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Abstract
Real-world multibody systems are often subject to phenomena like friction, joint clearances,
and external events. These phenomena can significantly impact the optimal design of the
system and its controller. This work addresses the gradient-based optimization methodol-
ogy for multibody dynamic systems with joint friction using a direct sensitivity approach.
The Brown–McPhee model has been used to characterize the joint friction in the system.
This model is suitable for the study due to its accuracy for dynamic simulation and its com-
patibility with sensitivity analysis. This novel methodology supports codesign of the multi-
body system and its controller, which is especially relevant for applications like robotics
and servo-mechanical systems, where the actuation and design are highly dependent on
each other. Numerical results are obtained using a software package written in Julia with
state-of-the-art libraries for automatic differentiation and differential equations. Three case
studies are provided to demonstrate the attractive properties of simultaneous optimal design
and control approach for certain applications.
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1 Introduction

Performance analysis of mechanical systems is usually conducted by studying the dynamics
through a simulation software. Due to advances in differential equation solvers and opti-
mization techniques, it has become increasingly convenient to perform sensitivity analysis
and gradient-based dynamic optimization on large-scale dynamical systems involving mul-
tiple design/control parameters. Multibody systems are special types of dynamic systems
that consist of multiple links connected by joints. This gives rise to relatively complex sys-
tems of equations that require specific numerical solvers. Recent research on multibody
systems has been focused on simulating realistic behaviors in these systems such as friction
[39, 44, 54, 64], clearances [27, 28, 62, 78], events [20, 21], and even a combination of these
[29]. Such behaviors further add to the complexity of the resulting system of equations.

The two predominant approaches for sensitivity analysis for dynamic systems are the
direct/forward and adjoint/reverse approaches. The direct sensitivity approach [16, 23, 79]
is ideal when the gradients of several outputs need to be computed with respect to a rela-
tively small number of parameters. This method involves directly differentiating the dynamic
model with respect to the system parameters, which yields a tangent linear model (TLM).
The TLM can then be integrated to obtain the direct sensitivities of the model, which are
the derivatives of the original system states with respect to its parameters. The gradient of
any output functional, such as an optimization objective, can then be obtained using these
sensitivities by applying the chain rule of differentiation. In contrast, the adjoint/reverse sen-
sitivity approach is more advantageous when the number of parameters is large compared to
the number of output functionals. Rather than explicitly solving for system sensitivities, this
method constructs an additional system using the Lagrangian of the original optimization
problem. This additional system is adjoint to the original one and is solved backwards in
time. The solution of this adjoint system can then be used to compute the gradient of the
output functional with respect to any set of parameters of the system.

Research on the sensitivity analysis of multibody systems has evolved into several ap-
proaches over the past few decades. A detailed literature review of multibody and corre-
sponding sensitivity formulations developed over the years can be found in [80]. Haug [37]
developed the sensitivity methodology for multibody systems using Lagrangian index-3 and
index-1 formulations. Chang and Nikravesh [18] experimented with Baumgarte stabilization
[7] to prevent constraint violation. Aforementioned approaches use the differential-algebraic
equation (DAE) form of the multibody formulations. An approximate ordinary differential
equation (ODE) formulation for multibody systems is the penalty approach that minimizes
the action integral of the system. Sensitivity methodologies using the penalty approach have
been developed for both direct and adjoint sensitivity analysis [63, 85]. Dopico et al. [23]
presented a sensitivity analysis approach using the exact ODE representation of a multibody
system obtained through Maggi’s equations. Additionally, event-based sensitivity formula-
tions for mulitbody systems have been presented by Corner et al. [20, 21]. Valera et al. [51]
described a discrete method for adjoint sensitivity analysis using the augmented Lagrangian
index-3 formulation with projections (ALI3-P). Among other applications, sensitivity anal-
ysis can also be employed for parameter estimation. Blanchard et al. [10–12] presented
his work on parameter estimation for mechanical systems with uncertain parameters using
polynomial chaos representation of uncertainty.

Sensitivity analysis and, consequently, gradient-based optimization are widely employed
due to their notable efficiency and speed compared to gradient-free search methods like
the Nelder–Mead method [60], as well as evolutionary optimization techniques such as the
genetic algorithm [43] and particle swarm optimization [46]. However, the application of
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direct sensitivity analysis to multibody systems with friction requires several considerations
to be made in terms of solution techniques, accuracy and stability of the sensitivities, and
computational efficiency. Optimization is inherently iterative in nature, requiring the system
dynamics model and TLMs to be repeatedly solved. This process is especially challenging
when dealing with multibody systems with friction, due to the implicit and stiff nature of
the dynamic and sensitivity equations involved. Hence it becomes imperative to develop a
generic and computationally efficient optimization methodology to skillfully tackle these
complexities.

Many dynamic systems rely on active control to achieve specific trajectory goals. In the
realm of nonlinear optimal control, it is a common practice to parameterize the control func-
tion. One popular approach involves using basis functions along with their corresponding
coefficients as control parameters [68, 82]. In contrast, state/output feedback control typi-
cally involves a fixed number of control parameters. Frequently, systems must be customized
for particular applications, necessitating optimization in both design and control aspects.
Recent research has underscored the advantages of simultaneous optimization over separate
design and control optimization. This approach, also known as codesign, has the potential
to yield more efficient systems by exploiting the flexibility in design to find efficient control
solutions, compared to fixed design approaches. When the optimization methodology treats
design and control parameters on equal footing, it can harness this potential afforded by
codesign. The following references highlight the significance of simultaneous design and
control in specific applications.

• In certain aerospace applications where there are extreme power-to-weight concerns, it
might be beneficial to do simultaneous optimization of control and design [59]. In this
work, codesign is shown to be helpful for the integration of energy management opti-
mization along with optimal vehicle sizing for a hybrid electric propulsion aircraft.

• In civil engineering applications, building structures for earthquake resistance can be done
through simultaneous design and control [3]. This type of structure uses active controls
to prevent structural damage due to seismic activity.

• Specifically talking about multibody systems with friction, codesign optimization strate-
gies are also used for design of active suspension systems [4]. This method is exactly the
same as using basis functions to convert a continuous control into discrete parameteriza-
tions, referred to as direct transcription.

Simultaneous design and control are especially useful in legged robotic systems. Earlier
robots employed high-gain feedback and therefore used considerable joint torque to cancel
out the natural dynamics of the machine to follow a desired trajectory. Optimizing the con-
trol without making any design considerations may lead to suboptimal design choices. An
example of such a system is ASIMO, which is a legged-robot that uses roughly 20 times
the energy (scaled) that a human uses to walk on a flat surface, as measured by the cost of
transport [19]. Leveraging the design and dynamics to suit the application’s control needs
is crucial for such systems [26]. This paper deals with multibody formulations that are free
of events such as impacts, collisions, and intermittent joint contacts. These restrictions en-
able the use of smooth formulations. However, legged-robotic systems may benefit from the
use of a contact-based friction models [22]. Most control algorithms on robotic systems use
optimization in the form of model predictive control. Running optimization on a contact-
based friction model is challenging due to the fully nonsmooth formulation. An alternative
approach is to consider a piecewise continuous trajectory for the gait motion and applying
energy and momentum conservation when changing step.

