics systems. Mechanism and Machine Theory 127,

52–72 (2018). DOI 10.1016/j.mechmachtheory.2018.04.016

[25] Rahikainen, J., González, F., Naya, M.Á.: An automated methodology to select functional co-

simulation configurations. Multibody System Dynamics 48(1), 79–103 (2020). DOI 10.1007/s11044-

019-09696-y

[26] Rahikainen, J., González, F., Naya, M.Á., Sopanen, J., Mikkola, A.: On the cosimulation of multi-

body systems and hydraulic dynamics. Multibody System Dynamics 50(2), 143–167 (2020). DOI

10.1007/s11044-020-09727-z

[27] Rahikainen, J., Mikkola, A., Sopanen, J., Gerstmayr, J.: Combined semi-recursive formulation and

lumped fluid method for monolithic simulation of multibody and hydraulic dynamics. Multibody

System Dynamics 44(3), 293–311 (2018). DOI 10.1007/s11044-018-9631-x

[28] Sadjina, S., Kyllingstad, L.T., Skjong, S., Pedersen, E.: Energy conservation and power bonds in co-

simulations: non-iterative adaptive step size control and error estimation. Engineering with Com-

puters 33(3), 607–620 (2017). DOI 10.1007/s00366-016-0492-8

[29] Samin, J.C., Brüls, O., Collard, J.F., Sass, L., Fisette, P.: Multiphysics modeling and optimization

of mechatronic multibody systems. Multibody System Dynamics 18(3), 345–373 (2007). DOI

10.1007/s11044-007-9076-0

[30] Schweizer, B., Li, P., Lu, D.: Explicit and implicit cosimulation methods: Stability and convergence

analysis for different solver coupling approaches. Journal of Computational and Nonlinear Dynamics

10(5), 051,007 (2015). DOI 10.1115/1.4028503

[31] Schweizer, B., Lu, D.: Semi-implicit co-simulation approach for solver coupling. Archive of Applied

Mechanics 84(12), 1739–1769 (2014). DOI 10.1007/s00419-014-0883-5

[32] Schweizer, B., Lu, D.: Stabilized index-2 co-simulation approach for solver coupling with algebraic

constraints. Multibody System Dynamics 34(2), 129–161 (2015). DOI 10.1007/s11044-014-9422-y

[33] Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University

Press (1998)

31

A BENCHMARK PROBLEMS

A Benchmark problems

This Appendix describes a few simple problems that can be used as benchmark examples to test the be-

haviour and performance of co-simulation schemes.

32

A BENCHMARK PROBLEMS

A.1 Linear oscillator

This problem consists in a two-degree-of-freedom linear oscillator, shown in Fig. 17, composed by two

masses m1 and m2 connected to each other and to the ground by means of linear springs and dampers.

Similar systems have been employed as benchmark problems in the co-simulation literature, e.g., [16, 31,

30].

m1 m2

x1 x2

kc

cc

k1

c1

k2

c2

Figure 17: A two-degree-of-freedom linear oscillator.

The linear oscillator with constant coefficients has a known analytical solution. Given the fact that the

system is linear, its dynamics can be expressed with the following system of equations

ż=Az (34)

where

z =

x1

x2

ẋ1

ẋ2

, A =

0 0 1 0

0 0 0 1

− (k1+kc)/m1 kc/m1 − (c1+ cc)/m1 cc/m1

kc/m2 − (k2+kc)/m2 cc/m2 − (c2+ cc)/m2

(35)

The analytical solution to Eq. (34) has the form

z (t) = e A (t − t0) · z0 (36)

The linear oscillator can also be simulated using a monolithic approach solving the initial value prob-

lem defined by Eqs. (10) and (11).

The system properties are set to m1 =m2 = 1 kg, k1 = 10 N/m, k2 = 1000 N/m, and kc = 100 N/m. For

the damping, three cases are considered; case 1 (c1 = c2 = cc = 0 Ns/m), case 2 (c1 = c2 = cc = 0.01 Ns/m),

and case 3 (c1 = c2 = cc = 10 Ns/m). The initial system displacements are set to x1,0 = x2,0 = 0 m; the spring

forces are zero in this configuration. The initial system velocities are ẋ1,0 = 100 m/s, x2,0 =−100 m/s.

