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Abstract: The topic of state estimation using multibody models combined with Kalman
filters has been an active field of research for more than 15 years now. Through state
estimation, virtual sensors can be used to increase the knowledge of a system, measuring
variables that cannot be obtained through conventional sensors. This is useful for control
purposes or updating the state of a digital twin of a system. One of the most tricky questions
with the different approaches tested in the literature is the parameter tuning of the filters, in
particular, the covariance matrix of the plant noise. This work presents a new method which
includes a shaping filter to whiten the plant noise combined with an adaptive algorithm to
adjust the plant noise parameters. This new method is tested and compared with methods
already described in the literature using the three-simulation method. The new method is
at least as accurate as the best hand-tuned filters in most of the situations evaluated, and
improves the accuracy of previously presented adaptive methods. All the methods and
mechanisms tested in this paper are available in an open source library written in matlab
called MBDE.

Keywords: virtual sensing; digital twin; force estimation; Kalman filter; noise modeling;
colored noise; adaptive Kalman filter; shaping filter; multibody dynamics

1. Introduction
The Kalman filter is an algorithm that provides an estimate of unknown states of a

system [1,2]. Its operation is based on combining a model of the system with measurements
over time of system variables provided by sensors. The filter takes into account the noise
from the sensors and the system model, assuming it to be white noise, meaning it follows a
normal distribution with zero mean. When dealing with linear systems and white noise,
the observation provided by the filter is statistically optimal in terms of minimum mean
square error. It has been applied in multiple fields, especially for control algorithms as
virtual sensors for providing additional information of the system [3–7]. Virtual sensors
can also be used in other use cases to give more insight about the system under study, such
as for digital twin applications.

In its discrete version, which is the most used in practice, the filter consists of two
stages. The first is the prediction stage, where a value for the states of the system is obtained
from the previous states, the system model, and the noise. In the next stage, the states are
corrected by adding the innovation to them. The innovation is the mismatch between the
expected sensor measurements and the actual sensor data. The statistical properties of the
innovation sequence play a significant role in several techniques described hereafter.

To extend its use to non-linear systems, variants of the Kalman filter have been
developed. The most popular is the Extended Kalman filter [8–10], which makes a first-
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order Taylor series expansion of the system equations around the value of the a priori states
of the system. For this reason, it uses the Jacobian of the system model as a transition matrix.
Other variants have also been developed, such as filters using Sigma Points [11], which are
used instead of a Taylor series expansion. Sigma points are sets of points deterministically
obtained around the set of system states that have the same mean and covariance. Probably
the most popular of these filters is the Unscented Kalman Filter [12].

In recent years, several applications of the Kalman filter to mechanisms modeled
using multibody dynamic techniques have been presented [13]. Among the various filters
developed, the errorEKF has shown more precise results than those obtained with other
algorithms and does not consume a high computational load [14]. The errorEKF is an
indirect estimator, meaning that the states are not the variables of interest, but the errors
made by the multibody model, which is then corrected. This design allows us to use any
multibody formulation.

In filter design, a difficulty lies in adequately characterizing the noise of the system,
especially when it can vary during operation. This noise usually comes from modeling
errors or unknown inputs, and therefore it is commonly difficult to characterize. In Kalman
filters, the noise is unknown but it is assumed to be additive white Gaussian noise. If all of
these assumptions are fulfilled, the noise can be characterized by its covariance matrix, and
the Kalman filter will be an optimal estimator for a linear system.

In most applications, the values of the covariance matrix are usually obtained fol-
lowing a trial-and-error procedure [15–18], which increases the complexity of the filter
implementation. In cases where the noise is white, but its covariance matrix is unknown
or variable in time, adaptive filters may be employed to estimate the covariance matrix of
the system noise. Two fundamental families of adaptive filters have been described in the
literature: those that obtain their estimation from a bank of models, known as multiple-
model-based adaptive estimation (MMAE), and those that analyze the innovation of the
filter to estimate the noise of the system, known as innovation-based adaptive estimation
(IAE) [19,20].

The MMAEs calculate the probability that each of various models corresponds to the
problem in question based on sensor data. This involves calculating several models of the
system in parallel, which can be computationally heavy if used with multibody models,
limiting its use to applications where real-time execution is not necessary.

IAE filters assume the hypothesis that the innovation will be white noise if the filter
has the appropriate values of the covariance matrices. Their computational load is not
problematic in real-time applications and, therefore, they are more suitable for use with
multibody models of the system. The principle of operation of this type of filter is based
on the study of the innovation sequence of the Kalman filter; if the mean and covariance
of the innovation do not have white noise properties, it can be concluded that the filter is
not working correctly, possibly due to incorrect modeling of system noises [21,22]. There
are multiple alternatives within this family of filters based on different principles. In [23],
a comparative study of the different existing adaptive methods is presented. The most
popular are maximum likelihood, covariance matching, and variational Bayesian.

Initially, the maximum likelihood (ML) criterion was used in inertial navigation
systems where a Kalman filter was employed to cover the lack of GPS signal [19]. In ML,
the goal is to obtain the value of the noise covariances that maximize the probability that
a sequence of system innovation is minimal. The ML considers the innovation values
obtained in a time window. This adds the window size as a new parameter to adjust the
filter. If the window is very large, the estimate converges to the true value of the covariance
matrices but will react very slowly in the case of a change in operating conditions. On the
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other hand, if small sample sizes are used (overtrained), an optimal value of the covariance
matrices may not be reached.

Among the covariance matching methods, the Sage–Husa method [24] stands out,
which obtains an optimal estimate of the covariance matrix by maximizing the uncondi-
tioned density function of the state variance matrix. This estimate provides the optimal
covariance matrix used in that time step; hence, it is called maximum a posteriori probabil-
ity (MAP). This method optimizes the covariance at each time step and does not employ
a sequence of innovation data. However, the estimation of one time step is based on the
previous step. This has given rise to methods that use a forgetting factor to regulate the
contribution of the last time step compared to the historical one [25].