This paper presents the methodology for direct sensitivity analysis and dynamic opti-
mization of multibody systems with joint friction. By converting the continuous control
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signal into a parameterized form, the methodology can be applied to codesign case stud-
ies as well. The direct sensitivity approach for gradient computation is efficient and out-
performs reverse-mode (adjoint) approach for optimization problems involving a relatively
small number of design/control parameters in comparison to the number of state variables.
The formulation uses centroidal body-fixed reference frames with the orientation of the
bodies defined using the Euler parameters. The resulting matrices involved in the equations
of motion are sparse, thereby allowing for efficient solution techniques such as Newton–
Krylov method [45], generalized minimal residual method (GMRES) [6], and Jacobian-free
Newton–Krylov method [48]. Three case studies are provided that apply the methodology
for a pure control optimization example of inverted pendulum, a pure design optimization
example of a governor mechanism, and a codesign example of a spatial slider-crank mech-
anism. The novel contributions of this paper are summarized as follows.

1. The work develops a direct sensitivity-based optimization approach for multibody dy-
namic systems with Brown–McPhee joint friction.

2. A codesign methodology for simultaneous optimal design of system and controller pa-
rameters is introduced. The optimal design problem is constrained by the system dynam-
ics with joint friction.

3. The effectiveness of methodology is demonstrated through real-world case studies and
validated through numerical results.

4. The MBSVT 2.0 software package has been developed in Julia for sensitivity analysis
and optimization of multibody systems. The implementation leverages recent advances
in differentiable programming and modern interfaces to differential equation solvers.

The remainder of the paper is organized as follows. Section 2 discusses the computa-
tional aspects of the work. Section 3 reviews the development of equations of motion for
multibody systems with friction. Section 4 reviews bound-constrained optimization using
direct sensitivity analysis. Section 5 provides the numerical validation of the methodology
using various case studies. Finally, Sect. 6 draws conclusions and points to future work.

2 Computational aspects of multibody simulations and differentiation

Recent advances in automatic differentiation (AD) have started a discussion on discrete ver-
sus continuous sensitivity analysis methods [15, 52, 73]. Since the 1990s, AD has been a
popular tool for sensitivity computation in ODEs/DAEs and, by extension, for multibody
systems as well [9, 25, 50, 67]. Conventionally, it has been a practice to differentiate the
dynamic equations of motion to obtain the sensitivity equations. As stated in Sect. 1, the
sensitivity equations are obtained through direct differentiation of system dynamics. These
sensitivity equations, also known as TLMs, turn out to be differential equations that can be
integrated to obtain the model sensitivities with respect to the design or control parameters.
However, in recent times, another course of action is to simply perform AD of the differential
equation solver step itself [69]. The discrete sensitivity approach is mathematically equiva-
lent to the previous continuous approach. However, in certain cases, it may offer improved
ease of programming without sacrificing computational efficiency, the main reason being
the ability of AD to perform compiler optimizations by making use of structure between the
primal and derivative constructions. This allows the AD code to perform single instruction
on multiple data (SIMD), constant folding, and common subexpression elimination (CSE)
[58]. An experienced user can program these optimizations manually. However, there lies
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a trade-off between the time and effort required to obtain an efficient code versus the com-
putational cost saved. Additionally, there are differences in stability of continuous versus
discrete approaches for reverse-mode AD, as noted in [47, 71]. It is important to note, how-
ever, that AD might not be a viable option in cases where the dynamic equations have to be
implicitly solved. The iterative convergence required in implicit differential equation solvers
creates unnecessary computations, which can be avoided in continuous approaches by lever-
aging the implicit function theorem. Also, AD of implicit solvers can only yield approximate
derivative since the convergence is solved to a certain tolerance. A good application of AD
is in building the derivative components of continuous sensitivity methods. These compo-
nents can be obtained without computing a full Jacobian through efficient Jacobian-vector
products. For multibody systems, most Jacobians and Jacobian-vector products required in
dynamics and sensitivity computations are available as closed-form expressions, which are
simplified to a large extent using domain-specific mathematical identities. This makes the
derivative computation efficient to the point that it can be represented by a single nonal-
locating function call. Expressions involving Jacobians and Jacobian-vector products with
respect to states can therefore be more efficiently computed through manual differentia-
tion (MD), whereas those involving design or control parameters require AD. This not only
alleviates the user’s responsibility for providing Jacobian or Jacobian-vector products for
specific multibody systems, but also facilitates space and time complexity. This hybrid fu-
sion of MD for known derivatives and AD for unknown derivatives yields the benefits of
both approaches.

Symbolic differentiation (SD) is another popular approach, which often exhibits similar
time and space complexity to that of MD. However, most computer algebra systems do not
have the capability to carry out expression simplifications in a sophisticated way that will
take advantage of domain specific mathematical identities. This frequently results in com-
plicated expressions, often referred to as expression swell, for higher-order derivatives and
matrix calculus. A symbolic code frequently contains several auxiliary coefficients, which
add to the computational cost. Also, some expressions and their derivatives cannot be gener-
ated through symbolic computations, like those involving large matrix inversions due to the
prohibitively slow and memory intensive nature of symbolic computations. Symbolic dif-
ferentiation also fails in cases where a function may not be represented by a mathematical
formula and therefore cannot handle complex control flow further limiting its expressivity
[8, 34]. Finally, there is the question of automated translation of a symbolic expression to
an efficient numerical function. The user seldom has complete control over this process and
may lead to suboptimal code. AD can handle all of these edge cases while the user being in
greater control of the code.

Table 1 highlights the differences in computational cost using various differentiation ap-
proaches for some common terms required in multibody formulations such as the constraint
Jacobian 𝚽q and various Jacobian-vector products like the total time derivative of the con-
straint vector 𝚽qq̇, acceleration term (𝚽qq̇)qq̇, and the generalized reaction term 𝚽T

qλ. The
matrices are computed for the slider-crank case study discussed in Sect. 5.3, which has a
total of 20 constraints and 21 generalized coordinates. These matrices are required for each
time step during the forward dynamics computation as well as the integration of the TLMs
to obtain the direct sensitivities. Consequently, this operation needs to be as computationally
efficient as possible to avoid long solution times.

As we can observe, MD performs best in terms of both space and time complexity when
compared to AD and SD approaches. The speed comes from the fact that analytical Jacobian
is computed effectively by a single function call (for sub-Jacobian computation) as opposed
to the recursive function calls in the case of AD. However, AD can be made substantially
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Table 1 Cost of different differentiation approaches for computing Jacobians of the slider-crank system dis-
cussed in Sect. 5.3

Operation Manual Automatic Symbolic

𝚽q 21.992 μs / 23.59 kB 177.768 μs / 829.34 kB 1.042 ms / 101.12 kB

𝚽qq̇ 16.560 μs / 6.15 kB 152.169 μs / 224.50 kB 858.22 μs / 32.26 kB

𝚽T
qλ 30.254 μs / 15.22 kB 178.494 μs / 122.28 kB 995.59 μs / 38.26 kB

(𝚽qq̇)qq̇ 18.223 μs / 20.79 kB 159.108 μs / 270.58 kB 938.31 μs / 40.66 kB

more efficient by employing sparsity detection and matrix coloring techniques [2, 32, 55]
not employed in this analysis.