A 10-s simulation of the motion is to be carried out and compared to the analytical problem solution,

33

A BENCHMARK PROBLEMS

used as reference.

Force-displacement co-simulation

The oscillator can be decomposed into two subsystems as shown in Fig. 18. Because stiffness k2 is higher

than k1, subsystem M2 will have faster dynamics than M1.

m1 m2

x1 x2

kc

cc

k1

c1

k2

c2

f c
1 f c

2

ξc
1 ξc

2

H1 H2

Subsystem M1 Subsystem M2Manager

Figure 18: The linear oscillator arranged following a force-displacement coupling scheme

The oscillator can be decomposed into two subsystems as shown in Fig. 18. Because stiffness k2 is

higher than k1, subsystem M2 will have faster dynamics than M1.

m1 ẍ1+ (c1+ cc1) ẋ1− cc1 ξ̇
c
1+ (k1+kc1) x1−kc1ξ

c
1 = f1 (37)

The coupling force, f c
1 is evaluated by subsystem M1 as

f c
1 = kc1

�
x1−ξc

1

�
+ cc1

�
ẋ1− ξ̇c

1

�
(38)

The dynamics of subsystem M2, in turn, can be written as

m2 ẍ2+ c2 ẋ2+k2 x2 = f1+ f c
2 (39)

The exchanged variables are the force at the coupling interface, f c , and the displacement of the second

mass, ξc . In principle, f c
1 ̸= f c

2 and ξc
1 ̸= ξc

2 because input extrapolation or some other kind of input

processing can be performed by the co-simulation manager.

Displacement-displacement co-simulation

In this scheme, the exchanged variables are the displacements of both masses,ηc andξc . The co-simulation

manager may perform some manipulations on the coupling variables to modify subsystem inputs, so

again, in general, ηc
1 ̸=ηc

2 and ξc
1 ̸= ξc

2 .

34

A BENCHMARK PROBLEMS

m1 m2

x1 x2

kc

cc

kc

cc

k1

c1

k2

c2

ηc
1 ηc

2

ξc
1 ξc

2

H1 H2

Subsystem M1 Subsystem M2Manager

Figure 19: The linear oscillator arranged following a displacement-displacement coupling scheme

m1 ẍ1+ (c1+ cc) ẋ1− cc ẋ2+ (k1+kc) x1−kc x2 = 0 (40)

m2 ẍ2+ (c2+ cc) ẋ2− cc ẋ1+ (k2+kc) x2−kc x1 = 0 (41)

35

A BENCHMARK PROBLEMS

A.2 Triple linear oscillator

This problem consists in a three-degree-of-freedom linear oscillator, shown in Fig. 20, composed by three

masses m1, m2, and m3 connected to each other and to the ground by means of linear springs and dampers.

It is similar to the previous example, but in this case there is one additional mass. The problem is inter-

esting because it enables the testing of co-simulation schemes for assemblies with more than just two

subsystems.

m1

m2

m3

x1

x2

x3k1

c1

k2

c2

k3

c3

kc1

cc1

kc2

cc2

Figure 20: A three-degree-of-freedom linear oscillator.

The dynamics equations for the triple linear oscillator can be formulated as follows

m1 0 0

0 m2 0

0 0 m3

ẍ1

ẍ2

ẍ3

+

c1+ cc1 0 −cc1

0 c2+ cc2 −cc2

−cc1 −cc2 c3+ cc1+ cc2

ẋ1

ẋ2

ẋ3

+

k1+kc1 0 −kc1

0 k2+kc2 −kc2

−kc1 −kc2 k3+kc1+kc2

x1

x2

x3

=

f1

f2

f3

(42)

where m1, m2, and m3 are the values of the oscillator point masses, k1, k2, k3, kc1 and kc2 represent the

stiffness of the springs that connect the masses to the ground and to each other, and c1, c2, c3, cc1 and cc2

are their damping coefficients. Variables x1, x2 and x3 denote the displacement of each mass with respect

to the equilibrium configuration.