Both covariance matching and ML methods provide a determined value to the noise
covariance matrices. A third method, Variational Bayesian (VB) [26], characterizes these
matrices using a probability density function. This method assumes that the covariance
matrix is described by an inverse gamma distribution. To correctly estimate the properties
of this distribution, the vector of filter states is augmented with the statistical parameters
that define the distribution. The advantage of this method is that it mitigates the effect of
overtrained filters [26]. However, VB has been developed assuming that the covariance
matrix of the system is known, so it can only be used to estimate the covariances of the
measurement noises (from the sensors). This makes it less interesting when the noise of the
system is the target of the characterization.

In [27], the design of an adaptive filter for the EKF error with force estimation has
been presented. This article presents the development necessary to apply the ML method
with an extended indirect Kalman filter based on a multibody model of the system.

Previous methods are suitable for Gaussian white noises. In cases where the noise is
not uncorrelated, it is possible to resort to the shaping filtering technique, which consists
of increasing the states of the system with the noise and modeling it. It is common to
use a Markov model powered by white noise [28]. The Markov model involves a time
window of data to determine the autocorrelation time of the innovation sequence. In [13],
an application of this technique to an extended observer based on multibody models was
shown. The use of this technique showed an improvement in the innovation sequence
with more uniform behavior at all frequencies, that is, closer to white noise. This results in
more accurate filter estimates. Furthermore, if the observer already has a white innovation
sequence, the inclusion of a shaping filter has no influence on the results.

The aim of this work is to increase the accuracy of the state estimators including a
continuous and on-line characterization of the plant noise. This implies that the filter
will automatically adapt its behavior to changes in the plant, and it also simplifies the
implementation of Kalman filters in real applications. To achieve this goal, this work
proposes the combination of the shaping filter with an adaptive filter to achieve an enhanced
characterization of the noise. Adaptive filters assume that noise is white. However,
when the noise of the system is completely unknown, it is not advisable to rule out the
possibility that the noise is colored. The present work attempts to address this combination
in observers based on a multibody model in order to adequately characterize the noise
of the system. Along with the development of the equations to combine both techniques,
another difficulty arises from the use of time windows in both the shaping filter and the
adaptive filter ML method. Hence, it is also of interest to obtain guidance on them to
achieve an optimal characterization of the system noise. The use of this technique, with
proper guidance on window size, allows noise characterization to be automated (previously
performed through trial and error), leading to more accurate estimations and to systems
that can automatically adapt to changing conditions.
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2. Materials and Methods
To carry out this work, the three-simulation method has been used, in combination

with the MBDE library. The MBDE library is a toolbox written in Matlab intended for the
development of state estimators based on multibody models. This library is released under
a GPL license and can be downloaded from https://github.com/MBDS/mbde-matlab
(accessed on 27 March 2025). In the three-simulation method, a first simulation is used instead
of the real mechanism. This allows access to all the information about the kinematic and
dynamic behavior of the mechanism that is used as a reference (ground truth).

To evaluate the performance of the proposed solution, this work addresses the problem
of estimating the states of the system in terms of position, velocity and acceleration, together
with the forces (or inputs) that produce the observed dynamics, using a minimal set of
physical sensors. It is of particular interest to evaluate the accuracy obtained in the states
or forces that are not directly measured, since those variables are the ones that can be used
as virtual sensors for increasing the knowledge of the state of the system.

In the present work, as in previous ones [13,14,27], tests have been carried out with
two types of mechanisms: an articulated quadrilateral and a five-bar linkage, which have
been represented in Figure 1. The characteristic magnitudes of each one are found in
Tables 1 and 2. These mechanisms have been chosen for simplicity and to take into account
the effect of several degrees of freedom.

θ

(a) Four-bar linkage.

θ1
θ2

(b) Five-bar linkage.

Figure 1. Mechanisms employed in this work.

Table 1. Properties of the four-bar linkage.

Crank Coupler Rocker Ground Element

Mass (kg) 2 8 5 -
Length (m) 2 8 5 10

https://github.com/MBDS/mbde-matlab
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Table 2. Properties of the five-bar linkage.

Left Crank Left
Coupler

Right
Coupler

Right
Crank

Ground
Element

Mass (kg) 3 1 2 3 -
Length (m) 0.5 2.062 3.202 0.5 3

The readings of the different sensors considered are obtained from this model, as
would be done in a real mechanism. White noise is added to these measurements to model
the characteristic noise of the various types of sensors. The seed for the pseudorandom
number generator used to generate the noise of the sensors is the same in all the tests, so
the results of the simulations are deterministic, and the differences between tests depend
only on the methods or parameters used. A second simulation of the mechanism is used
as a model. This model tries to reflect the discrepancies that usually exist in the modeling
of a real mechanism (differences in the characteristic parameters of the elements such as
masses, lengths, inertias or in the torques such as the absence of friction forces; differences
in the modeling of the forces applied to exteriors). The errors that have been introduced in
this model are a difference of 1 m/s2 in the value of gravity and that the initial position of
the crank differs by pi/16 rad with respect to that of the real mechanism.

As expected, the behavior of this model will not be identical to the first. The third
simulation, the observer, will be responsible for the estimation of the real mechanism
by combining the data from the sensors and the model with errors. The discrepancy
between the real model and the observer model is characterized by a noise model. In this
work, we explore an algorithm based on an adaptive Kalman filter with a shaping filter to
approximate the best parameters for this plant noise during the execution of the observer,
so accurate parameter tuning is not required, and the observer can adapt its behavior if the
conditions change.

