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Abstract 

Muscle force and fatigue modeling and simulation are powerful tools for rehabilitation, sports performance, ergo-
nomics, and injury prevention. However, their accuracy is challenged by dynamic mechanical and physiological fac-
tors. Since musculoskeletal models are typically derived from cadaver data and scaled to individuals, careful subject-
specific calibration is recommended to achieve accurate simulation results. This study investigates how different 
muscle models and calibration strategies affect the accuracy of muscle force estimation at the elbow level. Two mod-
els—a simplified static model and a rigid-tendon Hill-type model—were compared. Several calibration approaches 
were tested using isometric and isokinetic measurements to identify the parameters that most enhance model 
performance. The models were used to estimate muscle forces, and their outputs were compared to experimental 
data collected from seventeen healthy subjects. In the first phase, estimations were made during short maximal vol-
untary contractions (MVCs) without fatigue, in order to isolate muscle force from fatigue effects. In the second phase, 
the calibrated parameters from each strategy were used to estimate muscle forces and fatigue during a short-dura-
tion, high-intensity dynamic exercise by incorporating a muscle fatigue model. The highest accuracy was achieved 
with the Hill-type model, which involved refining individual muscle length and force parameters based on concentric 
and eccentric MVCs and adjusting two parameters of the force–velocity relationship. However, incorporating subject-
specific muscle fatigue parameters did not significantly improve force estimation under fatigue conditions.

Keywords Muscle force dynamics, Muscle fatigue model, Biomechanics, Musculotendon model, Rehabilitation, Sport 
performance

Introduction
Estimating muscle forces through computer modeling 
and simulation is a powerful tool for evaluating joint 
loads and muscle fatigue, with applications in rehabili-
tation, physical therapy, human motion prediction, ath-
letic performance optimization, ergonomic design, and 
injury prevention in both sports and workplaces [1–7]. 
These simulations are especially valuable in scenarios 
where direct measurement of internal forces is imprac-
tical or impossible [8]. However, accurately modeling 
muscle forces remains a significant challenge due to the 
inherently dynamic and nonlinear nature of musculo-
skeletal systems [9–11]. Muscle tendon units (MTU) 
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force generation varies over time and is sensitive to a 
multitude of mechanical and physiological factors such 
as moment arms, tendon lengths, activation patterns, 
and the progression of muscle fatigue [12–14]. Currently, 
generating a musculoskeletal model directly from medi-
cal images is not technically feasible; instead, generic 
models are derived from cadaver data and adjusted to 
fit individual subjects using basic scaling methods [15]. 
While this approach can provide a rough estimate of 
musculoskeletal geometry, it lacks the precision needed 
for high-fidelity force estimation. Since MTU force out-
put is highly dependent on individualized anatomical and 
physiological properties, relying solely on generic mod-
els risks oversimplification and inaccuracy, particularly in 
sensitive applications like rehabilitation planning or elite 
athletic performance assessment.

To improve simulation accuracy, it is therefore essen-
tial to move toward subject-specific modeling approaches 
that incorporate calibrated parameters. Calibration 
techniques help tailor musculoskeletal models to bet-
ter reflect individual variability, enhancing the physi-
ological realism of simulated musculotendon mechanics 
[16]. These techniques become even more crucial when 
working with sophisticated MTU models that include a 
greater number of adjustable parameters, each of which 
can significantly influence force output predictions. Tra-
ditional MTU force inputs—such as musculotendon 
length, shortening velocity, and moment arms—are dic-
tated by joint kinematics and musculoskeletal geometry. 
However, other critical parameters like optimal MTU 
fiber length and tendon slack length can only be approxi-
mated through indirect methods such as anthropomet-
ric scaling [17, 18]. Moreover, dynamic simulations that 
aim to capture force–time behavior require further tun-
ing of parameters such as maximum isometric force and 
fatigue/recovery coefficients. These latter parameters are 
particularly relevant when modeling conditions involv-
ing sustained exertion or repetitive motion, where mus-
cle fatigue plays a significant role [19, 20]. For example, 
in rehabilitation contexts, understanding the fatigue 
profile of a patient can inform therapy intensity and rest 
cycles [21–23]. Similarly, in sports science, incorporating 
fatigue dynamics can improve performance modeling and 
reduce injury risk during training [24–26]. Thus, param-
eter calibration is not merely a technical refinement but 
a necessary step toward achieving accurate, personalized, 
and context-sensitive musculoskeletal simulations [27].

In their preliminary study on integrating muscle force 
and muscle fatigue simulation, the authors highlighted 
the challenges of obtaining accurate subject-specific 
human models for dynamic tasks [28]. They successfully 
combined multilevel models that account for redun-
dant muscle forces within a multibody environment 

with muscle fatigue; however, they observed discrepan-
cies with experimental values due to the muscle fatigue 
model used and the calibration of MTU parameters. In 
their subsequent work, they developed an innovative 
four-compartment model that distinguishes between 
short-term fatigue (related to metabolic inhibition) and 
long-term fatigue (emulating central fatigue and poten-
tial microtraumas), validating it exclusively during iso-
metric tasks to correctly isolate the fatigue mechanism 
and avoid the dynamic effects of complex MTU force 
generation [29]. Later, Yang et  al. proposed a specific 
muscle fatigue model for both static and dynamic tasks, 
using an isokinetic dynamometer to establish generic 
model parameters [30]. However, their study focused 
solely on concentric contractions and did not incorporate 
MTU force mechanisms, which are crucial for fatigue 
estimation as they determine the target load of a physical 
activity (the key input for any muscle fatigue model). On 
the other hand, Thelen extensively studied MTU force 
modeling, paying particular attention to adjusting MTU 
mechanics parameters to simulate dynamic contractions 
[31]. He also used an isokinetic dynamometer to deter-
mine the Hill-muscle model parameters [32] that best fit 
specific population groups, highlighting subject-specific 
discrepancies and their impact on MTU force produc-
tion. Other authors [33–35] proposed calibration strate-
gies for their musculoskeletal models based on motion 
capture, electromyography measurements and ground 
forces data. Muller et  al. calibrated geometric param-
eters from motion capture and also used an isokinetic 
dynamometer for MTU force calibration, but only during 
isometric trials [27]. Finally, while none of these studies 
considered the effect of musculoskeletal model person-
alization on muscle fatigue, Arones et al. investigated its 
impact on metabolic cost estimates during walking [36].

For these reasons, this study aims to enhance mus-
cle force and fatigue estimation by comparing different 
MTU models and calibration strategies. Specifically, 
the authors explore the impact of MTU model types 
and calibration techniques on the precision of MTU 
force estimation at the elbow joint. Two modeling 
approaches were evaluated: a basic static model and a 
more detailed rigid-tendon Hill-type model. Multiple 
calibration methods were applied using data from iso-
metric and isokinetic tests to determine which param-
eters most effectively improve model accuracy. These 
models were then used to compute MTU forces and 
validated against experimental data obtained from sev-
enteen healthy participants. The evaluation was con-
ducted in two stages. Initially, predictions were made 
during brief maximal voluntary contractions (MVCs) 
under non-fatigued conditions, aiming to assess pure 
muscle force. In the subsequent stage, the models—now 
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calibrated—were used to simulate both muscle force 
and fatigue during a short, high-intensity dynamic task, 
using a fatigue model.