As in the previous example, this linear oscillator with constant coefficients also has a known analytical

solution, and its dynamics can be expressed with Eq. (34). The vector of states is now

z =
�

x1 x2 x3 ẋ1 ẋ2 ẋ3

�T
(43)

36

A BENCHMARK PROBLEMS

and the state matrix is

A =

 03×3 I3×3

K C

 (44)

where 03×3 and I3×3 are zero and identity 3×3 matrices, and

K =

− (k1+kc1)/m1 0 kc1/m1

0 − (k2+kc2)/m2 kc2/m2

kc1/m3 kc2/m3 − (k3+kc1+kc2)/m2

(45)

C =

− (c1+ cc1)/m1 0 cc1/m1

0 − (c2+ cc2)/m2 cc2/m2

cc1/m3 cc2/m3 − (c3+ cc1+ cc2)/m3

(46)

are the matrices that contain the stiffness and damping terms of the system.

The system properties are set to m1 = 10 kg, m2 = 25 kg and m3 = 100 kg, k1 = 10 N/m, k2 = 5 N/m,

k3 = 100 N/m and kc 1 = kc 2 = 100 N/m. For the damping c1 = c2 = c3 = cc 1 = cc 2 = 0 Ns/m. The initial

system displacements are set to x1,0 = x2,0 = x3,0 = 0 m; the spring forces are zero in this configuration.

The initial system velocities are ẋ1,0 = 10 m/s, ẋ2,0 = 5 m/s and ẋ3,0 =−10 m/s.

Force-displacement co-simulation

The oscillator can be decomposed into three subsystems as shown in Fig. 21. Subsystems M1 and M2

evaluate the coupling force between two point masses (1-3 and 2-3) and send it to subsystem M3, which

in turn returns its position to M1 and M2.

The dynamics of each subsystem can be formulated separately. For subsystems M1 and M2

m1 ẍ1+ (c1+ cc1) ẋ1− cc1 ξ̇
c
1+ (k1+kc1) x1−kc1ξ

c
1 = f1 (47)

m2 ẍ2+ (c2+ cc2) ẋ2− cc2 ξ̇
c
2+ (k2+kc2) x1−kc2ξ

c
2 = f2 (48)

where ξc
1 and ξc

2 are the positions of the point mass in subsystem M3, received by M1 and M2 as external

37

A BENCHMARK PROBLEMS

m1

m2

m3

k1

c1

k2

c2

k3

c3

kc1

cc1

kc2

cc2

x1

x2

x3

Subsystem M1

Subsystem M2

Subsystem M3

Manager

H1

H2

H3

ξc
1

ξc
2

ξc
3

f c
1

f c
2

f c
3

Figure 21: The triple linear oscillator arranged following a force-displacement coupling scheme

inputs. The coupling force, f c
1 is evaluated by subsystem M1 as

f c
1 = kc1

�
x1−ξc

1

�
+ cc1

�
ẋ1− ξ̇c

1

�
(49)

f c
2 = kc2

�
x2−ξc

2

�
+ cc2

�
ẋ2− ξ̇c

2

�
(50)

The dynamics of subsystem M3, in turn, can be written as

m3 ẍ3+ c3 ẋ3+k3 x3 = f1+ f2+ f c
3 (51)

where f c
3 is the combined coupling force, received from M1 and M2. The output of subsystem M3 is its

position with respect to the equilibrium configurationξc
3 = x3. The block labelled as “Manager” in Fig. 21 is

responsible for scheduling and synchronizing the execution of the numerical integration processes of the

two subsystems, and coordinating the exchange of coupling variables, and maybe performing some ma-

nipulations on them to improve the accuracy or stability of the overall process. For this reason, in general,

f c
1 + f c

2 ̸= f c
3 and ξc

1 ̸= ξc
3 and ξc

2 ̸= ξc
3.