The results are obtained using a software package written in Julia for kinematic and
dynamic simulation of multibody systems, direct sensitivity analysis, and gradient-based
optimization. The software package takes advantage of recent advances in open-source
Julia libraries such as differential equations solvers (DifferentialEquations.jl),
optimization packages (Optim.jl), and support for forward and reverse mode AD
(ForwardDiff.jl, Zygote.jl). Important functions for sensitivity analysis such as
Jacobian matrices with respect to design variables, Jacobian-vector products, and gradi-
ents of objective functions are computed automatically and need not be user-provided. All
derivative terms and sensitivity computations have been thoroughly validated using com-
plex finite differences [81]. Moreover, due to native AD capability, the derivatives with
respect to design parameters can be computed by the software. Despite being a relatively
new programming language, Julia is rapidly gaining popularity within the scientific com-
munity for several compelling reasons. Its syntactical convenience, robust computational
speed, and the myriad of packages dedicated to scientific computing and machine learning
make it an attractive choice for researchers and practitioners alike. This provides flexibility
to its users since multibody packages such as MSC Adams, SIMPACK, LMS VirtualLab
Motion, RecurDyn, and Simscape are not open-source packages. Moreover, most of these
packages focus on kinematics and dynamics capabilities, with sensitivity analysis and op-
timization taking the backstage. JModelica/Optimica (now known as Modelon OCT) [1],
JuliaSim [70], CasADi/IPOPT [5, 83] are among the few tools that make substantial strides
in this regard. These packages employ computational graph-based AD to extract gradient in-
formation for sensitivity analysis and optimization of dynamic systems. They are excellent
packages capable of optimizing multibody systems but require some development effort on
the user’s end. Moreover, Julia’s ease-of-development features, such as a built-in package
manager, benchmarking tools, well-documented libraries, active user forums, cross-platform
compatibility and compilation support, significantly facilitate contributions from new users.
Other Julia libraries that can be employed for multibody dynamics and optimization are the
acausal modeling package Modia.jl [24] and the package RigidBodyDynamics.jl
[49]. These tools were not explored by the authors in this work but have been provided
as alternatives that could potentially be used for optimization of multibody systems. Mod-
elingToolkit.jl[53] is another acausal system model package that can be considered
for this study. However, it currently lacks support for the type of differential-algebraic for-
mulations used in this work. It also relies on Symbolics.jl [33] for differentiation and
sparsity detection, necessitating symbolic traversability of all functions used to model the
system.
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3 Dynamics of multibody systems with friction

This section briefly covers the derivation of the equations of motion for multibody systems
with joint friction using the index-1 DAE formulation. As it will become apparent by the end
of this section, the friction forces ultimately depend on the state variables of the equation
of motion due to its dependency on the normal force in the joint. This makes the dynamic
equations of motion implicit and require special integration schemes to solve.

3.1 Joint friction forces

Computation of generalized friction force for multibody systems is a two-step process viz.
computation of the magnitude of frictional force and torque at the joint, and, assembly of
the generalized friction force vector. Friction can be modeled using several approaches.
The approaches can be segregated based on whether they use a static or a dynamic model.
This study uses the Brown–McPhee friction model [13] to describe joint friction. It is a
quasi-static model governed by a single equation. Assuming that most mechanical systems
have some lubrication, the friction between surfaces deviates from the dry Coulomb friction
model. The mathematical representation of this friction model (excluding viscous friction)
is as follows:

Ff (v,μ) = Fn

⎡
⎢⎢⎢⎣μd tanh

(
4v

vt

)
+

(μs − μd)
(

v
vt

)

[(
v

2vt

)2 + 3
4

]2

⎤
⎥⎥⎥⎦ . (1)

The main advantages of this model for sensitivity analysis of multibody systems are its C1

continuity and differentiability and ability to simulate stiction by allowing relative motion at
speeds lower than some user-defined threshold vt . It is important to note that differentiating
a friction model may not necessarily yield the same sensitivities as those obtained through
piecewise continuous friction models like Coulomb. Haug [39] used the Brown–McPhee
model for describing the joint friction between two bodies. Determining the transition ve-
locity vt poses a challenge, and according to Haug [39], it is advisable to set vt to approxi-
mately ten times the average integration time step employed by the solver. A value of 10−2

to 10−3 was used in this work.
Another approach in modeling friction is using dynamic friction models. The Gonthier

et al. friction model [31] is a more sophisticated model based on the LuGre [17] friction
model. Unlike the Brown McPhee model, the Gonthier model incorporates dynamic states
that require integration to compute the current friction. A detailed discussion of other friction
models that are applicable for sensitivity analysis and optimization has been provided in
[81].

3.2 Normal contact forces in joints

For a multibody system, the constraints are maintained during the motion of the system by
internal reaction forces and torques as seen in Fig. 1a. The following equation can be used
to calculate these physical quantities in the joint reference frame [39]:

{
F′′k

i

T′′k
i

}
=
{

CkT
i AT

i 𝚽kT
ri

λk

CkT
i

(
1
2 G(pi )𝚽kT

pi
− s̃′k

i AT
i 𝚽

kT
ri

)
λk

}
. (2)
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Fig. 1 Resolution of internal forces in joint reference frame

In equation (2), for a given body i, a holonomic joint k can be defined with the constraints
𝚽k = 0, F′′k

i and T′′k
i are the reaction force and moments in the joint coordinate frame, re-

spectively, Ck
i and Ai are the joint-to-body and body-to-ground coordinate transformation

matrices, respectively, 𝚽k
ri

and 𝚽k
pi

are the constraint Jacobians with respect to the Cartesian
coordinates and Euler parameters of the ith body, respectively, λk are the Lagrange multi-
pliers associated with the constraints 𝚽k, and s′k

i is the position vector in the ith body-fixed
reference frame for the joint location. To calculate the effective joint normal force Fn, it is
crucial to decompose the forces from the joint reference axes into their components. The
joint torque generates a couple within the joint geometry, restricting rotational degrees of
freedom and thereby influencing the effective joint normal force.

Haug [39] has presented the decomposition of forces and torques in cylindrical, trans-
lational, and revolute joints, as depicted in Fig. 1b. The clearances in the joint required for
smooth motion are assumed to be negligible relative to the magnitude of link displacements.
The force components are shown in Fig. 1b and can be expressed mathematically by the
following equations:

f ′′1k
x = −u′′ikT

x F′′k
i +
(

1

ak

)
u′′ikT

y T′′k
i , (3a)

f ′′1k
y = −u′′ ikT

y F′′k
i −
(

1

ak

)
u′′ ikT

x T′′k
i , (3b)

f ′′2k
x = −

(
1

ak

)
u′′ ikT

y T′′k
i , (3c)

f ′′2k
y =

(
1

ak

)
u′′ ikT

x T′′k
i , (3d)

f ′′1k
z = u′′ ikT

z F′′k
i , (3e)

f ′′3k
x =

(
1

2bk

)
u′′ ikT

z T′′k
i . (3f)

The superscripts 1 and 2 refer to the components at the two end points of the common joint
axis u′′

z . The distance between these points is the length of the joint ak . The superscript 3
indicates the components at the end points of the transverse width bk of the joint geometry
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acting in directions parallel to the axis u′′
x . Naturally, the components f ′′1k

z and f ′′3k
x will

exist only for revolute and translational joints, respectively.

1. For a cylindrical joint, the resultant normal force at both end points of the joint will con-
tribute to the axial friction force. Considering a parabolic force distribution, the effective

normal force is given by Fk
n = f ′′1k + f ′′2k , where f ′′lk = π3

24

√
(f ′′lk

x )2 + (f ′′lk
y )2 + ε2,

l = 1,2. Additionally, a friction torque will be introduced at each end point; its mag-
nitude is given by τ = re cabs(F ′′lk

f ), where re is the effective joint radius, and cabs(x)

is a continuous approximation to the absolute function defined as
√

x2 + ε2 with some
small scalar ε.