Material and methods
Experimental data collection
Participants and instrumentation
Seventeen healthy voluntary participants (8 males, 9 
females; age: 32 ± 13  years; height: 175 ± 18  cm; body 
mass: 72 ± 20  kg) were recruited for this study. Inclu-
sion criteria were: (i) self-reported good general health, 
(ii) no history of upper limb musculoskeletal injuries 
or neuromuscular disorders, and (iii) ability to perform 
maximal voluntary elbow flexions without pain or dis-
comfort. Exclusion criteria included: (i) current upper 
limb pain or injury, (ii) recent engagement in upper-
body strength training within 48  h before testing, and 
(iii) consumption of caffeine, alcohol, or participa-
tion in vigorous physical activity within the same 48-h 
period. Before participating, each individual provided 
written informed consent, which had been approved by 
the Research Ethics Committee of La Coruña-Ferrol. 
The subjects’ arm, forearm, and hand were measured to 
later scale the subject-specific models.

The HUMAC Norm isokinetic dynamometer (CSMi, 
Stoughton, MA, sampled at 100 Hz) was used to record 
joint angle and torque generated by the participants. 
Each subject was positioned in a lying posture and 
securely restrained to ensure that only the right elbow 
could move, as shown in Fig. 1a.

Experimental procedures
Participants followed both an isometric and an isoki-
netic exercise protocol on the same day. At the start of 
the session, they completed a 5-min warm-up using a 
resistance band to reduce the risk of injury. To ensure 
familiarity with the evaluations and instructions, a simu-
lated recording was made beforehand for each task. Task-
specific guidelines, including the number of repetitions, 
pace, and rest periods, were provided both verbally and 
visually on a screen positioned next to the subject. Dur-
ing all exercises, participants were instructed to exert 
maximum voluntary contraction (MVC) and received 
verbal encouragement throughout [37].

The isometric exercise protocol (hereafter referred to 
as ISOM6) began with two MVCs, each held for 5 s, at six 
different elbow flexion angles (15°, 30°, 45°, 60°, 75°, and 
90°) in a randomized order. The higher peak force of the 
two MVCs was retained, and the difference between the 
two MVCs was checked to ensure it did not exceed 10%. 
A 45-s rest period was given between the two MVCs of 
each angle, and a 2-min rest between the MVCs of differ-
ent angles to minimize the effects of muscle fatigue. After 
a 5-min rest, participants performed a 30-s sustained 
MVC at 45°, followed by two additional 5-s MVCs, with 
rest intervals of 15  s and 60  s, respectively, to measure 
recovery. Since this exercise induced metabolic inhibi-
tion, participants were given a minimum of 30 min of rest 
before proceeding with the isokinetic protocol.

The isokinetic exercise protocol began with two 
MVCs during concentric elbow flexion from 15° to 
90° at a speed of 15°/s (5  s duration). This ensured 

Fig. 1 a Isokinetic dynamometer; b 7-muscle arm model
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participants exerted maximum force throughout the 
entire range of motion, without fatiguing and allowing 
the dynamometer to accurately measure it. Addition-
ally, the initial 10° of both eccentric and concentric 
contractions were excluded from calibration to avoid 
the effects of the muscle’s response time to excitation. 
Next, subjects performed two MVCs during eccen-
tric elbow flexion, where they resisted the machine 
as it extended their arm from 90° to 15° at the same 
speed and duration. The speed of this exercise not 
only aimed to achieve maximum effort like the previ-
ous one, but also served to reduce the risk of injury, as 
the machine exerts significant torque. For both exer-
cises, a 45-s rest period was given between each MVC, 
with a 2-min rest between the two sets. The four sets 
of measurements (two concentric and two eccentric) 
were later used in the simulation, and the protocol is 
referred to as DYN. Finally, after a 5-min rest, par-
ticipants performed a dynamic, short-duration, high-
intensity exercise (DYN-FAT). This involved sustaining 
an MVC during 4 concentric (15°–90°) and eccentric 
(90°–15°) elbow flexions (40-s total duration), followed 
by two additional 5-s isometric MVCs at 45°, with 15-s 
(DYN-FAT-R1) and 60-s (DYN-FAT-R2) rest intervals, 
respectively, to measure recovery.

Models
Musculoskeletal model
The musculoskeletal model used in this study consisted of 
four segments—trunk, upper arm, forearm, and hand—
with a single degree of freedom, allowing only elbow flex-
ion and extension (Fig.  1b). All other joints were fixed 
and set to match the subject’s posture during the experi-
mental setup (Fig. 1a, b). It incorporated seven muscles: 
the long, medial, and lateral heads of the triceps; the long 
and short heads of the biceps; the brachioradialis; and the 
brachialis. Adapted from [38], the bone geometries were 
scaled to match each subject’s anthropometric measure-
ments. By combining this model with the recorded joint 
angles from the isokinetic dynamometer, MTU lengths 
and moment arms were determined for the exercises.

Musculotendon models
Two types of musculotendon models were used to esti-
mate MTU force. The first was a Hill-type musculoten-
don model [32] (Fig. 2), which accounts for physiological 
force constraints. The force generated by a MTU depends 
on its maximum isometric force, as well as its force–
length-velocity properties, and is provided by:

(1)FMT
=

(
FM
CE + FM

PE

)
cosα;

Fig. 2 Hill-type musculotendon model. The MTU fibers are modeled as an active contractile element (CE) in parallel with a passive elastic 
component (PE). These elements are in series with a nonlinear elastic tendon (SE). The pennation angle α denotes the angle between the MTU 
fibers and the tendon. Superscripts MT, M, and T indicate musculotendon, MTU fiber, and tendon, respectively [28]
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In this equation, FM
CE and FM

PE represent the forces gen-
erated by the contractile element (CE) and the passive 
element (PE), respectively, while α corresponds to the 
pennation angle. The active force produced by the CE is 
influenced by MTU fiber length, contraction velocity, and 
activation level, and is defined as:

where lM is the MTU fiber length, vM is its velocity, and fl 
and fv are dimensionless force–length and force–velocity 
relationships, respectively. Since the authors aim to inte-
grate the findings of this study into their real-time human 
motion capture and musculoskeletal analysis system [39], 
the tendon is assumed to be rigid, meaning that its length 
remains constant. This assumption reduces the numeri-
cal stiffness of the Hill-muscle equations [40, 41], and sig-
nificantly decreases the computational time required for 
simulations while preserving the key physiological con-
siderations [42]. As a result, MTU fiber length and veloc-
ity are determined solely by musculoskeletal geometry 
and segment motion, independently of the musculoten-
don force. Moreover, to further achieve this objective, the 
muscle’s time response to excitation is ignored, assum-
ing that activation follows excitation instantaneously, 
where activation a equals excitation u. This simplification 
is justified by the fact that the time delays involved are 
minimal compared to the duration of the exercises ana-
lyzed—muscles had sufficient time to reach maximum 
activation—and, in the context of fatigue, the effect of 
activation delays would be largely compensated by the 
corresponding deactivation delays. In Fig.  2, lMT stands 
for the musculotendon length and vMT is the musculo-
tendon velocity.