To verify the accuracy of this new algorithm, various sensors and combinations of
sensors have been used to determine their influence on the results. The same combinations
have been used as in previous works, as detailed in Figure 2. Specifically, for the four-
bar linkage, the following sensors have been used: (a) an encoder installed on the crank,
coinciding with the degree of freedom of the mechanism, (b) a gyroscope on the crank that
measures its angular velocity, (c) a gyroscope in the mechanism coupler and (d) a biaxial
accelerometer at the end of the crank with the axes aligned so as to capture the longitudinal
and transverse accelerations with respect to it. In the case of the five-bar linkage, the same
sensors have been used but duplicated since it has two degrees of freedom. The modeling
of the accelerometers and gyroscopic sensors is detailed in [14], and their characteristics
are shown in Table 3. These noise levels are compatible with low-cost sensors.

Table 3. Characteristics of the sensors considered in this work.

Encoder Gyroscope Accelerometers

Standard deviation 1.745 × 10−2 rad 9.839 × 10−4 rad/s 5.638 × 10−2 m/s2

Sampling frequency (Hz) 200 200 200
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Encoder

(a) Encoder.

Gyro

(b) Gyro on crank.

Gyro

(c) Gyro on coupler.

Accelerometers

(d) Accelerometers.

Figure 2. Sensor configurations considered in the four-bar linkage.

2.1. Multibody Formulation

Multibody system dynamics studies the dynamics of systems composed of several
bodies, rigid and/or flexible, joined in such a way that some movements are allowed
while others are prevented. The rigid nature of the bodies and the movement limitations
introduced in the joints are modeled by algebraic equations called constraint equations.
The union of the dynamic and constraint equations gives rise to the following system of
Differential Algebraic Equations in which q is a set of n generalized coordinates [29]:

Mq̈ + ΦT
qλ = Q (1a)

Φ(q, t) = 0 (1b)

where M is the mass matrix of the system, q̈ the accelerations of the natural coordinates,
Φ the constraints vector, Φq the Jacobian matrix of the constraint equations with respect
to the generalized coordinates q, Q the generalized forces, and λ∗ the Lagrange multi-
pliers [30]. The forces due to the imposition of the constraints are represented by the
term ΦT

qλ.
Various formalisms have been developed to solve this set of equations. In this case,

we used the matrix R method [29], although the indirect methods of observers based on
the errorEKF, which are the ones used in this work, can be used with any other multibody
formulation [14]. Matrix R formulation is briefly described hereafter for the convenience of
the reader. For a more exhaustive explanation of the method, refer to [29].

If all the constraints are scleronomous, the following velocity transformation can
be written:

q̇ = Rż (2)

where q̇ is the whole vector of velocities, ż is the vector of independent velocities, and R is
a matrix which provides the complete velocity vector when it is multiplied by the vector of
independent velocities.

The time derivative of the previous equation can be written as:

q̈ = Rz̈ + Ṙż (3)

By using these transformations, the equations of motion can be rewritten in indepen-
dent coordinates as follows:

RTMRz̈ = RT(Q − MṘż
)

(4)
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This equation can then be integrated using any suitable integrator. In this case, the
trapezoidal rule was used.

2.2. State and Input Observer

The state estimator developed in this work is based on the Kalman filter. Although the
Kalman filter is originally developed for linear systems, it has been extended for non-linear
systems (such as multibody models), resulting in the well-known Extended Kalman filter
(EKF). If the filter is expressed in discrete form, the estimation process can be divided in
two stages: prediction and correction stage.

The prediction phase of the extended Kalman filter (EKF) for a time step k is per-
formed following

x̂−k = f(x̂+k−1) (5)

P−
k = fxP+

k−1fx
T + ΣP (6)

where x̂ is the vector of states of the estimator, P is the covariance matrix of the estimation
error, f(·) is the non-linear function which represents the system behavior, fx is its Jacobian
matrix with respect to the states, ΣP is the plant covariance matrix and the superindices ‘−’
and ‘+’ mean a priori (before correcting the states with the sensor readings) and a posteriori
(after fusing the sensor readings and the model predictions), respectively. The correc-
tion phase consists of incorporating the sensor readings in order to improve the model
prediction, following

ỹk = ok − h(x̂−k ) (7)

Σk = hxkP−
k hx

T
k + ΣS (8)

Kk = P−
k hx

T
k Σ−1

k (9)

x̂+k = x̂−k +Kkỹk (10)

P+
k = (I −Kkhxk)P

−
k (11)

where ỹk is the innovation, which represents the information provided by the sensor read-
ings o, which is not present in the a priori filter states, h(·) is the function relating the states
and the measurements and hx its Jacobian matrix with respect to the states. Σk is known
as the innovation covariance matrix, and it represents the uncertainty in the system state
projected through the sensor function and an additional Gaussian noise originating at the
sensor itself, ΣS. Small values of Σk mean that the observation introduces useful information
to constrain the estimation of the system state. By evaluating the Kalman gain K, the
estimation of the mean and covariance are updated in Equations (10) and (11), respectively.

The innovation ỹ is an important indicator of the correctness of the filter; the innova-
tions are Gaussian white noise when all the noise models are correct [22]. Hence, when
significant patterns appear in the innovation sequence, inadequate noise characterization
or important modeling errors should be suspected [21,22].

The methods considered in this work are based on the error-state Kalman filter, also
known as indirect Kalman filter. In this type of filter, the states x are not the magnitudes of
interest, but the errors of the system under study. In particular, the states of all the methods
considered in this work are the position, velocity, and acceleration errors of the degrees of
freedom of the multibody model, ∆z, ∆ż, and ∆z̈, respectively, as follows:

x =
[
∆zT, ∆żT, ∆z̈T

]T
(12)
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After each correction phase, the errors are used to correct the multibody model state.
The estimated errors of the degrees of freedom and the kinematics equations are used to
correct the position, velocity, and acceleration of the mechanism.