2. For a revolute joint, the treatment will be similar to a cylindrical joint with the addition
of a thrust force in the z′′-direction given by u′′ ikT

z F′′k
i . This thrust force will contribute

to a frictional torque about an effective torque radius re .
3. For a translational joint, the effective normal force is the absolute sum of all the force

components: Fk
n = cabs(f ′′1k

x ) + cabs(f ′′1k
y ) + cabs(f ′′2k

x ) + cabs(f ′′2k
y ) + 2 cabs(f ′′3k

x ).

The normal force for any joint type calculated using equations (3a)–(3f) can be plugged in
equation (1) to get the scalar frictional force fij and torque τij . Consequently, the general-
ized friction force vector to be used in the equations of motion can be computed for a pair
of bodies i and j by the following equations:

QAf

i =
[

AiCk
i u′′ik

z fij

BT
i AiCk

i u′′ik
z fij + 2ET

i AiCk
i u′′ik

z τij

]
, (4a)

QAf

j =
[ −AiCk

i u′′ik
z fij

−BT
j AiCk

i u′′ik
z fij − 2ET

j AiCk
i u′′ik

z τij

]
. (4b)

These individual generalized friction force vectors can be assembled to give the combined
generalized friction force vector of the entire multibody system. Depending upon the assem-
bly of the generalized coordinate vector q, care must be taken to ensure that the frictional
forces are appropriately added to the vector of externally applied forces and the frictional
torques to the vector of externally applied torques.

3.3 Equations of motion

Scleronomic multibody systems with joint friction are governed by the following second-
order index-3 differential-algebraic equations in centroidal generalized coordinates

Mq̈ + 𝚽T
qλ = Q + QAf , (5)

𝚽 = 0. (6)

The index can be reduced by successively differentiating the algebraic constraints 𝚽 to
obtain the following index-1 augmented form [75]

[
M 𝚽T

q
𝚽q 0

]{
q̈
λ

}
=
{

Q + QAf

c

}
, (7)

where M(q,ρ) ∈ R
n×n is the generalized mass matrix, 𝚽(q,ρ) and λ ∈R

m are the holo-
nomic constraints and the associated Lagrange multipliers, respectively, q ∈R

n are the
generalized coordinates associated with the bodies of the system, Q(q, q̇,ρ) ∈ R

n and
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QAf (q, q̇, λ, ρ) ∈ R
n are the generalized externally applied and friction forces, respec-

tively, c(q, q̇, ρ) ∈R
m is the acceleration term equal to −(𝚽qq̇)qq̇, and ρ ∈ R

p is the vector
of design and/or control parameters. It is implied in this analysis that the constraint Jacobian
𝚽q is of full rank. For redundant constraints, the reader is referred to García de Jalón and
Gutiérrez-López [30]. The motion of multibody systems with friction is characterized by
sharp changes in acceleration. Moreover, the friction is a nonlinear function of Lagrange
multipliers, making the equations fully implicit. Additionally, these equations are prone to
constraint drift due to enforcement of �̈� instead of 𝚽. Since these dynamic equations will
be differentiated to obtain the TLMs, any errors in the solution of dynamics may further
exacerbate the errors in sensitivities. Hence, these equations require some form of implicit
integration scheme to contain error propagation with time. Implicit integration schemes help
reduce the perturbations introduced in the acceleration field and are more efficient in han-
dling the stiff nature of index-1 formulation.

We can rewrite (7) as an explicit first-order DAE expressed in constant singular mass-
matrix form:

⎡
⎣

I 0 0
0 I 0
0 0 0

⎤
⎦
⎧⎨
⎩

q̇
q̈
λ̇

⎫⎬
⎭=
⎡
⎣

I 0 0
0 M 𝚽T

q
0 𝚽q 0

⎤
⎦

−1⎧⎨
⎩

q̇
Q + QAf

c

⎫⎬
⎭−
⎧⎨
⎩

0
0
λ

⎫⎬
⎭ (8a)

=⇒ M̄ẏ = f(t,y), (8b)

where y = [qT, q̇T, λT
]T

. These are linearly implicit differential-algebraic equations [35,
76, 77, 84] that are solved over a time interval [t0, tf ]. Rosenbrock–Wanner (ROW) meth-
ods are well known for solving such problems. Another approach for solving these equations
involves performing a fixed point iteration every time step [81]. However, fixed point iter-
ation tends to be slow, as it is an additional convergence iteration apart from the implicit
integration needed to solve the acceleration terms. A ROW scheme with stage-number s for
the problem is defined by

(M̄ − hγ fy)ki = hf

⎛
⎝t0 + αih, yp +

i−1∑
j=1

αij kj

⎞
⎠+ hfy

i−1∑
j=1

γij kj + h2γift , (9)

yp+1 = yp +
s∑

i=1

biki, i = 1, . . . , s, p = 0,1, . . . , (10)

where fy = ∂f
∂y

(tp,yp), (11)

ft = ∂f
∂t

(tp,yp), (12)

where h is the time step for the integrator step p. The coefficients of the method are γ ,
αij , and γij , and bi are the weights. Moreover, αi =∑i−1

j=1 αij and γi = γ +∑i−1
j=1 γij . It

is worth noting that this scheme works well only for index-1 systems, since it guarantees
the regularity of the matrix (M̄ − hγ fy). In addition to the ROW methods described before,
a fully implicit Runge–Kutta method (Radau) [36] is also suitable for solving equation
(8a)–(8b). However, multistep BDF methods like CVODE/FBDF [42] and DASSL [65] were
found to be comparatively slow for these problems and also led to failed integration due to
high integration errors for some problems. Also, it is possible to solve the equations as fully
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implicit DAEs in residual form; however, obtaining consistent initial conditions is difficult
and may lead to integration failure.

The positions q0 at the initial time t0 can be obtained by introducing a set of temporary
constraints 𝚿 ∈ R

n−m to complete the nonlinear system of constraint equations and make
the constraint Jacobian square. Exact generalized coordinates q can be converged from a
given initial estimate using the following Newton–Raphson iterative scheme:

�̄� =
{

𝚽

𝚿

}

t0

= 0, (13a)

[
𝚽q

𝚿q

]

t0

Δqi = −
{

𝚽

𝚿

}

t0

, (13b)

qi+1 = qi + Δqi . (13c)

For spatial systems, obtaining a reasonably good estimate of q is a challenge and typically
requires a CAD model. A trust-region algorithm [56, 57, 61] from the NLSolve.jl pack-
age was used to converge all initial estimates to machine precision.

A trivial solution for the initial velocity vector is q̇ = 0 since it will always satisfy the ve-
locity constraints �̇� = 𝚽qq̇ = 0, which implies that the system is at rest. For nonzero initial
velocities, the solution has to be a linear combination of the null space vectors of 𝚽q at the
initial time such that the velocities of the n−m chosen independent generalized coordinates
are satisfied. Alternatively, the velocity constraints �̇� can be completed to obtain the gener-
alized velocities [40]. Since nonzero initial velocities lead to nonnegligible frictional forces,
it is relatively difficult to obtain initial Lagrange multipliers. In this analysis, we obtain the
estimate for initial Lagrange multipliers by ignoring QAf , temporarily making the equations
of motion explicit. Thereafter, an exact solution is obtained through a nonlinear solution of
the residual

R =
{

q̈
λ

}
−
[

M 𝚽T
q

𝚽q 0

]−1 [
Q + QAf

c

]
→ 0. (14)

4 Gradient-based optimization

Dynamic optimization aims to find the optimal design or control parameters while minimiz-
ing or maximizing a specified objective function subject to the constraints imposed by the
system dynamics and parameter/state bounds. This can be mathematically expressed as an
initial value bound-constrained optimization problem

min
ρ

ψ(y,ρ), (15a)

such that M̄ẏ = f (y,ρ, t) , (15b)