The force of the parallel passive element, FM
PE , which 

opposes MTU stretch, can be formulated as:

where fPE is a dimensionless force–length relationship, 
which has non-zero values when the MTU length is 
greater than the optimal MTU fiber length ( lM

0
).

In this study, subjects were instructed to produce their 
MVC to avoid the load-sharing problem. Without this 
approach, it would be impossible to calibrate maximum 
forces and determine whether variations in experimental 
torques were caused by muscle fatigue or by voluntary 
reductions in muscular activity. Therefore, the activation 
of the elbow flexors was assumed to be 1 (maximum), 
while the activation of the elbow extensors was set to 0 
(minimum, with no co-contractions). Consequently, the 
instantaneous allowed forces in flexor and extensor mus-
cles, FFlex and FExt , were calculated using a = 1 (maxi-
mal active contraction) and a = 0 (no active contraction), 

(2)FM
CE = FM

0 × a× fl
(
lM

)
× fv

(
vM

)
;

(3)FM
PE = FM

0 × fPE
(
lM

)
;

respectively. In this way, by combining Eqs.  (1–3), the 
resulting flexor and extensor single MTU forces, FFlex

i  
and FExt

i  , in muscle i, are represented by Eqs. (4) and (5), 
respectively.

The second model was a simplified static model that 
does not account for musculotendon actuator dynamics. 
In this model, the musculotendon force ( FMT

Stat  ) is directly 
related to MTU activation ( a ) and maximum isometric 
force ( FM

0
):

Consequently, using the static model, the force of flexor 
MTUs is FFlex

Stat = FM
0

 and the force of extensor MTUs is 
FExt
Stat = 0 during elbow flexion MVC. Due to its simplic-

ity, this model only requires the calibration of the maxi-
mum isometric force and offers good computational 
efficiency. Moreover, it has not shown significant differ-
ences compared to more physiologically realistic models 
during gait [42].

Muscle fatigue model
Muscle fatigue is a complex phenomenon influenced by 
both physiological and psychological factors, leading to a 
reduced ability to generate maximal force or power dur-
ing contractile activity. It can occur at different levels of 
the motor pathway, and is generally classified into central 
and peripheral fatigue. Central fatigue refers to a decline 
in the central nervous system’s ability to transmit neural 
signals to the muscles, resulting in diminished muscle 
performance [43]. In contrast, peripheral fatigue occurs 
at the neuromuscular junction and within the muscle 
itself, involving mechanical and cellular alterations [44]. 
The recovery of voluntary force-generating capacity after 
exercise varies, with brief high-intensity exercise typically 
allowing for rapid recovery, and long-duration exercise 
often resulting in only partial recovery [45]. To simulate 
the task-related muscle fatigue for dynamic movements, 
this work implements a compartment model to charac-
terize muscle activation (Ma), fatigue (Mf), and recovery 
(Mr) across any target load (TL) [46]. Specifically, the 
authors adopted the innovative four-compartment (4CC) 
model which differentiates between short-term fatigue 
( MS

f  , associated with metabolic inhibition) and long-
term fatigue ( ML

f  , simulating central fatigue and potential 
microtraumas) [29]. The portion of each subject’s maxi-
mum force available at the joint level reflects the 

(4)
FFlex

=
(
fl
(
lM

)
× fv

(
vM

)
+ fPE

(
lM

))
FM
0 × cosα;

(5)FExt
= fPE

(
lM

)
× FM

0 × cosα;

(6)FMT
Stat = a× FM

0 ;
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proportion of non-fatigued MTUs (RC), accounting for 
both short-term and long-term fatigue. It is expressed as:

Consequently, accounting for fatigue, the maximum 
force that the flexor MTUs can generate within the 
static musculotendon model during MVC ( a = 1) can be 
expressed as:

Then, considering that peripheral and central fatigue 
primarily affect the contractile component of MTU force 
production, only FM

CE (2) will be influenced by the mus-
cle’s fatigue level. Consequently, the reduction in maxi-
mum MTU force permitted in the elbow flexor MTU 
during MVC within the physiological model can be for-
mulated as follows:

Torque calculation
The net elbow joint torque at each moment during the 
tasks can be expressed, in a general form, as:

where FMT is the vector of the individual MTU forces, J 
is the Jacobian whose transpose projects the MTU forces 
into the joint drive torque space (i.e., represents the 
moment arms), and Q is the resulting elbow joint torque.

The experimental joint torque ( QExp ) was directly 
recorded using the isokinetic dynamometer.

Subject‑specific scaling or calibration of musculotendon 
parameters
Since mechanical and physiological factors influence 
MTU forces during joint angle variations, three different 
datasets were compared for calibration:

• A single isometric MVC at 60° (ISOM1).
• Six static experimental measurements of isometric 

MVCs (ISOM6).
• An isokinetic calibration task, including both con-

centric and eccentric contractions (DYN).

The following musculotendon parameters have been 
calibrated or optimized in this study:

(7)RC =

(
100−

(
MS

f +ML
f

))
/100;

(8)FMT
Stat = FM

0 × RC;

(9)
FFlex

=
(
fl
(
lM

)
× fv

(
vM

)
× RC + fPE

(
lM

))

× FM
0 × cosα;

(10)JT FMT
= Q;

Maximum isometric force
Since the relative target load of a task depends on the 
force exerted by the subject, the maximum isometric 
force ( FM

0
 ) is one of the most critical subject-specific 

parameters to calibrate. In most studies, this parameter is 
adjusted to ensure that MTUs can generate the required 
joint torques [35, 47], sometimes by artificially increasing 
FM
0

 or incorporating residual actuators into the model. 
According to the OpenSim documentation, these resid-
ual actuators are referred to as “the hand of God,” as they 
compensate for discrepancies between model, recorded 
movements and MTU forces that fail to produce suffi-
cient accelerations [48]. In fatigue studies, overestimating 
FM
0

 leads to an underestimation of fatigue, while underes-
timating it exaggerates fatigue effects. Therefore, correct 
calibration of FM

0
 is essential to accurately approximate 

the subject’s force and fatigue limits, ensuring that MTU 
forces can generate the required joint torques without 
being underactivated.

Since the variation of MTU moment arms across joint 
angles differs among muscles, optimizing individual 
MTU forces provides greater flexibility for the model to 
align with experimental measurements without alter-
ing the moment arms. Modifying moment arms would 
require adjusting the coordinates of MTU and tendon 
attachment sites, leading to significant structural changes 
and collateral consequences.