Once the positions and the velocities are corrected, their expected error is null. This
does not mean that the correction is perfect, but that on average, the error should be
zero. However, for the acceleration, the problem is different; if there is an unknown or an
incorrect force, the model will also provide an incorrect acceleration. To solve this problem,
the force required to correct the acceleration error can be calculated as:

∆Q = RTMR∆z̈ (13)

If ∆Q is added to the vector of generalized forces Q, the incorrect model would provide
the corrected accelerations. After all these corrections are applied, the multibody model can
be used as a virtual sensor, providing more information than the sensors used to correct
its state. Since it is assumed that the force errors are persistent in time, the force errors
estimated after the correction in one time step are applied for the prediction of the following
time step, as follows:

∆Q−
k = ∆Q+

k−1 (14)

Therefore, since the positions and the velocities are corrected, and the forces are also
corrected for the model to produce the correct accelerations, the expected value of the error
of the model for the following time step is zero, so the equation of the propagation of the
state of the Kalman filter, Equation (5), becomes x̂−k = 0.

This method with force estimation is explained more in depth in [14], where it is
referred to as errorEKF_FE. For the sake of conciseness, in the present work, we will call
this method errorEKF.

2.3. Noise Modeling

When developing a multibody model of a system, the main sources of error are
expected to come from errors in forces. While the geometry of the system can be accurately
measured during the modeling, other parameters such as the mass properties or the force
models remain uncertain.

In a Kalman filter, the errors between the model and reality are considered through
the plant noise. As stated before, in this work, the gravity force is modified so that there is
an error in the force model. This error implies that there is an uncertainty in the system
related to the force model. This error will result in a deviation in the behavior of the model
with respect to the ground truth and, therefore, it should be reflected in the covariance
matrix of the plant.

In addition, since the errors are only in the force model, the expected deviation at the
plant comes from acceleration errors, which are then propagated through the integration of
the multibody model to velocity and position level. Thus, assuming that the integration
error is negligible compared to the acceleration error, the only part of the plant noise
covariance matrix that has non-null terms is the part of its diagonal corresponding to the
accelerations, as follows:

ΣP =

 0 0 0
0 0 0
0 0 diag

(
σ1 . . . σg

)
 (15)

where all the blocks are of size g, which is the number of degrees of freedom of the
mechanism, and the term diag

(
σ1 . . . σg

)
is a diagonal matrix with the variances of the



Sensors 2025, 25, 2218 9 of 23

acceleration noise of the plant for every degree of freedom. This approach simplifies the
filter tuning, since only one term of the covariance matrix has to be set for every degree of
freedom of the mechanism studied.

But even in this case, a certain level of experience is required to properly adjust
the filter, and if the conditions vary, the settings will become incorrect. To improve this
situation, an adaptive method for multibody dynamics simulations was proposed in a
previous work [27]. This method was a big step forward towards the practical use of
the state observers based on multibody models, since it allows an inexperienced user to
implement the method, because filter tuning is no longer required. Moreover, the adaptive
method, as its name suggests, can modify its settings on the fly depending on the conditions
in which the mechanism is operating (for instance, in case of malfunction of the mechanism,
or if the mechanism works in different conditions than those assumed by the model).

As explained in [27], the plant covariance matrix is estimated using the maximum
likelihood algorithm (ML). Based on a sequence of data, this method seeks to obtain the
covariance values which are more likely to produce such a sequence. The main advantage
of this method is that it ensures a convergence to the true values of the covariance matrix.
However, it requires a sliding window of data and, depending on the size of the window,
the performance of the method can be affected, yielding to biased estimations.

For a general set of noises σ and observed data ẑ = h(x̂−k ), the likelihood function
describes the probability that the available observed measurements ẑ could be observed
using the given parameters σ [31]. These observations contain the same statistical infor-
mation as the residuals of the Kalman filter, also known as innovations [32]. In an optimal
filter, the innovation is assumed to be distributed as zero-mean, white Gaussian noise with
covariance Σ (Equation (8)). Hence, the likelihood function L for a particular sequence of
N samples can be defined as

L(σ|ẑ) =
N

∏
j=1

1√
(2π)m|Σj|

exp− 1
2 ỹT

j Σ−1
j ỹj (16)

where m is the number of measurements in the measurement vector h(x̂−k ), j the counter of
samples inside the sliding window, | · | the determinant operator, and exp the natural base.
Note that σ are the covariances which are being estimated, ỹ is the innovation sequence for
a window size of N samples, and Σ is the covariance matrix of the residuals of the Kalman
filter. After some simplifications [19,27], the maximum likelihood condition can be derived:

k

∑
j=j0

ln|Σj|+
k

∑
j=j0

ỹT
j Σ−1

j ỹj = min (17)

where k is the time step in which the covariance matrix is being estimated and j the moving
counter inside the estimating window.

The value of σ can be estimated by differentiating Equation (17) with respect to σ and
setting the resultant equation to zero. Note that Σ depends on the covariance σ that is being
estimated. Hence, minimizing Equation (17) is equivalent to finding the value of σ that will
result in the smallest error norm [19]. For the particular case of estimating the σ related
with the plant covariance matrix, it is assumed that the measurement covariance matrix is
known and independent of σ [19]. This is true in most situations, since the measurements
are independent of the plant errors and their covariance matrix can be obtained from the
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characteristics of the sensors. Relating Σ with ΣP and ΣS through Equations (6) and (9), the
estimation of the plant covariance matrix can be obtained:

Σ̂P
k =

1
N

k

∑
j=j0

[
∆xj∆xT

j + P+
j − fx jP+

j−1fx
T
j

]
(18)

where P+
j − fx jP+

j−1fx
T
j reflects the variation in the covariances between time steps and ∆xk

is the state correction sequence. For further details, the reader is referred to [27].
However, the errorEKF algorithm with the plant noise tuned by trial-and-error behaves

better than the adaptive method in several circumstances. This fact shows there is still
room for improvement. The adaptive algorithm assumes that the noise is additive, white,
and Gaussian. However, the noise in a multibody model usually comes from unmodeled
forces (ideal joints, degradation of the real system, unknown friction coefficients, etc.).
These errors usually have a low-frequency preponderance, that is, their effect produces
a deviation of the model with respect to the reality that lasts several time steps. This is a
problem for the adaptive algorithms which are based on the statistical properties of the
innovation. However, this behavior can be improved using a shaping filter [21], which
provides a plant noise with the adequate low frequencies when the shaping filter is fed
with white noise, as follows:

ωk = ψk−1ωk−1 + ξk−1 (19)

where ω is a time-correlated noise, ξ is white Gaussian noise, and ψ is a weight which can
take values from 0 to 1. The two extreme cases are ψ = 0, when ω becomes a white noise,
and ψ = 1, when ω becomes a random walk.

In [13], the application of a shaping filter to errorEKF was explored using a state
augmentation, that is, the values of the low-frequency noise w were added as states. In
the present work, however, a slightly different approach is applied. The reason is that the
design of the errorEKF somewhat includes this feature, since the force error estimation in
one step is used in the prediction of the following step, as shown in Equation (14).

The underlying assumption behind this design is that the force errors are persistent,
or, at least, their variation is slow compared to the length of a time step. Therefore, the
forces are modeled as a random noise (equivalent to ψ = 1 in Equation (19)). However,
this model might not be always the best one. For instance, even a constant error force
might have variable effect depending on the trajectory and the coordinates used to describe
the multibody model. In addition, the force error might not be constant, nor have a
slow variation.

For all these reasons, it is worth studying which is the best value of the weight ψ,
which in the errorEKF will modulate the fraction of the error force estimation propagated
to the following time step. Therefore, Equation (14) becomes:

∆Q−
k = ψa∆Q+

k−1 (20)

where ψa is a diagonal matrix containing the values of ψ corresponding to every degree of
freedom at the acceleration level.

This approach showed a better behavior than that used in [13] when combined with
the adaptive algorithm. Moreover, with this approach, the state is not augmented, thus
saving computational cost.

When ψa is properly adjusted, it enables better working of the adaptive algorithm,
which assumes that the plant error is white noise. In this work, we studied the autocor-
relation of the innovation sequence to set the proper value of ψa. In this case, a sliding
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window of a fixed size n is considered, and the autocorrelation of the innovation within
this window is studied. Since the model in Equation (19) relates the value in one time step
with the one in the previous time step, the relevant magnitude here is the autocorrelation
with the lag of 1 time step, as follows:

ρy,y(k, k − 1) =
∑k

i=k−n+1(yi − y) · (yi−1 − y)
σ2

y
(21)

where ρy,y(k, k − 1) is the autocorrelation of the moving window of a component y of
the innovation sequence ỹ for the time step k, and with a lag of 1 time step, yi is the
component of the innovation in time step i, n is the size of the window, and y and σ2

y are
the mean and variance of the component of the innovation sequence of the considered
window, respectively.

The autocorrelation calculated in this way has one component for every sensor. How-
ever, the shaping filter described here is to model the plant, not the measurements. There-
fore, in order to modify the plant, the autocorrelation of the innovation has to be projected
over the states. In order to do that, the Kalman gain matrix is used, since it conveys the
information from the measurements to the states. However, since the weight ψ has to be
between 0 and 1, all the columns of the Kalman gain matrix are normalized dividing by the
value of their 2 norm, as shown:

KU =

[
k1

||k1||
k2

||k2||
. . .

kl
||kl ||

]
(22)

Then, the normalized Kalman gain matrix KU is used to update the values of ψ

contained in matrix ψ:

ψk = ψk−1 + diag
(KUρỹ,ỹ(k, k − 1)

n

)
(23)

where ρỹ,ỹ(k, k − 1) is a vector containing the autocorrelation of all the components of
the innovation, calculated as in Equation (21), and the operator diag() takes a vector and
converts it to a diagonal matrix. In this way, the components of ψ increase their value
when the innovation sequence is autocorrelated. The first third of the elements of ψ

correspond to the position level of the degrees of freedom, the second third corresponds to
the velocity, and the last third is ψa, the part used in Equation (14), which corresponds to the
accelerations. This update is applied every time step, but the last n time steps are included
in the sliding window used to calculate the autocorrelation, and therefore, the increment
of ψ is divided by the size of the window n to avoid adding n times the contribution of
each sample.

One of the consequences of this algorithm is that the sequence of innovation contained
in the window of size n might be obtained with different values of ψ. Moreover, the
innovation sequence has an intrinsic level of uncertainty. Therefore, it is not expected that
the autocorrelation reaches a null value. In this work, a threshold for the autocorrelation of
±1.96 · σy was used; if the autocovariance value of a component of the innovation is below
this limit, the value of the corresponding value of ψ is not updated in Equation (23). The
threshold used implies that a sequence of white noise will have a value below the selected
threshold 95% of the time.

By the application of this strategy, the plant noise is whitened, and this should improve
the accuracy of the adaptive algorithm. Therefore, by combining both techniques, an
adaptive errorEKF with force estimation combined with a shaping filter is obtained. This
will be referred to as AerrorEKF_SH in the rest of this document.
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3. Results and Discussion
To verify the behavior of the new method presented here (an adaptive errorEKF with

force estimation and a shaping filter, AerrorEKF_SH), the two benchmark mechanisms
shown in Figure 1 were tested with this new formulation and compared with simpler
formulations. The sensors considered in the experiments are the ones depicted in Figure 2,
in particular, the errorEKF with force estimation (here named errorEKF), which is tuned by
trial an error, and its adaptive version, but without the shaping filter (AerrorEKF). Both the
adaptive part of the algorithm and the shaping filter require a moving window of data to
reliably extract the relevant statistical information of the signals. The larger the window of
data, the more accurate information can be achieved. However, if the mechanism changes
its configuration, or the conditions in which it is operating, a large window will slow down
the adaptation to the new set of conditions. Therefore, depending on the type of mechanism
and the variability of the conditions of operation, there will be a window size that will be
more adequate to achieve the best results.