ρ ≤ρ ≤ ρ, (15c)

and y
∣∣
t0

= y0, (15d)

where ρ, ρ ∈R
p represent the lower and upper bound vectors, respectively. We will mainly

deal with the objective function of the form

ψ = w (y,ρ)

∣∣∣
tf

+
∫ tf

to

g (y,ρ)dt. (16)
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In this context, ψ ∈R
o represents a vector containing “o” objective functions. Additionally,

w ∈R
o corresponds to the pointwise term at the final time, and g ∈R

o denotes the integrand
associated with each objective function. The quadratic cost function shown in equation (17)
is a widely applicable specialization of the objective function (16) for control case studies.

min
ρ,u

∫ tf

t0

[(
y − yref

)T
Q
(
y − yref

)+ uTRu
]

dt. (17)

Here the control u = h(ρ, t) contained in a ball of admissible control set 𝛀 is required to
follow a trajectory yref, and Q and R are positive semidefinite penalty matrices for state
error and control, respectively. The motivation behind this choice of objective function is
that most optimization problems for dynamic systems can be formulated either as trajectory
tracking problems or regulating problems. Time optimal problems of the form

min
ρ

tf (18)

such that y
∣∣
tf

= yf (19)

and y
∣∣
t0

= y0 (20)

are out of scope for this research. The gradient of the objective function (16) is given by

∇ρψ
T = (wqq′ + wq̇q̇′ + wλλ

′ + wρ

) ∣∣∣
tf

+
∫ tf

to

(
gqq′ + gq̇q̇′ + gλλ

′ + gρ

)
dt,

(21)

where the terms q′, q̇′ ∈ R
n×p and λ′ ∈ R

m×p are the respective state sensitivities (total
derivatives) with respect to the parameters ρ. To obtain these sensitivities of the states, we
differentiate equation (7) with respect to the parameters ρ:

dM(q)q̈
dρ

+ d𝚽T
q(q)λ

dρ
= d(QAf (q, q̇,λ) + Q(q, q̇, t))

dρ
, (22a)

d
(
𝚽qq̈
)

dρ
= dc

dρ
. (22b)

If we consider that all terms are dependent on ρ, then the total derivatives can be expanded,
resulting in the final TLMs:

Mq̈′ + C̄q̇′ + K̄q′ + L̄λ′ = Q̄, and (23a)

𝚽qq̈′ − cq̇q̇′ + (𝚽qqq̈ − cq)q′ = cρ − 𝚽qρ q̈, (23b)

where

C̄ = −Qq̇ − QAf

q̇ , (24a)

K̄ = Mqq̈ + 𝚽T
qqλ − Qq − QAf

q , (24b)

L̄ = 𝚽T
q − QAf

λ , (24c)
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Q̄ = Qρ + QAf
ρ − Mρ q̈ − 𝚽T

qρλ, (24d)

cq = −�̇�qqq̇, (24e)

cq̇ = −�̇�qq̇q̇ − �̇�q, (24f)

cρ = −�̇�qρ q̇. (24g)

In equation (24a)–(24g), the frictional force vector QAf and the corresponding Jacobians
QAf

q , QAf

q̇ , QAf

λ , and QAf
ρ are all dependent on Lagrange multipliers. It is important to note

that equations (24a)–(24g) contain several terms such as Mqq̈, 𝚽T
qqλ, and so on that are

tensor–vector products. These can be computed for any matrix A ∈ R
q×r and any pair of

vectors b ∈R
r and x ∈R

s :

Ax =
[

∂A
∂x1

, · · · ,
∂A
∂xi

, · · · ,
∂A
∂xs

]
∈ R

q×r×s , (25a)

Axb =
[

∂A
∂x1

b, · · · ,
∂A
∂xi

b, · · · ,
∂A
∂xs

b
]

∈R
q×s . (25b)

However, as differentiation is a linear operation, tensor algebra can be easily avoided by
premultiplying the respective matrices with the associated vector before differentiating
Axb = (Ab)x.

To solve equation (23a)–(23b), a set of 2np initial conditions is necessary, represented
by position sensitivities q′∣∣

t0
= q′

0 and velocity sensitivities q̇′∣∣
t0

= q̇′
0. As these initial sen-

sitivities must adhere to the sensitivity constraints at the initial time, they can be determined
by solving the following equations:

d�̄�

dρ

∣∣∣∣∣
t0

= 0 =⇒ �̄�q

∣∣
t0

q′
0 = −�̄�ρ

∣∣
t0
, (26a)

d ˙̄𝚽
dρ

∣∣∣∣∣
t0

= 0 =⇒ �̄�q

∣∣
t0

q̇′
0 = − (�̄�qqq′

0 + �̄�qρ

)
q̇
∣∣
t0
. (26b)

We can observe from equation (26b) that if the system starts at rest, then the velocity sen-
sitivities are also zero. Rearranging equation (23a)–(23b) in an augmented matrix form, we
have

[
M L̄
𝚽q 0

]{
q̈′
λ′

}
=
[

A
B

]
, (27)

where

A = Q̄ − C̄q̇′ − K̄q′, (28a)

B = cρ − 𝚽qρ q̈ + cq̇q̇′ − (𝚽qqq̈ − cq)q′. (28b)

Equation (27) is an index-1 DAE since the algebraic variable λ′ does not appear as a dif-
ferential term anywhere in the sensitivity mass-matrix on the left or the matrices A and
B on the right. It can be solved for q̈′ and λ′ through matrix inversion and integrated to
obtain the sensitivities q̇′ and q′. All sensitivities can be simultaneously computed using a
solver for differential equations in matrix form or by reshaping the associated matrices at
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every iteration to make the system compatible with standard vector form ODE solvers. The
sensitivities for multibody systems using the Brown–McPhee friction model tend to exhibit
abrupt jumps, akin to those seen in the hybrid dynamic systems [81]. Ideally, a stiffness-
aware integrator with automatic switching, like LSODA [41, 66, 72], should be used for
obtaining the sensitivities.

The gradient of the objective function can be calculated with respect to all the parameters
once the sensitivities have been obtained and the optimization iterations can be started. The
study used quasi-Newton methods, predominantly L-BFGS, which are suitable for bound-
constrained optimization problems solved with this methodology. They require only the first-
order gradient of the objective function, which is essential for multibody optimizations, since
computing the Hessian matrix would be mathematically and computationally infeasible.
The algorithm is described briefly for the readers convenience in the context of multibody
optimization. For more detail, the reader is referred to [14, 74]. This algorithm approximates
the cost function through the following quadratic function:

ψ(ρ) ≈ ψ(ρk) + ∇ψ(ρk)
T (ρ − ρk) + 1

2
(ρ − ρk)

T Bk(ρ − ρk), (29)

where Bk is the limited-memory approximation for the Hessian matrix at iteration k. A
piecewise linear path is assumed for the design parameters:

ρk+1 = P(ρk − t∇ψ(ρk), ρ, ρ), (30a)

where P(ρ,ρ,ρ) = max(ρ,min(ρ, ρ)). (30b)

Equations (30a)–(30b) determine the Cauchy point ρc , which is the first local minimum
of ψ(ρ). The variables whose Cauchy point is at the lower or upper bound are held fixed.
These comprise the active set A(ρc). The following quadratic problem is considered over
the subspace of free variables to calculate an approximate solution ρ∗

k+1:

min
ρ

{ψ(ρ∗) : ρi = ρc
i , ∀ i ∈ A(ρc)} (31a)

such that ρ
i
< ρi < ρi, ∀ i /∈ A(ρc). (31b)

Equation (31a)–(31b) can be solved in two ways. First, the bounds on the free variables can
be ignored for optimization, and the solution can be obtained by direct or iterative methods.
Then the free variable path can be truncated such that the solution satisfies the bounds. An-
other approach is to handle the active bounds by Lagrange multipliers. Once an approximate
solution ρ∗

k+1 is obtained, the next iterate ρk+1 can be obtained by backtracking linear search
along dk = ρ∗

k+1 − ρk , which ensures

ψ(ρk+1) ≤ ψ(ρk) + αk∇ψ(ρk)
Tdk, (32)

where αk is the optimal step size. This process is repeated until convergence by evaluating
the gradient at ρk+1 and computing a new limited-memory Hessian approximation Bk+1.
The optimization package Optim.jl and MATLAB® fminunc were used to obtain the
results of the case studies in this research.