Length parameters
The scaled tendon slack length ( lTS  ) and the scaled opti-
mal MTU fiber length ( lM

0
 ), which influence the dimen-

sionless force–length function, were obtained from 
OpenSim [38] after adjusting the model to match anthro-
pometric measurements. Nevertheless, to determine the 
best subject-specific calibration strategy, a second scaling 
was also applied to lM

0
 by including this parameter in the 

list of variables to optimize in ISOM6 and DYN.

Additional force–length‑velocity properties
Preliminary results using the Hill muscle model (original 
model, shown in orange in Fig. 3) indicated that none of 
the implemented and calibrated approaches accurately 
captured the experimental MTU force–length and force–
velocity relationships. This discrepancy was observed 
across both dynamic and isometric protocols, with 
two eccentric and two concentric MVCs highlighted in 
red and six isometric MVCs in green in Fig. 3. Two key 
observations emerged:

a. The experimental measurements and previous find-
ings in [49] indicate that concentric contractions 
are most affected by musculotendon length-velocity 
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shortening effects, whereas eccentric and isomet-
ric measurements show similar behavior. At a 60° 
elbow flexion angle, despite identical musculotendon 
lengths and moment arms, the maximum force gen-
erated during the concentric MVC was 40% lower 
than that of the eccentric and isometric MVCs due to 
the force–velocity relationship.

b. The maximum possible value of fv(vM) during eccen-
tric task, is typically set to 1.4 for young adults [50]. 
Given that fv(0) = 1 during isometric task, as spot-
lighted in Fig. 3 with the original model, the eccentric 
maximum forces should theoretically be 40% higher. 
However, neither our experimental measurements 
nor the results at different speeds reported in [49] 
confirmed this increase at the elbow joint.

As a result, the following two model adjustments 
were implemented to enhance MTU force estimation:

a. With its default parameter values, the Hill muscle 
model failed to accurately capture the MTU force-
length and force-velocity relationships, even after 
scaling lM

0
 , as the formulation of fv(v

M) did not 
accurately represent the force-velocity dependency. 
The force-velocity relationship is expressed in terms 
of the normalized MTU fiber velocity ṽM , which is 
defined as:

(11)ṽM =
vM

vmax

Fig. 3 Preliminary comparison of the estimated torques from the original and adjusted models with experimental measurements for a healthy 
subject during DYN and ISOM6
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where vmax is the maximum contraction velocity, cal-
culated as vmax =

lM
0

τc
 . The parameter τc is known as 

the time-scaling parameter, and is tipically set to 0.1 s 
for all MTUs [32].

 However, by adjusting τc , the authors observed signif-
icant improvements (represented in brown in Fig. 3). 
Therefore, they decided to include this parameter in 
the subject-specific optimized calibration.

b. After the first adjustment, the simulation of the 
dynamic task showed a good match with experi-
mental data; however, isometric tasks were signifi-
cantly underestimated, since f max

v  = 1.4. Therefore, 
we opted to set f max

v = 1.01 , which resulted in a 
stronger correlation for both dynamic and isometric 
tasks.

To highlight the impact of these adjustments, they 
were exclusively applied to a single calibration strat-
egy—PHYS3-DYN, detailed in Sect.  "Muscle force 
evaluation without fatigue"—rather than implementing 
them across all simulations.

Muscle fatigue parameters
As detailed in [29], the parameters FS and FL define the 
fatigue rates, while RS and RL define the recovery rates 
of the short-term and long-term fatigued states, respec-
tively. Additionally, r acts as a multiplier to enhance 
recovery during rest. The short-duration protocol of 
[28] was applied, using the isometric experimental 
measurements during the 30-s sustained MVC at 45° 
to calibrate the short-term fatigue state parameters 
(FS, RS and r). However, due to the lack of long-dura-
tion experimental measurements, the authors adopted 
default values for the long-term parameters, setting 
RL = 2e-4 and FL = 4e-4 to induce a slight long-lasting 
nonmetabolic fatigue.

Model‑calibration combinations and evaluation
Muscle force evaluation without fatigue
As observed, numerous MTU parameters can be 
adjusted, and various calibration strategies are possible. 
To determine the simplest and most efficient non-inva-
sive technique for musculoskeletal model calibration, this 
study tested different approaches by combining default 
and calibrated MTU parameters for two muscle mod-
els. The tested approaches are categorized as follows and 
summarized in Table 1:

Approaches calibrated from isometric 
measurements:

PHYS1-ISOM1: Only FM
0

 of the physiological Hill-
musculotendon model was calibrated by applying a single 
scale factor to all the MTUs derived from a single isomet-
ric measurement (ISOM1, MVC at 60°).

PHYS2-ISOM6: Individual FM
0

 and lM
0

 for the physi-
ological Hill-musculotendon model were calibrated using 
an optimization technique based on six isometric meas-
urements (ISOM6).

STAT-ISOM6: Individual FM
0

 for the simplified mus-
culotendon model were calibrated using an optimiza-
tion technique based on six isometric measurements 
(ISOM6).

Approaches calibrated from dynamic 
measurements:

PHYS1-DYN: Individual FM
0

 of the physiological 
Hill-musculotendon model were calibrated using an 
optimization technique based on dynamic experimen-
tal measurements from the isokinetic calibration task, 
including both concentric and eccentric contractions.

PHYS2-DYN: Individual FM
0

 and lM
0

 of the physiologi-
cal Hill-musculotendon model were calibrated using an 
optimization technique based on dynamic experimen-
tal measurements from the isokinetic calibration task, 
including both concentric and eccentric contractions.

PHYS3-DYN: Individual FM
0

 and lM
0

 , and τc of the 
physiological Hill-musculotendon model were calibrated 
using an optimization technique based on the isokinetic 
calibration task, including both concentric and eccentric 

Table 1 Summary of the approaches implemented in this study

Approaches Muscle model Experiment F
M

0
l
M

0
τc fmax

v Fatigue parameters

PHYS1-ISOM1 Hill muscle model ISOM1 Scale factor Scaled from geometry 0.1 s 1.4 Original

PHYS2-ISOM6 Hill muscle model ISOM6 Optimized Optimized 0.1 s 1.4 Original

STAT-ISOM6 Static model ISOM6 Optimized N.A N.A N.A Original

PHYS1-DYN Hill muscle model DYN Optimized Scaled 0.1 s 1.4 Original

PHYS2-DYN Hill muscle model DYN Optimized Optimized 0.1 s 1.4 Original

PHYS3-DYN Hill muscle model DYN Optimized Optimized Optimized 1.01 Original

PHYS3-DYN* Hill muscle model DYN Optimized Optimized Optimized 1.01 Optimized
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contractions. Additionally, f max
v  was set to 1.01 (while set 

to its default value 1.4 for the others approaches).
The optimization technique (fmincon, MATLAB, ver-

sion R2023a, MathWorks, Natick, MA, USA) aimed to 
achieve the best fit between the model and experimen-
tal results by allowing FM

0
 to vary from 50 to 150% of its 

original cadaver-derived value and lM
0

 to range from 90 
to 120% of its pre-scaled value. Finally, τc limits were set 
between 1/15 s and 2 s.