3.1. Window Size Selection

The method presented in this work requires two parameters that should be set by the
user: the size of the moving windows for the plant noise estimation and the weight of the
shaping filter (ψ) estimation. As expressed in [27], the size of the window is dependent on
the application. In order to provide a better insight on the effects of the window sizes on the
estimations, this section compares the results of several simulations with different window
sizes. The experiments are performed using the four-bar and five-bar linkage mechanisms
(Figure 1) with all the sensor configurations considered in this work (Figure 2).

In terms of estimation errors, in most of the tested cases, the error is more affected by
the size of the window for estimating the plant covariance matrix. The results in terms of
estimation errors in the four-bar linkage with an encoder in the crank are shown in Figure 3.
As can be seen, the error decreases as the window employed by the maximum-likelihood
algorithm increases, while the size of the window for the shaping filter has less influence.
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Figure 3. Estimation errors in the four-bar linkage with an enconder in the crank for different window
sizes. The horizontal axis represents the window size used in the shaping filter (SH) and maximum
likelihood algorithm (ML).

There are scenarios where the window size of the shaping filter has more effect. As an
example, Figure 4 presents the error in the estimations in position, velocity, acceleration
and force in the five-bar linkage with gyroscopes on the cranks. As can be seen, in the
second degree of freedom, the error decreases as the window employed by the maximum-
likelihood algorithm increases, while the effect of the size of the window for the shaping
filter has less influence. In the first degree-of-freedom, however, the window size of the
shaping filter has higher relevance in the accuracy of the estimations: a small window size
for the shaping filter, combined with a small window size for the maximum-likelihood
algorithm, results in higher errors.
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(a) First degree of freedom.
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(b) Second degree of freedom.

Figure 4. Estimation errors in the five-bar linkage with gyroscopes on both cranks for different
window sizes. The horizontal axis represents the window size used in the shaping filter (SH) and
maximum likelihood algorithm (ML).

This behavior can also be seen in the five-bar linkage with a pair of accelerometers
on each crank. The estimation errors in this scenario are shown in Figure 5. In this case, a
window of small size in the shaping filter results in higher errors, in spite of the window
size employed in the maximum-likelihood algorithm.
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Figure 5. Estimation errors in the five-bar linkage with a pair of accelerometers on both cranks for
different window sizes. The horizontal axis represents the window size used in the shaping filter
(SH) and maximum likelihood algorithm (ML).

The explanation for these results can be related with the properties of the autocorre-
lation of the innovation. When the four-bar linkage is combined with an encoder on the
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crank, the innovation sequence of the conventional errorEKF is already close to white noise.
Hence, the effect of the shaping filter is less relevant that the effect of the ML. However, in
the case of the five-bar linkage with gyroscopes on the cranks, the innovation sequences are
quite autocorrelated for both sensors, especially for the gyroscope placed on the first crank.
Therefore, if the innovation of the system is autocorrelated, a shaping filter with a small
window size does not effectively correct the autocorrelation of the innovation, yielding
higher errors.

The autocorrelation of the innovation sequence for the four-bar linkage with an encon-
der on the crank is shown in Table 4. In this configuration, the innovation in the errorEKF
can be considered white noise because of the value of its autocorrelation. Therefore, the
innovation sequence used to estimate ψ is going to be close to white noise in spite of the
window size selected. The most determinant factor in these situations is the window size
employed for the estimation of the plant noise. In addition, the estimated plant noise will
also affect the minimum autocorrelation that can be achieved in the innovation sequence.

Table 4. Autocorrelation of the innovation for the observations in the encoder in the four-bar linkage
for the AerrorEKF_SH with different window sizes and the errorEKF.

AerrorEKF_SH
errorEKF

SH
ML 50 250 500

50 0.0566 0.0038 0.0075 0.0034

250 0.0567 0.0040 0.0080 0.0034

500 0.0559 0.0038 0.0074 0.0034

750 0.0563 0.0038 0.0074 0.0034

When simulating the five-bar linkage with gyroscopes on the cranks, the innovation
sequences of both sensors in the errorEKF are autocorrelated, especially in the gyroscope
of the first crank. In this situation, the window size selected for the shaping filter has an
influence on the accuracy of the results and in the whiteness of the innovations. As can be
seen in Table 5, the simulations with the smaller window size lead to innovation sequences
which are not as white as expected. This turns into higher errors in the estimations, as
shown in Figure 4.

This behavior is also related with the estimation of ψ. With small window sizes for
the shaping filters, the value of ψ fluctuates rapidly. Figures 6 and 7 show the estimation
of ψ under different window sizes for the four-bar linkage with an encoder on the crank
and the five-bar linkage with a gyroscope on each crank. In cases where the innovation
is already close to white noise, as in the case of the four-bar linkage with an encoder on
the crank, these fluctuations do not affect in the accuracy of the results. However, when
the five-bar linkage is configured with two gyroscopes in the crank, the innovation is still
autocorrelated due to the strong fluctuations of ψ. When the window size of the shaping
filter increases, the value of ψ is more stable and the Aerror_SH is capable of correcting the
autocorrelation of the innovation sequence, improving the accuracy of the results.

Regarding the estimation of the plant noise, Figures 8 and 9 show the estimated value
of σ in the four-bar linkage with an encoder on the crank and the five-bar linkage with a
gyroscope on each crank. It can be seen how, despite the window size, the estimation of the
plant noise converges to a value of the same order of magnitude. However, the estimation
shows more oscillations with small window sizes, while it is more consistent with high
window sizes.
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Table 5. Autocorrelation of the innovation for the observations in the gyroscopes in the five-bar
linkage for the AerrorEKF_SH with different window sizes and the errorEKF.