38

A BENCHMARK PROBLEMS

Displacement-displacement co-simulation

In this scheme, the exchanged variables are the displacements of both masses, ξc 1, ξc 2 and ξc 3. The dy-

namics of each subsystem can be formulated for this scheme as follows:

m1 ẍ1+ (c1+ cc1) ẋ1− cc1 ẋ3+ (k1+kc1) x1−kc1 x3 = 0 (52)

m2 ẍ2+ (c2+ cc2) ẋ2− cc2 ẋ3+ (k2+kc2) x1−kc2 x3 = 0 (53)

m3 ẍ3+ (c3+ cc1+ cc2) ẋ3− cc1 ẋ1− cc2 ẋ2+ (k3+kc1+kc2) x3−kc1 x1−kc2 x2 = 0 (54)

m1

m2

m3

k1

c1

k2

c2

k3

c3

kc1

cc1

kc2

cc2

x1

x2

x3

Subsystem M1

Subsystem M2

Subsystem M3

Manager

H1

H2

H3

ξc3
1

ξc3
2

ξc3
3

ξc1
1

ξc2
2

ξc1
3 ,ξc2

3

Figure 22: The triple linear oscillator arranged following a displacement-displacement coupling scheme

39

A BENCHMARK PROBLEMS

A.3 Double oscillator with nonlinear damping

This problem consists in a two-degree-of-freedom oscillator, shown in Fig. 17, composed by two masses

m1 and m2 connected to each other and to the ground by means of linear springs and nonlinear dampers.

In this particular case, the spring and damping forces are defined by (56) and the dynamics equation

can be expressed as (57) and (58).

Fs p r i ng = k ∥x∥n−1 x (55)

Fd a mp i ng = c ∥ẋ∥m−1 ẋ (56)

where n and m are the order of the spring and damping forces.

m1 ẍ1− cc1 ∥ẋ2− ẋ1∥m−1 (ẋ2− ẋ1)−kc1 ∥x2− x1∥n−1 (x2− x1) + c1 ∥ẋ1∥m−1 ẋ1+k1 ∥x1∥n−1 x1 = f1 (57)

m2 ẍ2− cc1 ∥ẋ1− ẋ2∥m−1 (ẋ1− ẋ2)−kc1 ∥x1− x2∥n−1 (x1− x2) + c2 ∥ẋ2∥m−1 ẋ2+k2 ∥x2∥n−1 x2 = f2 (58)

where the above expressions can be rewritten as (59) and (60).

m1 ẍ1− c ∗c1(ẋ2− ẋ1)−k ∗c1(x2− x1) + c ∗1 ẋ1+k ∗1 x1 = f1 (59)

m2 ẍ2− c ∗c1(ẋ1− ẋ2)−k ∗c1(x1− x2) + c ∗2 ẋ2+k ∗2 x2 = f2 (60)

where the coefficients with superscript ()∗ are defined as

c ∗1 = c1 ∥ẋ1∥m−1 (61)

c ∗2 = c2 ∥ẋ2∥m−1 (62)

c ∗c1 = cc1 ∥ẋ2− ẋ1∥m−1 (63)

k ∗1 = k1 ∥x1∥n−1 (64)

k ∗2 = k2 ∥x2∥n−1 (65)

k ∗c1 = kc1 ∥x2− x1∥n−1 (66)

Force-displacement co-simulation

The oscillator can be decomposed into two subsystems as shown in Fig. 18. Because stiffness k2 is higher

than k1, subsystem M2 will have faster dynamics than M1.

m1 ẍ1+
�
c ∗1 + c ∗c1

�
ẋ1− c ∗c1 ξ̇

c
1+
�
k ∗1 +k ∗c1

�
x1−k ∗c1ξ

c
1 = f1 (67)

40

A BENCHMARK PROBLEMS

The coupling force, f c
1 is evaluated by subsystem M1 as

f c
1 = k ∗c1

�
x1−ξc

1

�
+ c ∗c1

�
ẋ1− ξ̇c

1

�
(68)

The dynamics of subsystem M2, in turn, can be written as

m2 ẍ2+ c ∗2 ẋ2+k ∗2 x2 = f1+ f c
2 (69)

Displacement-displacement co-simulation

In this scheme shown in Fig. 19, the exchanged variables are the displacements of both masses, ξc 1 and

ξc 2. The co-simulation manager may perform some manipulations on the coupling variables to modify

subsystem inputs, so again, in general, ξc 1
1 ̸= ξc 1

2 and ξc 2
1 ̸= ξc 2

2 .

m1 ẍ1+
�
c ∗1 + c ∗c
�

ẋ1− c ∗c ẋ2+
�
k ∗1 +k ∗c
�

x1−k ∗c x2 = 0 (70)

m2 ẍ2+
�
c ∗2 + c ∗c
�

ẋ2− c ∗c ẋ1+
�
k ∗2 +k ∗c
�

x2−k ∗c x1 = 0 (71)

41

A BENCHMARK PROBLEMS

A.4 Hydraulic crane

A planar model of a hydraulically actuated two-link robotic arm is shown in Fig. 23. A similar model was

described in [21] and used as benchmark in [24].