As an indicator, the optimizations were conducted 
on a computer equipped with an Intel(R) Core(TM) 
i7-13700KF @ 3.40 GHz processor, 32 GB of RAM, and a 
2 TB SSD running Windows 10 Pro. All calibrations were 
performed using a single-threaded program written in 
Matlab, which required less than 15 s per subject. Since 
computational time was not a significant factor, no spe-
cific comparison was conducted.

To compare these six approaches, the root mean square 
error (RMSE) was calculated between the elbow torques 
produced by the MTU forces estimated in each approach 
and the experimental measurements. This evaluation 
was performed separately for isometric tasks (ISOM6) 
and dynamic tasks (DYN). A paired-sample t-test was 
performed for each pair of approaches to statistically 
compare their differences. Prior to applying the t-tests, 
the normality of the paired RMSE differences was veri-
fied using the Kolmogorov–Smirnov test (after standard-
izing the differences), and no violations of the normality 
assumption were detected. To control the increased risk 
of Type I error due to multiple comparisons, a Bonfer-
roni correction was applied [51]. Specifically, 15 pair-
wise comparisons were conducted (corresponding to all 
combinations of 6 approaches), and each p-value was 
adjusted accordingly.

Muscle force evaluation with fatigue
In this work, since the evaluated task was intended to be 
performed at MVC, two different hypothesis were con-
sidered for simulating muscle force and fatigue during 
DYN-FAT:

Option (a): Assuming TL = 100% and a = 1, based 
on the premise that participants maintained full MVC 
throughout the entire exercise.

Option (b): Estimating TL and activation level a from 
experimental measurements, by calculating the ratio 
between the experimentally measured torque and the 
estimated maximum torque the MTUs could generate. 
To avoid introducing the complexity of the force-shar-
ing problem and the need to simulate individual muscle 
fatigue, a uniform activation level was applied across all 
MTUs at the joint level.

The differences between the two approaches affected all 
time steps, as any variation in MTU activation or target 
load leads to a different muscle fatigue time history. In this 
study, option (a) was tested using MTU parameters previ-
ously calibrated with the STAT-ISOM6, PHYS2-DYN, and 
PHYS3-DYN approaches to simulate maximum force and 
fatigue during DYN-FAT. Then, option (b) was tested using 
only the PHYS3-DYN approach, which demonstrated the 
best performance in this study.

Muscle force evaluation with  fatigue considering maxi-
mum target load (option a) The STAT-ISOM6, PHYS2-
DYN, and PHYS3-DYN approaches were applied to 
simulate maximum force and fatigue development dur-
ing the dynamic, short-duration, high-intensity exercise 
(DYN-FAT). As described in Sect. "Muscle fatigue model", 
the muscle fatigue model was integrated into the muscu-
lotendon model to account for task-specific fatigue during 
dynamic movement. The generic model parameters from 
the previous 3CC muscle compartment model [52], which 
does not account for long-term muscle fatigue, were used to 
simulate short-term muscle fatigue. Therefore, the param-
eters were set as follows: FS = 0.00912, RS = 0.00094, r = 15. 
For the long-term fatigue component, the parameters were 
set to FL = 0.0004 and RL = 0.0002.

To further evaluate the effect of subject-specific calibra-
tion of the fatigue parameters, the authors combined the 
calibrated fatigue parameters (Sect. "Muscle fatigue param-
eters") with the PHYS3-DYN muscle model, resulting in a 
new protocol referred to as PHYS3-DYN*.

To evaluate these four calibrations, the RMSE was com-
puted by comparing the elbow torques generated by the 
estimated flexor MTU forces at maximum contraction 
(a = 1 and TL = 100%) with the experimental measure-
ments. Additionally, in order to highlight the effects of 
these discrepancies on the determination of the target 
load (TL), the RMSE was calculated between the expected 
TL (100%) and the estimated TL*, which was determined 
using the following equation based on the estimated torque 
( QMax

Sim  ) and the experimental torque ( QExp):

for the non-physiological approach, and,

for the physiological approach, where QSim,PE is the 
torque generated by the passive element, so as to isolate 
the ratio of torques corresponding solely to the con-
tractile element. In both cases, TL* was limited to 100% 
when QMax

Sim < QExp . To provide a statistical comparison, 

(12)TL∗ =
QExp

QMax
Sim

(13)TL∗ =
QExp − QSim,PE

QMax
Sim − QSim,PE
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paired-sample t-test was also performed for each pair of 
approaches to statistically compare their differences.

Muscle force evaluation with fatigue from estimated target 
load (option b) To assess the accuracy of the best of the 
previous approaches (PHYS3-DYN) in a scenario where 
TL is not predefined (option b) and remains unknown, we 
used the estimated target load based on torques propor-
tion (TL**) to determine the corresponding MTU acti-
vations (a = TL**/100). A uniform activation level was 
applied across all MTUs at the joint level to avoid intro-
ducing the force-sharing problem and the need to simu-
late individual muscle fatigue. TL** was calculated simi-
larly to TL* (Eq. 13), but it reflects the fatigue time history 
specific to this scenario. The corresponding torques and 
fatigue levels were computed at each time step. The RMSE 
was then calculated by comparing the elbow torque gen-
erated by the estimated MTU forces with the experimen-
tal measurements.

Results
Muscle force evaluation without fatigue
The different approaches proposed in this study were 
evaluated by comparing the estimated torques with 
the experimentally measured torques from seventeen 
healthy subjects during isometric and dynamic MVCs. 
Figure  4 illustrates the maximum isometric torques of 
the elbow flexors for a healthy subject, estimated using 
all approaches during ISOM6. The simplest calibration 
approach, PHYS-ISOM1, accurately matched the torque 
only at the 60° angle, where it was calibrated. Additionally, 
PHYS1-DYN (sky blue) and PHYS2-DYN (green) tended 
to underestimate isometric tasks. The non-physiological 
approach (STAT-ISOM6) did not accurately replicate 
the shape of the experimental data (red). PHYS2-ISOM6 
and PHYS3-DYN demonstrated the highest reliability, as 
confirmed by the mean values presented in Table 2, with 
mean RMSE across subjects for the six ISOM6 tasks of 
5.4 and 7.5%, respectively. Moreover, paired t-tests con-
ducted between the different approaches revealed sig-
nificant differences in almost all pairwise comparisons, 
except for PHYS1-ISOM1 and STAT-ISOM6, which 
showed similar results (see Table 3). Among all methods, 

Fig. 4 Maximum isometric torques of elbow flexors estimated with the different approaches versus experimental (red) for a healthy subject 
during ISOM6
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the least accurate estimation occurred at 15°, when the 
elbow was in its most extended position.