(a) First degree of freedom.
AerrorEKF_SH

errorEKF
SH

ML 50 250 500

50 0.628 0.135 0.116 0.824

250 0.222 0.126 0.113 0.824

500 0.221 0.126 0.110 0.824

750 0.221 0.126 0.110 0.824

(b) Second degree of freedom.
AerrorEKF_SH

errorEKF
SH

ML 50 250 500

50 0.187 0.064 0.056 0.443

250 0.109 0.067 0.061 0.443

500 0.108 0.065 0.059 0.443

750 0.108 0.064 0.059 0.443
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Figure 6. Estimated value of ψ in the four-bar linkage with an encoder on the crank. The sliding
window size for the maximum-likelihood algorithm varies from 50 to 500 samples. For the shaping
filter, the window varies from 50 to 750 samples.
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Figure 7. Estimated value of ψ in the five-bar linkage with a gyroscope on each crank. The sliding
window size for the maximum-likelihood algorithm varies from 50 to 500 samples. For the shaping
filter, the window varies from 50 to 750 samples.
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Figure 8. Estimated plant covariance noises under different window sizes in the four-bar linkage
with an encoder on the crank.
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Figure 8. Estimated plant covariance noises under different window sizes in the four-bar linkage
with an encoder on the crank.
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Figure 9. Estimated plant covariance noises under different window sizes in the five-bar linkage
with a gyroscope on each crank.
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Figure 9. Estimated plant covariance noises under different window sizes in the five-bar linkage with
a gyroscope on each crank.

It is interesting to see how, for a window size of 50 samples for both algorithms, the
fluctuations in the plant noise estimation in the five-bar linkage are strong compared with
higher values of window size for the shaping filter. Meanwhile, in the four-bar linkage
with an encoder on the crank, the estimated plant noise is similar for the different window
sizes employed in the shaping filter. This reflects again the effect of not correcting the
autocorrelation of the innovation sequence; if the window size of the shaping filter is
small, and the innovation tends to be autocorrelated, the shaping filter will not be able
to effectively correct the innovation sequence, thus reducing the overall performance of
the filter.

3.2. State Estimation

The accuracy of the estimations provided by the AerrorEKF_SH is tested using again
the the four-bar and five-bar linkage mechanisms (Figure 1) considering the different set
of sensors depicted in Figure 2. The window sizes for the plant noise estimation and ψ

estimation are of 500 samples for both algorithms. The tests considered were performed
using the three-simulation method, with the conditions explained in Section 2. The tests were
performed with simulations of 180 s, but the first 20 s were not taken into account to let the
adaptive methods capture the behavior of the mechanism and adapt to it. The root mean
squared error (RMSE) of the test with the four-bar linkage is shown in Figure 10.

These figures show that all the methods perform to a similar level (same order of mag-
nitude). The errorEKF is usually more accurate than the adaptive errorEKF (AerrorEKF),
but when the shaping filter is added (AerrorEKF_SH), it reaches about the same accuracy
as the errorEKF. However, this errorEKF was hand-tuned, which is a specialized task that
requires a long time, especially for complex systems. On the other hand, the adaptive
methods only require the selection of a window size, which is much easier, since it is an
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integer number. Moreover, they can adapt to variable conditions, such as mechanism
degradation, or unknown time-varying forces.
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Figure 10. RMS error measured at position, velocity, acceleration and force levels, all evaluated at the
crank angle.

The estimation accuracy of the kinematic magnitudes is quite high for all the methods
and with all the sensors for most applications. The worst estimation is achieved with the
encoder, and even in this case, the accuracy of the estimation at position level is better
than that of the encoder itself due to the added noise, and thanks to the estimator, accurate
estimations of velocity and acceleration are also achievable with only this position sensor.
The results from the other sensors considered are better than those of the encoder, and
even position estimation is possible for the maneuvers tested using only one angular rate
sensor (gyroscope or gyro) on the crank or on the coupler, or a pair of accelerometers on
the crank. Position, velocity and acceleration estimations using only the encoder are shown
in Figure 11. It can be seen that even with this sensor, which provides the worst estimation
accuracy, the estimations are almost indistinguishable from the reference signals.

However, the situation with force estimations is worse. Force estimations achieved
with the encoder can be seen in Figure 12. In the upper plot in this figure, the estimation
from 20 to 180 s is shown. In the lower plot, just 10 s are shown for the sake of clarity. The
three methods behave similarly, with a low-accuracy estimation, and with a noticeable
delay when sudden changes in force are required. At this point, it is worth pointing out
that there is not actually any torque applied to the crank of the mechanism, but there is a
wrong value of the gravity acceleration applied to the mechanism with errors. Since this
difference is introduced as a modeling error which is supposedly unknown, the estimator
tries to correct it by applying a force on the degrees of freedom which compensates the
acceleration error. In this case, since the degree of freedom is an angle, the force is actually
a variable torque which aims to compensate for the effect of the gravity error. The reference
line provided here is the torque that should be applied to the crank of the model with errors
to have the same acceleration as the reference model when both models have the same
position and velocity. In other problems, where the designer might know where the error
comes from, the method can be modified to apply the correction force in a more realistic
way, as shown in [7], where a vehicle is studied, and the correction forces are applied to
the tires, instead of being applied to the degrees of freedom. Going back to the plots in
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Figure 12, it can be seen that the force estimation is not accurate, especially when the force
presents a fast change in value, where the estimation acts with a noticeable delay.
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(a) Position estimation.
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(b) Velocity estimation.
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(c) Acceleration estimation.

Figure 11. Position, velocity and acceleration estimations using an encoder on the crank.