1
2 (massless)

x

y

θ1

θ2

g

P

Q

R

O B

L
Lh

s1

Figure 23: Planar model of a manipulator with a single hydraulic actuator

Link 1 is a rod of length L and distributed mass m . Link 2 has length Lh and is considered to be mass-

less. Two point masses mp and mh are placed at points Q and R. The system moves under gravity effects

and is actuated with a hydraulic piston that connects points B and P. The values of the system properties

used in the numerical experiments are summarized in Table 1.

Table 1: Mechanical parameters of the single-actuated model

Length of link 1 L 1.0 m

Length of link 2 Lh 0.5 m

Mass of link 1 m 200 kg

Point mass at Q mp 250 kg

Point mass at R mh 100 kg

Coordinates of fixed point B
�
xB, yB
� �p

3/2, 0
�

m

Initial angle, link 1 (θ1)0 π/6 rad

Initial angle, link 2 (θ2)0 3π/2 rad

Gravity g −9.81 m/s2

Hydraulic model

The dynamics of the hydraulic system was evaluated using the hydraulic model in [21]. The magnitude of

the hydraulic force exerted by the actuator can be evaluated as

fh =
�
p2−p1

�
ap− c ṡ1 (72)

42

A BENCHMARK PROBLEMS

where p1 and p2 are the fluid pressures within the cylinder and ap is the total piston area. A viscous friction

model with coefficient c was used to represent internal dissipation in the actuator.

The dynamics of the hydraulic system can be described with the following set of first order, ordinary

differential equations [21]

ṗ1 =
β1

apl1

ap ṡ1+aicd

√√√2
�
pP−p1

�

ρ
δP1−aocd

√√√2
�
p1−pT

�

ρ
δT1

 (73)

ṗ2 =
β2

apl2

−ap ṡ1+aocd

√√√2
�
pP−p2

�

ρ
δP2−aicd

√√√2
�
p2−pT

�

ρ
δT2

 (74)

where l1 and l2 are the variable lengths of the chambers on each side of the piston, ai and ao are the variable

valve areas that connect these cylinder chambers to the pump and the tank in the hydraulics system, cd is

the discharge coefficient of the valves,ρ stands for the fluid density, pP and pT are the hydraulic pressure at

the pump and the tank respectively. Coefficients δP1, δP2, δT1, and δT2 are 0 when the quantity inside the

square root that precedes them is negative and 1 otherwise. Terms β1 and β2 stand for the bulk modulus

in each cylinder chamber, and they are evaluated as a function of the fluid pressure [10]

βi =
1+a pi + b p 2

i

a +2b pi
, i = 1, 2 (75)

where a and b are constants for the fluid. Assuming that the two cylinder chambers have equal volume

at the starting time of the simulation, chamber lengths l1 and l2 are given by

l1 = 0.5l + s1,0− s1

l2 = 0.5l + s1− s1,0

(76)

where s1,0 is the initial length of the actuator. Valve areas ai and ao have m2 units and are obtained as

ai = 5 ·10−4κ

ao = 5 ·10−4 (1−κ)
(77)

In Eq. (77), κ ∈ [0, 1] is the valve control parameter or spool displacement, i.e., the kinematic input that

controls the motion of the piston. The hydraulic subsystem parameters for this problem are shown in

Table 2.

43

A BENCHMARK PROBLEMS

Table 2: Hydraulic parameters

Piston area ap 65 ·10−4 m2

Cylinder length l 0.442 m

Friction coefficient c 105 Ns/m

Valve discharge coefficient cd 0.67

Fluid density ρ 850 kg/m3

Hydraulic pressure at the pump pP 7.6 MPa

Hydraulic pressure at the tank pT 0.1 MPa

Compressibility coefficient a 6.53 ·10−10 Pa

Compressibility coefficient b −1.19 ·10−18

44