Figure 5 presents the maximum concentric and eccen-
tric torques of the elbow flexors for one healthy subject, 
estimated using all approaches during DYN. Approaches 
calibrated using ISOM6 data showed good fidelity with 
experimental data (red) only during eccentric tasks, 
resulting in the highest RMSE, with values around 20% 
(Table 2). In contrast, approaches calibrated using DYN 
data aimed to match both eccentric and concentric tasks, 
yielding better overall results. PHYS3-DYN provided the 
best solution, with a mean RMSE of 4.5% across subjects 
for dynamic tasks and significant differences compared to 
its counterparts (see Table 4).

Muscle force evaluation with fatigue
Muscle force evaluation with fatigue considering maximum 
target load (option a)
The different approaches in this study were evaluated 
by comparing the estimated maximum torque of the 
elbow flexors (TL = 100% and a = 1 for flexors) with 
the experimentally measured torque from seventeen 
healthy subjects during a dynamic, short-duration, 

high-intensity exercise, where fatigue was expected. 
Figure 6 illustrates the estimated torques for a healthy 
subject, estimated using all approaches described 
in Sect.  "Muscle force evaluation with fatigue", dur-
ing the two concentric and two eccentric elbow flex-
ion cycles (DYN-FAT) and the two isometric recovery 
measurements (DYN-FAT-R1 and DYN-FAT-R2). The 
STAT-ISOM6 approach showed poor agreement with 
experimental data, particularly during concentric 
phases. In contrast, PHYS3-DYN and PHYS3-DYN* 
exhibited high accuracy across all phases of the exer-
cise. Their results were largely similar, except for a 
notable difference in recovery behavior observed 
in this subject. PHYS2-DYN yielded more accurate 
results than STAT-ISOM6, though it did not reach 
the level of precision achieved by PHYS3-DYN and 
PHYS3-DYN. These findings are summarized in 
Table  5, which presents the mean RMSE across sub-
jects for both dynamic and isometric (recovery meas-
urements) tasks. The mean errors for PHYS3-DYN 
and PHYS3-DYN* were 15.0% and 14.8%, respec-
tively, for the dynamic task and approximately 10% 
for the isometric MVC during recovery. Conversely, 

Table 2 Mean RMSE across subjects of the multiple approaches during ISOM6 and DYN (RMSE < 10% in bold)

Mean Torque Estimation RMSE (%) of Multiple Approaches During ISOM6 and DYN Conditions, with ± Standard 
Deviation

PHYS1‑ISOM1 PHYS2‑ISOM6 STAT‑ISOM6 PHYS1‑DYN PHYS2‑DYN PHYS3‑DYN

ISOM6 15º 18.0 ± 9.0 10.6 ± 7.7 18.9 ± 7.8 31.1 ± 9.3 24.4 ± 10.0 12.3 ± 9.1
30º 9.0 ± 8.9 5.2 ± 4.9 9.9 ± 6.9 22.3 ± 7.0 16.7 ± 7.1 5.5 ± 5.7
45º 8.7 ± 5.8 4.2 ± 3.7 7.2 ± 5.3 17.2 ± 7.0 14.3 ± 6.4 6.2 ± 4.9
60º 2.4 ± 2.9 3.5 ± 3.1 5.5 ± 4.2 16.0 ± 6.4 16.6 ± 5.9 5.9 ± 4.9
75º 12.0 ± 9.4 4.8 ± 3.9 7.6 ± 5.7 10.2 ± 6.4 14.4 ± 6.0 6.7 ± 4.3
90º 14.0 ± 9.4 4.4 ± 4.7 14.6 ± 9.1 10.7 ± 5.7 17.2 ± 7.4 8.3 ± 6.2
Mean 10.7 ± 5.3 5.4 ± 2.6 10.6 ± 5.1 17.9 ± 7.9 17.3 ± 3.7 7.5 ± 2.5

DYN 21.3 ± 6.0 18.8 ± 3.4 21.2 ± 3.1 12.3 ± 2.3 10.5 ± 2.2 4.5 ± 1.6

Table 3 Bonferroni-corrected p-values from paired sample t-tests comparing torque RMSE between modeling approaches across 
subjects during ISOM6 (p > 0.05 in bold, N.A.: not applicable)

Bonferroni‑corrected p‑values from paired sample t‑tests comparing RMSE of the multiple approaches across subjects 
during ISOM6

PHYS1‑ISOM1 PHYS2‑ISOM6 STAT‑ISOM6 PHYS1‑DYN PHYS2‑DYN PHYS3‑DYN

PHYS1-ISOM1 N.A  < 0.01 13.60  < 0.01  < 0.01 0.03

PHYS2-ISOM6  < 0.01 N.A  < 0.01  < 0.01  < 0.01 0.01

STAT-ISOM6 13.60  < 0.01 N.A  < 0.01  < 0.01 0.07
PHYS1-DYN  < 0.01  < 0.01  < 0.01 N.A 0.57  < 0.01

PHYS2-DYN  < 0.01  < 0.01  < 0.01 0.57 N.A  < 0.01

PHYS3-DYN 0.03 0.01 0.07  < 0.01  < 0.01 N.A
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STAT-ISOM6 yielded the poorest results, with an 
average RMSE of 25.5% during the dynamic task. The 
discrepancies in torque estimations closely mirrored 
those observed in the estimated target load (TL*). The 
p-values from the paired-sample t-tests presented in 

Table  6 indicate that PHYS3-DYN and PHYS3-DYN* 
do not exhibit significant differences between them. 
However, both approaches show statistically superior 
performance compared to the other methods.

Fig. 5 Maximum dynamic (concentric and eccentric) torques of elbow flexors estimated with the different approaches versus experimental (red) 
for a healthy subject during DYN

Table 4 Bonferroni-corrected p-values from paired sample t-tests comparing torque RMSE between modeling approaches across 
subjects during DYN (p > 0.05 in bold, N.A.: not applicable)

Bonferroni‑corrected p‑values from paired sample t‑tests comparing torque RMSE of the multiple approaches across 
subjects during DYN

PHYS1‑ISOM1 PHYS2‑ISOM6 STAT‑ISOM6 PHYS1‑DYN PHYS2‑DYN PHYS3‑DYN

PHYS1-ISOM1 N.A 0.42 14.11  < 0.01  < 0.01  < 0.01

PHYS2-ISOM6 0.42 N.A  < 0.01  < 0.01  < 0.01  < 0.01

STAT-ISOM6 14.11  < 0.01 N.A  < 0.01  < 0.01  < 0.01

PHYS1-DYN  < 0.01  < 0.01  < 0.01 N.A  < 0.01  < 0.01

PHYS2-DYN  < 0.01  < 0.01  < 0.01  < 0.01 N.A  < 0.01

PHYS3-DYN  < 0.01  < 0.01  < 0.01  < 0.01  < 0.01 N.A
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Evaluation of muscle force with fatigue from estimated target 
load (option b)
Finally, Fig.  7 illustrates the dynamic and isometric 
fatigued torques of the elbow flexors when evaluating 
the accuracy of PHYS3-DYN by estimating the target 
load (TL**, in black) and MTU activation based on the 
experimentally measured torque for a single subject. 
When TL** = 100%, the simulated torque corresponds to 
the maximum torque. As TL** decreases, the estimated 
torques are adjusted by reducing MTU activity to align 
with the experimental values. The mean RMSE across 
subjects for torques and for target load estimation (with 

an experimental TL = 100%) during DYN-FAT were 7.62 
and 15.85%, respectively.