5 Case studies

Multibody optimizations tend to be highly nonconvex due to the large rotations involved in
the dynamics. Hence, even though a convex objective function is chosen, the nonlinear dy-
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Fig. 2 Schematic of spatial
cart-pole

namics makes the solution heavily dependent on the chosen initial condition. This is usually
not a concern since gradient-based methods converge fast, allowing the user to experiment
with different initial parameter estimates. This section covers three optimization case stud-
ies. The first two examples will demonstrate the applicability of this methodology to pure
control and pure design problems. Finally, an example of codesign is included to showcase
the advantages of the proposed methodology over the classical optimization approach.

5.1 Inverted spatial pendulum

The inverted pendulum, also known as a cart pole problem, is a classic case study in dy-
namics and control theory, frequently used as a benchmark for testing control strategies.
This system is inherently unstable and requires a feedback control loop for stabilization.
Interestingly, many real-world systems behave like an inverted pendulum. All bipedal and
humanoid robot motions, as well as the motion of bicycles and motorcycles, are similar to
that of an inverted pendulum. In this study, we use the spatial variant of the inverted pen-
dulum with a two-dimensional PID controller for stabilization. A schematic for this system
is shown in Fig. 2. This additional degree of freedom adds substantial complexity in terms
of modeling and control computation. The total number of degrees of freedom (DOFs) for
such a system is 5 (2 DOFs for the cart translation along the ground XY plane and 3 rota-
tional DOFs for the pendulum). Friction is nonnegligible at the interface between the cart
and ground. This is expected as the weight of the mechanism leads to a high normal reaction
at this interface. Friction within the system can be represented through various modeling ap-
proaches. The case study is divided into two segments. In the initial part, both the simulation
and optimization models incorporate the Brown–McPhee friction model. In the subsequent
section, focusing on the importance of friction modeling, the optimization model employs
the Brown–McPhee model, whereas the simulation uses the Gonthier friction model.

The goal of this study is to use the methodology presented in this paper for computing
the optimal gains for the PID controller, i.e., ρ = [Kp, Ki, Kd ]. Manually tuning a PID con-
troller is difficult, especially for nonlinear systems. The methodology described in this paper
can be used to convert this optimal feedback control problem into a parameter optimization
problem for multibody systems. The optimization is set up to minimize the error in X and Y
positions of the cart center (x1, y1) and the pendulum center (x2, y2). Thus we obtain

ex = x2 − x1 and ey = y2 − y1. (33)

This study has been implemented in MATLAB® using Symbolic Math Toolbox for evalu-
ating Jacobians with respect to design parameters. The objective function chosen for this
study is quadratic, with high penalty on the error in states and a comparatively low penalty
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Table 2 Inverted pendulum:
number of equations Component Value

Number of bodies 2

States per body 7

Total differentiable variables for dynamics 2 × 7 = 14

First-order equations of motion 2 × 14 = 28

Degrees of freedom 5

Lagrange multipliers/Constraints 14 − 5 = 9

Total dynamic equations 28 + 9 = 37

Number of free variables (parameters) 3

Total number of sensitivities 3 × 37 = 111

Total differential-algebraic equations 37 + 111 = 148

Total objective function(s) 1

Total objective function gradients 3

on the control. This also has a scaling effect since the control magnitude is much higher than
that of the error. The final objective function used for this case study is

ψ = (105e2
x + 105e2

y)

∣∣∣
tf

+
∫ tf

t0

105e2
x + 105e2

y + u2
x + u2

ydt, (34)

where

ux(t) = Kpex + Ki

∫ t

t0

exdt + Kd

dex

dt
, and (35)

uy(t) = Kpey + Ki

∫ t

t0

eydt + Kd

dey

dt
. (36)

Hence we penalize both the continuous error and the error at the final time. For gradient-
based methods to be effective, it is crucial for users to provide a good initial estimate for the
parameters. The chosen cost function has a local minimum if the pendulum hangs vertically
below the plate, but this solution is undesirable. To steer the optimization in the desired
direction, the initial control should achieve stabilization to some extent. Typically, control
saturation constraints are imposed for such optimization studies to consider the limits of
the actuation system. However, this paper only deals with bound constraint problems and
bounding the gains instead of the computed control would not be appropriate. Hence an
unconstrained optimization is performed, and the control saturation limits are imposed indi-
rectly by controlling the state and control penalties in the objective integrand. This approach
is suitable for such studies since the time taken for optimization is small and multiple opti-
mization iterations can be easily performed. Table 2 details the number of equations required
for this study.

As we can observe in Table 2, a system of 148 differential-algebraic equations must be
solved for every optimization iteration along with the additional integrations required to
calculate the objective function and its gradient. This is for a relatively simple control case
study. Since optimization studies can take several iterations to converge, the computational
cost adds up. This highlights the importance of using efficient computation techniques, like
sparse-matrix algebra, iterative solvers, SIMD/parallelism, and efficient memory allocation
in functions to speed up the process.
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Fig. 3 Inverted pendulum dynamics: initial vs. optimal controller parameters

Figure 3 shows the dynamic response of the system before and after optimization.
The PID gain initial estimates were [750, 200, 10], which converged post-optimization to
[563.11, 626.57, 90.68]. Figure 3a shows the error dynamics for the system with the ini-
tial control versus the optimized control. As we can see, the response is significantly better
post-optimization. Figure 3b shows the friction at the plate–ground interface. The preopti-
mization friction switched from dynamic friction to stiction and back at 0.3 sec and 0.55 sec
notably. This is a consequence of aggressive control overcompensating for the stabilization
error. The cart keeps changing its direction of motion causing the friction to behave in a
way that opposes this change. The friction force is constant for the optimized control as
it provides the optimal compensation to achieve stabilization. Figure 3c shows the control
forces before and after optimization. The maximum control effort and energy used post-
optimization is much lower, however the control stabilizes the pole in less than 1/5th of the
time taken by the unoptimized controller.

This can be seen graphically in Figs. 4 and 5, which show the system state at various
simulation times before and after optimization. The difference in the stabilization perfor-
mance can be clearly observed through the position of the pole against the timestamps. Fig-
ure 6 shows the convergence of the optimization algorithm. The top subplot is the value of
the objective function plotted against the optimization iterations. The optimization process
achieved greater than 60% reduction in the objective function.