The situation improves with the other sensors. When the gyroscopes are used, the
accuracy is improved and the delay is not appreciable any more. Finally, with the accelerom-
eters, the estimation is the best among all the sensor configurations considered in this work.
The results of the force estimation with the accelerometers are shown in Figure 13.
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(a) Estimated crank torque using an encoder on the crank.
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(b) Zoom of the estimated crank torque using an encoder on the crank.

Figure 12. Force estimation with an encoder on the crank.
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(a) Estimated crank torque using two accelerometers on the crank.
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(b) Zoom of the estimated crank torque using two accelerometers on the crank.

Figure 13. Force estimation with two accelerometers on the crank.

Finally, as an indicator that the estimators are working properly, the sequence of the
innovation should resemble white noise, and therefore, the periodogram of the innovation
sequence should be a straight line. This information was used to tune the errorEKF by
hand, and it is also used to check that the adaptive methods are working properly. The
results of all the maneuvers performed with the four-bar linkage are shown in Figure 14.
All the methods approximate a straight line quite well, with the exception of the normal
accelerometer (the accelerometer installed perpendicular to the crank), whose innovation
periodogram is the worst. The trends of the periodograms are very similar for both adaptive
methods, but the method with the shaping filter is closer to a straight line in all cases. It is
worth pointing out that the plant noise for the errorEKF is constant and it is the same for
all the maneuvers, while the adaptive methods vary the plant noise continuously, and thus,
it is not constant even within every single test.

With the five-bar mechanism, most of the results are similar to those obtained with
the four-bar mechanism. The RMS errors are shown in Figure 15. The trends are similar
to those observed with the four-bar mechanism, with the exception of the position error
with gyros on the cranks, which are higher than expected for both adaptive methods. The
reason for this behavior can be partially explained because the convergence of the adaptive
methods is slower in this particular example, and it is harder for them to compensate for
the initial position error. However, even at the final stage of the tests, when all the methods
achieved a steady-state solution, the errorEKF still performs slightly better than both of the
adaptive methods on both degrees of freedom.

Regarding the computational cost, a comparison of the different algorithms is shown
in Figure 16. However, it must be pointed out that the implementation used in this work
was performed in Matlab, whose main focus is not efficiency, and also, the MBDE library
used is not intended for efficiency but for flexibility and fast development of new methods.
Therefore, the data of computational cost must be taken just as a worst-case scenario. A
dedicated program in Matlab might be about twice as fast, and the difference would be
greater if a compiled language, such as C++, were used instead. That said, in this case, it
can be seen that the increase in computational cost of the five-bar tests with respect to the
four-bar ones is 44% for errorEKF, 52% for AerrorEKF, and 57% for AerrorEKF_SH.
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Figure 14. Periodograms of the innovation sequence of all the tests performed with the four-bar
linkage. The dashed line represents the periodogram of the innovation, and the blue zone is the 95%
confident interval with respect to the ideal periodogram. The rows show the different methods, and
the columns show the different sensor sets.
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(b) Velocity error (RMSE).

Encoder Gyro
crank

Gyro
coupler

Accelero-
meters

0

1

2

Er
ro

r
(r

ad
/s

2 ) errorEKF
AerrorEKF
AerrorEKF_SH

(c) Acceleration error (RMSE).
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Figure 15. RMS error of the five-bar mechanism measured at position, velocity, acceleration and force
levels, all evaluated at the crank angles.

Within the same mechanism, the AerrorEKF has a computational cost 1.82 times than
that of the errorEKF when tested with the four-bar mechanism, and 1.92 when tested with
the five-bar linkage. The AerrorEKF_SH has a computational cost 2.41 times that of er-
rorEKF with the four-bar mechanism, and 2.62 times when the five-bar linkage is evaluated.
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Figure 16. Computational cost of the methods compared in this work.

4. Conclusions
In this work, a new method is proposed in the framework of Kalman filters based on

multibody models, known as AerrorEKF_SH. This method includes the characterization
of the plant noise, which results in a filter that can react to unknown changes in the
system under observation, reducing possible divergences and increasing the accuracy
of the estimations. In addition, the characterization of the plant noise simplifies the
implementation of the Kalman filter in real applications.

This new method is an improvement over an adaptive Kalman filter already applied
to multibody models. In the previous algorithm, the covariance matrix of the plant noise is
calculated during the execution of the program, aimed at achieving an innovation sequence
which resembles white noise using a maximum likelihood algorithm. However, this is
not always possible, because this is only guaranteed when the system is linear, and the
noise of both the system and the plant is white and Gaussian. In the case of multibody
systems, in many cases, the errors come from incomplete or inaccurate force models, which
usually force systematic errors at the plant. For this reason, the design of the errorEKF
methods with force estimation assume a random walk model for the unknown forces. But
depending on several other factors, such as the type of force error or even the coordinates
used, the force error might be constant or not, and therefore, the random walk model might
not be the most adequate representation of the force.

For this reason, a shaping filter was added to the adaptive method to whiten the plant
noise, and therefore to help the adaptive algorithm to reach its goal. Both the shaping filter
and the adaptive method using the maximum likelihood algorithm require a window to
extract information from the innovation sequence. The effect of these window sizes was
studied, and it was found that a size of 500 samples on both windows works well without
increasing the computational cost excessively in the use-cases studied in this work.

The new method was tested in two mechanisms (four-bar and five-bar linkages) using
the three-simulation method, and compared with the hand-tuned errorEKF and the previous
adaptive errorEKF without shaping filter. The new method showed good results, with
an accuracy comparable to that of the errorEKF tuned by hand, but with the advantage
that no technical knowledge is required to adjust it to other mechanisms, to different
maneuvers, to the same mechanism but operating in a degraded condition, or even with
variable conditions during the simulation, thus showing several advantages compared to
the previous methods described in the literature.
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