Discussion
This study aims to improve muscle force and fatigue 
estimation during dynamic, short-duration, high-inten-
sity exercise by comparing different muscle models 
and calibration strategies. Two musculotendon models 
were analyzed: a Hill-type model with a rigid tendon, 
which includes physiological force constraints, and a 

Fig. 6 Maximum dynamic and isometric fatigued torques of elbow flexors estimated with the different approaches versus experimental (red) 
for a single subject during DYN-FAT, DYN-FAT-R1 and DYN-FAT-R2

Table 5 Mean torque estimation RMSE (%) for multiple 
approaches during DYN-FAT, with ± standard deviation 
(RMSE < 10% in bold)

Mean torque estimation RMSE (%) for multiple 
approaches during DYN‑FAT, with ± standard deviation

STAT‑ISOM6 PHYS2‑DYN PHYS3‑DYN PHYS3‑DYN*

DYN-FAT 25.5 ± 4.4 16.2 ± 3.6 15.0 ± 4.5 14.8 ± 4.2

DYN-FAT-R1 11.9 ± 9.3 17.4 ± 10.4 9.3 ± 10.1 10.9 ± 10.2

DYN-FAT-R2 8.6 ± 6.4 12.2 ± 9.5 9.2 ± 7.4 10.0 ± 7.1

TL 26.1 ± 4.1 16.1 ± 3.8 15.4 ± 4.1 15.2 ± 3.6

Table 6 Bonferroni-corrected p-values from paired sample 
t-tests comparing torque RMSE of the multiple approaches 
across subjects during DYN-FAT (p > 0.01 in bold, N.A.: not 
applicable)

Bonferroni‑corrected p‑values from paired sample 
t‑tests comparing torque RMSE of the multiple 
approaches across subjects during DYN‑FAT (including 
DYN‑FAT‑R1 and DYN‑FAT‑R2)

STAT‑ISOM6 PHYS2‑DYN PHYS3‑DYN PHYS3‑DYN*

DYN-FAT N.A 13.87  < 0.01  < 0.01

DYN-FAT-R1 13.87 N.A 0.01 0.02

DYN-FAT-R2  < 0.01 0.01 N.A 4.77
TL  < 0.01 0.02 4.77 N.A
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simplified static model that ignores musculotendon 
actuator dynamics. After scaling a generic model using 
anthropometric data, different force calibration strategies 
were tested based on isometric and isokinetic measure-
ments from an isokinetic dynamometer. Additionally, the 
impact of further fatigue model calibration was evalu-
ated. Finally, each calibration strategy was applied to 
estimate muscle forces and fatigue, and the results were 
compared, taking as reference the experimental measure-
ments, to determine the most effective approach.

The PHYS-ISOM1 calibration approach accurately 
matched the torque at 60°, the angle used for its cali-
bration, but showed significant discrepancies at other 
elbow angles, resulting in the highest RMSE during the 
dynamic task. This finding underscores the importance 
of implementing subject-specific calibration of generic 
models to achieve more physiologically accurate mus-
culotendon mechanics, as recommended in [16]. While 
calibrating MTU parameters from isometric MVCs at 
multiple positions, as done in [27, 28], improved force 
estimation for isometric and eccentric MVCs, it failed 
to account for musculotendon length-velocity shorten-
ing effects during concentric contractions. Similarly, 
while calibrating MTU parameters from dynamic MVCs 
improved force estimation for concentric tasks, PHYS1-
DYN and PHYS2-DYN tended to underestimate isomet-
ric tasks due to the maximum value of the dimensionless 
force–velocity relationship, f max

v  , being originally set to 

1.4 for young adults [50]. However, neither the authors’ 
experimental measurements, nor the results at differ-
ent speeds reported in [49], confirmed this increase at 
the elbow joint during eccentric tasks. In addition, the 
authors statistically demonstrated that the two additional 
adjustments to the original Hill-muscle model, proposed 
in Sect.  "Additional force–length-velocity properties", 
significantly enhanced muscle force estimation, ensur-
ing high accuracy across isometric, eccentric, and con-
centric tasks at elbow level. The least accurate estimation 
of isometric MVCs occurred when the elbow was most 
extended (15°). The authors suggest that experimental 
measurements may have been biased by additional elbow 
flexion caused by the soft support of the dynamometer, 
or by shoulder flexion, as the elbow position was not 
adequately stabilized, which could have interfered with 
elbow flexion and affected measurement accuracy.

Although the simplified static model has shown good 
performance in gait analysis [42], the results obtained 
during high-intensity elbow flexion revealed its signifi-
cant limitations. While the isometric MVC estimations 
from the STAT-ISOM6 approach may be acceptable, the 
model’s limited physiological representation hinders its 
ability to accurately simulate the force–velocity relation-
ship during concentric movements in dynamic tasks.

When estimating MTU forces during dynamic, short-
duration, high-intensity exercise, where fatigue was 
expected, the authors emphasized the challenges of 

Fig. 7 Dynamic and isometric fatigued torque of elbow flexors (orange) and target load (black) estimated with PHYS3-DYN versus experimental 
(red) for a single subject during DYN-FAT, DYN-FAT-R1 and DYN-FAT-R2
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integrating an efficient muscle fatigue model within the 
multibody system dynamics framework for human move-
ment analysis. They highlighted that these difficulties 
cannot be fully evaluated without experimental data, 
which was omitted in [53]. A poor physiological repre-
sentation of the musculotendon model and an inadequate 
calibration may result in poor estimations of the maxi-
mum MTU forces, leading primarily to an underesti-
mated target load, which directly impacts muscle fatigue 
predictions. Additionally, this miscalculation affects force 
distribution, posing further challenges in addressing the 
force-sharing problem [28]. PHYS3-DYN, the method 
with improved MTU force calibration, showed the best 
estimation and did not show significant improvement 
when using subject-specific calibrated muscle fatigue 
model parameters. It could significate that adjusting 
these parameters is not crucial, or that the proposed pro-
tocol to calibrate them was not efficient.

In this work, the authors successfully estimated isomet-
ric, eccentric, and concentric muscle forces with fatigue 
at the elbow joint using an efficient, non-invasive cali-
bration protocol, both at a known maximum target load 
and by estimating muscle activity and target load from 
the torque and muscular capacity. It is important to note 
that performing MVCs, particularly dynamic and sus-
tained MVCs, can be challenging for subjects, meaning 
some discrepancies may also arise from brief decreases 
in exerted intensity. This work utilized an isokinetic 
dynamometer, but the authors believe that any system 
capable of recording varying joint angle during maxi-
mum force could be suitable, and maintaining a constant 
velocity should not be a strict requirement. The study 
utilized the 4CC muscle fatigue model [29], provided 
objective estimations and accounted for eccentric con-
tractions, unlike [30]. This fatigue model not only inte-
grates seamlessly into the multibody system dynamics 
and MTU actuator dynamics frameworks, but also facili-
tates its application in muscle force-sharing problems, 
which requires simulating individual muscle fatigue [28].