Before transitioning to a different case study, it is vital to understand the importance of
modeling friction, especially for control problems. Let us suppose that we decide to ignore
the friction after making the observation that its magnitude is less than 10% of the max-
imum actuator force. The optimization of control parameters is then carried out without
any consideration of friction, and the control parameters obtained are used in simulation
with friction. Figure 7 compares the stabilization error of the system under such assump-
tions against previously obtained control parameters where friction was considered during
optimization.
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Fig. 4 Inverted pendulum stabilization: initial PID control parameters

Fig. 5 Inverted pendulum stabilization: optimal PID control parameters

Fig. 6 Inverted pendulum optimization convergence
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Fig. 7 Friction versus frictionless optimization error dynamics

Fig. 8 Friction versus frictionless optimization control forces

The dotted lines represent the optimization model where friction was not considered,
and the solid lines represent the model with friction. If the real-world friction was zero, in
other words, the surface on which the plate moves is frictionless, the model without friction
performs much better in terms of settling time. Figure 8 plots the actuator forces required
for stabilization of these models. The model where friction was not considered during op-
timization achieves stabilization with lower control force magnitudes in comparison to the
model where friction was considered during optimization.

Figures 7(b) and 8(b) plot the dynamics for a real-world setting, where the friction has
been modeled using the Gonthier friction model. It also employs different values for static
and dynamic friction coefficients in comparison to the Brown–McPhee model utilized for
optimization ([0.5, 0.4] instead of [0.4, 0.3]). It is evident that the model where friction was
not considered during optimization has worse performance than the one where friction was
considered. The optimization process for the model without friction converged to a local op-
timum [419.42, 30.30, 65.95] instead of the previous optimal point [563.11, 626.57, 90.68].
The optimization ignored the integral gain of the PID controller, rendering it effectively a
PD controller. Thereby we see an offset error that does not seem to go away. This occurred
because the optimization aimed to minimize control effort without knowledge of the need
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Fig. 9 Flyball governor
schematic

for integral gain to counteract friction. As a result, it converged to an optimal point with
negligible integral gain. The friction force, although comparatively small in magnitude to
the control forces, has a significant influence on dynamics and thereby cannot be ignored.
This study also justifies that the friction model used in the optimization model need not be
an exact representation of the friction encountered in real world.

5.2 Centrifugal governor mechanism

A centrifugal governor, also known as a flyball governor, is typically used to maintain the
speed of a combustion engine by regulating the flow of fuel or working fluid. Several com-
mercial applications such as diesel generators and lawn mowers use centrifugal governors.
Designing governors for target engine speeds is well understood, making this mechanism an
excellent benchmark example for testing the optimization methodology. This mechanism is
a type of servo-mechanical proportional controller, and its analysis as a dynamic system is
not trivial. Figure 9 shows an example of a type of flyball governor.

The flyweights attached to the arms are pivoted on a rotating shaft. The collar is attached
to the top arm via links and is constrained to translate along the shaft. The entire mechanism
rotates with the same angular velocity, say ω, which is proportional to the engine speed.
As ω decreases due to an increase in engine load, the centrifugal forces on the weights
decreases causing them to move inward, thereby decreasing the collar’s height and vice
versa. The collar can be connected to the throttle valve of the engine to control the fuel flow
and thereby the engine speed. This provides the said governing action for the engine. A key
component of such governors is the translational spring damper (TSD), which opposes the
motion of the collar to provide a damped dynamic response. For the purpose of this study,
the TSD stiffness ks = 1000 N/m and damping of cs = 50.0 N s/m has been used. The servo-
mechanism torque or torque at the pillar τpillar has been modeled using a linear proportional
controller governed by the equation

τpillar = Kp(h0 − z2), (37)

where Kp = 200.0 N m/m is the proportional gain in torque, h0 = 0.1 m is some predefined
height of the collar where the torque would be zero, and z2 is the dynamic height of the
collar obtained in simulation. The system is highly nonlinear, especially if friction effects
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Table 3 Flyball governor:
number of equations Component Value

Number of bodies 6

States per body 7

Total differentiable variables for dynamics 6 × 7 = 42

First-order equations of motion 2 × 42 = 84

Degrees of freedom 2

Lagrange multipliers/Constraints 42 − 2 = 40

Total dynamic equations 84 + 40 = 124

Number of free variables (parameters) 7

Total number of sensitivities 7 × 124 = 868

Total differential-algebraic equations 124 + 868 = 992

Total objective function(s) 1

Total objective function gradients 7

are considered. Therefore it is a good benchmark problem to test the methodology. Such
mechanisms are severely neglected in terms of maintenance. Hence it is imperative to ensure
that the mechanism functions are as desired even if improper maintenance, such as lack of
adequate lubrication, leads to friction in this mechanism.

In terms of modeling, the system contains six bodies (two top links, two bottom links, a
vertical pillar which rotates about the Z axis, and a sliding collar). This mechanism is ax-
isymmetric and can also be modeled with four bodies by adding the symmetrical centrifugal
forces in the generalized force vector. Table 3 details the number of equations required for
this study. The friction in this system has been modeled in the revolute joints of the top
arms, which hold the flyweights. This joint is bound to experience high constraint and iner-
tial forces due to the rotation of the governor. Hence, due to improper maintenance, this joint
will experience increased frictional torque. The friction at the collar-pillar translational joint
will be low, since the centrifugal forces cancel out, leading to negligible constraint reaction
forces at that joint. The objective of this particular example is to modify the governor design
to achieve a certain desired stable speed, in the presence of friction:

min
ρ

ψ =
∫ tf

t0

(ωz − 15.0)2dt, (38a)

where ω = [ωx, ωy, ωz

]T
. (38b)

The angular velocity for any body i is purely a function of its Euler parameters pi . We have
ωi = E(pi )ṗi . The objective function can be expressed mathematically by equation (38a).

The design parameters for this case study are shown in Table 4. As we can see in Fig. 9,
the bottom arm of the governor does not connect with the top arm at the vertex, resulting
in an overhang. This gives the flyweights leverage to lift the collar against the spring force.
The ratio of the overhang to the total length of the top arm is another design parameter for
the system. Parameters like pillar height and collar outer radius may not have a substantial
effect on the optimization.

Figure 10 shows the initial and optimized trajectory of the governor speed. The optimiza-
tion achieves the target speed of 15 rad/s. Almost all parameters have decreased in magni-
tude, except for the bottom arm length. The correlation of the top and bottom arm length
to pendulum speed is peculiar. Moving the centrifugal masses outward should decrease the
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Table 4 Flyball governor parameter values

Parameter Description Initial est. Bounds Optima

ρ1 Top arm length 0.135 m [0.1 m, 0.15 m] 0.1247 m

ρ2 Bottom arm length 0.08 m [0.06 m, 0.1 m] 0.0853 m

ρ3 Overhang ratio 0.3 [0.2, 0.4] 0.20

ρ4 Top arm to pillar offset 0.025 m [0.02 m, 0.03 m] 0.02 m

ρ5 Collar outer radius 0.025 m [0.02 m, 0.03 m] 0.02 m

ρ6 Pillar height 0.225 m [0.2 m, 0.25 m] 0.2 m

ρ7 Flyweight mass 0.03 kg [0.02, 0.04] 0.0242 kg

Fig. 10 Flyball governor dynamic plots

target speed since the same centrifugal force can be achieved at a lower speed. However,
changing the top arm length and overhang ratio changes the geometry of the mechanism,
specifically the joint location for the top and bottom arms. Hence, to maintain this con-
straint, the length of the bottom arm increased by a small amount even though the top arm
length decreased in the optimal design.