One limitation of this study lies in the use of the 
dynamometer which, despite being specifically designed 
for isolated joint force measurements, does not fully 
constrain the elbow joint. Minor compensatory move-
ments, such as wrist or shoulder flexion, or unintended 
additional elbow flexion, may occur due to the compli-
ant nature of the soft support. This, combined with the 
inherent difficulty for participants to maintain true MVC, 
especially over extended periods and under fatigue, limits 
the ability to obtain perfectly accurate results. Electromy-
ography measurements could have provided additional 
insights, particularly regarding MTU activation levels 
and potential co-contractions. A second limitation of this 
study is its focus on a single joint—the elbow—with only 

one degree of freedom. While this restricts the imme-
diate generalizability of the findings, the choice was 
intentional. The musculoskeletal model was deliberately 
aligned with the simplicity of the experimental setup 
to create a controlled and interpretable environment 
for evaluating complex calibration strategies and mus-
cle modeling approaches. By minimizing biomechani-
cal complexity, we aimed to reduce confounding factors 
and isolate the effects of model calibration. Despite the 
simplicity of the joint-level representation, the study 
revealed significant challenges in achieving physiologi-
cally accurate estimations of muscle force and fatigue. 
These insights form a critical foundation for extending 
the methodology to more complex, multi-joint models in 
future work. Particular attention should be given to the 
calibration of multi-articulate muscles, which play a key 
role in coordinating movement across multiple joints and 
present additional challenges in parameter estimation 
[54].

In future work, the authors plan to evaluate the rela-
tionship between maximum eccentric and isometric 
torque to refine the dimensionless force–velocity rela-
tionship ( f max

v  ) for different joints. Additionally, hav-
ing previously validated the 4CC muscle fatigue model 
independent of MTU dynamics [29] and now confirming 
the calibration of MTU dynamics both with and without 
fatigue, the authors plan to integrate this calibration pro-
tocol and fatigue modeling into their real-time human 
motion capture, reconstruction, and musculoskeletal 
analysis framework to simulate any physical activity [39].

Conclusion
This study highlights the importance of precise MTU 
calibration and demonstrates that accurately estimating 
MTU force during high-intensity, short-duration exercise 
is best achieved using a physiological Hill-type muscle 
model with carefully calibrated individual parameters FM

0
 

and lM
0

 from concentric and eccentric MVCs, alongside 
adjustments to the force–velocity relationship (PHYS3-
DYN). However, adding subject-specific fatigue parame-
ters does not significantly improve force prediction under 
fatigued conditions.

Abbreviations
α  Pennation angle
a  Muscle activation
fl   Dimensionless force–length relationship of the active 

element
fv  Dimensionless force–velocity relationship
fmax
v   Maximum normalized achievable muscle force when the 

muscle is lengthening
fPE  Dimensionless force–length relationship of the passive 

element
Fs  Short-term fatigue coefficient
FL  Long-term fatigue coefficient
FMCE  Force exerted by the contractile element



Page 16 of 18Michaud et al. Journal of NeuroEngineering and Rehabilitation          (2025) 22:156 

FMCE ,Max  Maximum force allowed by the contractile element

FMPE  Force exerted by the passive element
FM0   Maximum isometric force
FFlex  Flexor muscle force
FExt  Extensor muscle force
FMT
Stat  Non-physiological (static) estimation of muscle force
F
MT   The vector of the individual musculotendon forces
J  Jacobian whose transpose projects the muscle forces into 

the joint drive torques space
lM  Muscle fiber length
lM0   Optimal muscle fiber length
lMT   Musculotendon length
lTS   Tendon slack length
Ma  Percentage of motor units activated
Mf  Percentage of motor units fatigued
MS
f   Percentage of motor units affected by short-term fatigue

ML
f   Percentage of motor units affected by long-term fatigue

Mr  Percentage of motor units resting
Q  Joint torque
QExp  Experimental joint torque
r  Rest multiplier to augment recovery during rest
R  Recovery coefficient
Rs  Short-term fatigue recovery coefficient
RL  Long-term fatigue recovery coefficient
RC  Portion of maximum force available
TL  Target load
τc  Time-scaling parameter
vM  Contractile element velocity
ṽM  Normalized muscle fiber velocity
vmax  Maximum contraction velocity
vMT   Musculotendon velocity
3CC  Three-compartment controller model
4CC  Four-compartment controller model to predict metabolic 

inhibition and long-lasting nonmetabolic components
DYN  Dynamic experimental measurements from the isokinetic 

calibration task, including both concentric and eccentric 
contractions

DYN-FAT  Dynamic, short-duration, high-intensity exercise with fatigue
DYN-FAT-R1  Isometric MVCs at 45° to measure the recovery after resting 

15 s
DYN-FAT-R2  Isometric MVCs at 45° to measure the recovery after resting 

60 s
ISOM1  Single experimental measurement of isometric MVC at 60°
ISOM6  Six static experimental measurements of isometric MVCs
MVC  Isometric maximum voluntary contraction3
MTU  Muscle tendon unit
PHYS1-ISOM1  Only FM0  of the physiological Hill-musculotendon model was 

calibrated by applying a single scale factor to all the muscles 
derived from a single isometric measurement (ISOM1, MVC 
at 60°)

PHYS2-ISOM6  Individual FM0  and lM0  of the physiological Hill-musculotendon 
model were calibrated using an optimization technique 
based on six isometric measurements (ISOM6)

STAT-ISOM6  Individual FM0  of the non-physiological musculotendon 
model were calibrated using an optimization technique 
based on six isometric measurements (ISOM6)

PHYS1-DYN  Individual FM0  of the physiological Hill-musculotendon model 
were calibrated using an optimization technique based on 
dynamic experimental measurements from the isokinetic 
calibration task, including both concentric and eccentric 
contractions.

PHYS2-DYN  Individual FM0  and lM0  of the physiological Hill-musculotendon 
model were calibrated using an optimization technique 
based on dynamic experimental measurements from the 
isokinetic calibration task, including both concentric and 
eccentric contractions.

PHYS3-DYN  Individual FM0  and lM0  , and τc of the physiological Hill-muscu-
lotendon model were calibrated using an optimization tech-
nique based on the isokinetic calibration task, including both 

concentric and eccentric contractions. Additionally, fmax
v  was 

set to 1.01 (while set to its default value 1.4 for the others 
approaches).

PHYS3-DYN*  PHYS3-DYN combined with subject-specific calibration of 
the fatigue parameters.

RMSE  Root mean square error.
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