Figure 11 shows the optimization converging to a local minimum. It is important to men-
tion that the performance of this particular optimization case study was far from ideal due to
the high number of differential equations and suboptimal memory management. This study
is intended as a proof of concept of the optimization methodology, and improvements to the
execution speed and computational efficiency are planned in the near future.

5.3 Spatial slider-crank mechanism

The slider-crank mechanism is a multibody system that converts rotational motion at the
crank into oscillating translational motion at the slider. This mechanism is ubiquitous and is
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Fig. 11 Flyball governor convergence

Fig. 12 Slider-crank mechanism schematic

used in combustion engines and various manufacturing processes, such as shaper machines,
sheet metal punching machines, and shearing machines. For the purpose of this study, a
spatial version of the mechanism is used, as shown in Fig. 12. The model is derived from
Haug (1989) [38], which contains the kinematic analysis of the mechanism.

In a previous paper [81], the sensitivity analysis of this mechanism was presented, and
the dynamic response was benchmarked using two friction models. It was also demonstrated
that the sensitivities of multibody systems with Brown–McPhee friction behave like hybrid
dynamic systems by displaying abrupt jumps. This paper will build upon the aforementioned
study and illustrate how the optimization methodology presented herein can be applied for
codesign optimization. Table 5 highlights the number of equations to be solved for every
optimization iteration.

The objective of this study is to design the system and control parameters such that the
crank spins at a given constant rotational velocity through a proportional control mechanism.
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Table 5 Slider-crank: number of
equations Component Value

Number of bodies 3

States per body 7

Total differentiable variables for dynamics 3 × 7 = 21

First-order equations of motion 2 × 21 = 42

Degrees of freedom 1

Lagrange multipliers/Constraints 21 − 1 = 20

Total dynamic equations 42 + 20 = 62

Number of free variables (parameters) 5

Total number of sensitivities 5 × 62 = 310

Total differential-algebraic equations 62 + 310 = 372

Total objective function(s) 1

Total objective function gradients 5

Table 6 Slider-crank parameter values

Parameter Description Initial Bounds Optima

ρ1 Crank length 0.08 m [0.06 m, 0.1 m] 0.06 m

ρ2 Connecting rod length 0.3 m [0.2 m, 0.4 m] 0.2 m

ρ3 Slider length 0.05 [0.04 m, 0.06 m] 0.0467 m

ρ4 Slider width 0.025 m [0.020 m, 0.03 m] 0.02 m

ρ5 Proportional gain 1.0 [–5.0, 5.0 ] 1.0495

Friction at the slider-ground interface is non-negligible. Table 6 details the design and con-
trol parameters used for this study. The control torque on the crank τcrank can be represented
by the equation

τcrank = (ω − ω0)Kp, (39)

where ω is the current dynamic angular velocity of the crank, ω0 = −10.0 rad/s is some
predefined speed for the crank rotation, and Kp is the tunable proportional controller for
crank torsional actuator. The objective function used in the study is

ψ =
∫ tf

t0

[
(ω − ω0)

2 + 0.01τ 2
crank

]
dt =
∫ tf

t0

[
(ω − ω0)

2(1 + 0.01K2
p)
]

dt. (40)

Figure 13 shows the dynamic plots before and after optimization. We can see that the
crank is continuously rotating at approximately 10 rad/s with the optimized parameters.
The maximum magnitude of control required is also lower. This is a typical advantage of
codesign optimization. It will often be the case that the control effort can be substantially
reduced if appropriate design is chosen as seen in this example.

Figure 14 shows the friction and effective normal reaction at the translational joint. As
we can observe, the initial response of the system was highly oscillatory, which was due to
high jerks when the crank was at the bottom most position.
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Fig. 13 Slider-crank dynamics

Fig. 14 Slider-crank normal and friction forces

Figure 15 shows the convergence of the optimization problem. The objective function
has decreased by about 66% in comparison to the initial estimate of design and control
parameters.
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Fig. 15 Slider-crank convergence

6 Conclusions

This paper covered the direct sensitivity methodology for optimization of multibody systems
with friction. It was demonstrated how systems with friction can be practically modeled us-
ing singular mass-matrix form of differential-algebraic equations that are compatible with
standard open-source solvers. Sensitivity analysis through direct differentiation of such dy-
namic equations can be solved through explicit solvers with adaptive stiffness control. The
examples examined in this study underscore the versatility of this methodology in both con-
trol and design parameter optimization while demonstrating the advantages of codesign. The
methodology is also applicable to control shaping and dynamic estimation problems; how-
ever, adjoint sensitivity approach would be preferable in this case due to the large number
of parameters. As a future scope of this work, more efficient sparse-matrix implementations
need to be executed with nonallocating functions to further speed up the execution time.
Additionally, general adjoint sensitivity approaches for optimal control based on calculus of
variations plan to be included. An extension of the work for sensitivity analysis and opti-
mization of multibody systems with joint clearances is being developed in parallel.

Nomenclature
nb Number of bodies in the system.
n Number of generalized coordinates. 7nb for reference point

coordinates with Euler parameters.
q ∈R

n Vector of generalized coordinates.
λ ∈ R

m Vector of Lagrange multipliers.
ρ ∈R

p Vector of system parameters [ρ1, . . . , ρp]T.
yx Jacobian formed by partial derivatives ∂y

∂x .

ẋ, ẍ Time derivatives dx
dt

and d2x

dt2 respectively.
𝚽(q,ρ) ∈R

m Vector of m holonomic constraints.
𝚽q ∈R

m×n The constraint vector Jacobian. Must be of rank m.
M(q,ρ) ∈R

n×n Generalized mass matrix for multibody systems.
Q(q, q̇,ρ) ∈R

n Vector of external generalized forces and torques.
QAf (q, q̇,λ,ρ) ∈R

n Vector of generalized frictional forces.
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v Magnitude of relative sliding velocity.
vt Magnitude of transition velocity.
μ [μd, μs]T, wherein μd and μs represent coefficients for dynamic

and static friction, respectively.
Fn(q,λ,ρ) Magnitude of normal force of contact.
Ff Magnitude of friction force.
ri ∈R

3 Position vector in global frame for the origin of i th body-fixed
reference frame.

ux , uy , uz ∈R
3 Unit axis representing a coodinate system.

(·), (·)′, (·)′′ Physical entities represented in the ground, body-fixed, and joint
reference frames respectively.

x̃ ∈ R
3×3 The matrix [0, −x3, x2; x3, 0, −x1; −x2, x1, 0] formed using the

elements of a 3-vector x = [x1; x2; x3]. For any other 3-vector y, we
have x̃y = x × y.

pi ∈R
4 The Euler parameter vector for the i th body-fixed reference frame is

expressed as [e0 eT]T, where e0 = cos(χ/2), and e = u sin(χ/2) for
a given axis-angle rotation u and χ .

s′
i ∈R

3 Position vector for joint location in the local i th body-fixed reference
frame.

Ai ∈R
3×3 The rotation matrix in terms of Euler parameters, which denotes the

transformation from the i th body-fixed coordinate system to the
global coordinate system, is given by
A(p) = (e2

0 − eTe)I + 2eeT + 2e0ẽ.

Bi ∈R
3×4 2

[(
e0I + ẽ

)
s′
i es′T

i − (e0I + ẽ
)

s̃′
i

]
.

Ei ∈R
3×4

[−e ẽ + e0I
]
.

Gi ∈R
3×4

[−e − ẽ + e0I
]
.

Ci ∈R
3×3 The rotation matrix that signifies a transformation from the joint

definition frame to the i th body-fixed frame.
h Time step.
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