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Introduction Model-based System Testing

What does Model-Based System Testing stand for?

Model-Based System Testing (MBST)

MBST is a new validation paradigm that combines
experimental testing and computer simulation
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Introduction Model-based System Testing

Model-Based System Testing - Required technologies
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Ensure real-time performance in virtual

systems
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Introduction Model-based System Testing

Model-Based System Testing - Advantages

Model-based
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Introduction  Objectives

Contribute to the theoretical foundations

of Model-Based System Testing

Benchmarking framework RT-capable PISE algorithms Co-simulation focused

to test RT performance based on the Kalman Filter on stability and accuracy
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Introduction Motivation

Motivation of this research

Temperature estimation for Extend the knowledge about .
) ) ) . Adapt team expertise to
automotive electric motors RT implementations, state . . .
. . . hybrid and electric vehicles
(collaboration LIM - GKN) observers, and co-simulation
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Development and assessment of real-time simulation software
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@ Development and assessment of real-time simulation software
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Development and assessment of real-time simulation software Numerical formulation

Numerical methods

System to solve: electric, electronic, and thermal circuits

DAE

— differential

®(x,t)=0 (1)| — algebraic
F=Ax+b=0 (2

Possible approaches

= Differentiating Eq. (1) — System of ODEs. [ssues: constraint drift, singular
system matrix X

= Integration of the system of DAEs described in Egs. (1) and (2)
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Development and assessment of real-time simulation software Numerical formulation

Selected approach: DAE Solver

Dynamic equilibrium at ¢,

r(xnt1) =

o

Solving by means of Newton-Raphson iteration
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Development and assessment of real-time simulation software Numerical formulation

Integration formulas - Trapezoidal rule

= Dynamics equations formulated as DAEs, i.e., r(xp4+1) =0

L . 2 )
= Derivatives calculated as x,.1 = ; (Xn41 — Xn) — X

" |ssues:
= Eq. (3) imposes & = 0, but not & = ®,x+ &, =0
® Error accumulation due to a non-unique set of derivatives

= Projection step advisable to fulfill & = 0
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Development and assessment of real-time simulation software Numerical formulation

Integration formulas - Backward differentiation formulas

= Dynamics equations formulated as DAEs as well

. . 1 e
= Derivatives calculated as x,+1 = ~ > z_0BaXn—a+1

= No error accumulation in derivatives

Requirements:

® Access to £ already computed states
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Benchmarks

Development and assessment of real-time simulation software

Proposed benchmarks
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Development and assessment of real-time simulation software Results

Simulation environments

64-bit Intel x86 CPU 64-bit ARM CPU 32-bit ARM CPU
Desktop PC Raspberry Pi 4 BeagleBone Black

(. J | J
OS: Windows 10 2019 H2 OS: Raspbian 4.19.57
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Development and assessment of real-time simulation software Results

Scalable RLC circuit: Real-time boundaries

Low precision scenario High precision scenario

N\ 4 1\
1.00 - 1.00

75 1 /) q 0.75 -

0.25 / TR || " oasf ’ h
— BDF1

/ BDF2
- —=-BDF3

0-00 1,000 2,000 3,000 1,000 5,000 0.00 200 100 500 300
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Simulation length: 1s Simulation length: 1s

= hBDF3 = 2.5ms, hBDF2 = 1ms = hBDF3 = 0.25ms, hBDFZ = 0.1ms
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Development and assessment of real-time simulation software Results

Rectifier: Efficiency assessment

Low precision scenario High precision scenario
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Errors: AVo_3 <1 mV and Igg < 1 mA Errors: AVLo_3 < 10 pV and Ig. < 10 pA

Simulation length: 1s Simulation length: 1s
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Mecanica




Results

Development and assessment of real-time simulation software

Rectifier: Trapezoidal rule issues in derivatives

Evaluation of V5 Overall error in ®
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Results

Development and assessment of real-time simulation software

PMSM: Efficiency assessment

Low precision scenario High precision scenario
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Errors: T < 0.1 K and Qp, < 1 W Errors: T < 10 mK and Qg < 100 mW

Simulation length: 5000s Simulation length: 5000s

hTR = hBDF2 = 100ms, hBDF3 = 250ms

hTR = hBDF3 = 500ms, hBDFZ = 250ms
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State, parameter, and input estimation for digital twins in thermal systems
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State, parameter, and input estimation for digital twins in thermal systems = Modelling and estimation methods

Why is a state estimator necessary?

—I DBC

-
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State, parameter, and input estimation for digital twins in thermal systems = Modelling and estimation methods

Concept of digital twin

( \
A real component instrumented with

sensors and actuators

Digital twin \ J

( N\

A virtual model of the real system as

2-way communication Virtual subsystem realistic and updatable as possible
\ - %
- N\
' Two-way communication between

real and virtual subsystems
(. J

Basics of a digital twin

T EEEEEEEEEEEE s EE ..,
A M

4 \

Guarantee real-time performance and

communication within the DT
(. J
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State, parameter, and input estimation for digital twins in thermal systems = Modelling and estimation methods

Basics of an Extended Kalman Filter

A priori states,
virtual sensors

q.h )
v q A posteriori
Inputs e LPTM Kalman Filter >

,—) states
o

pw  Sensors
) Parameter update

System definition Reduction to State-space ‘Application of
minimal variables representation pp
B(x,v,t) =0 E— 7z = Box ?) state-estimator
VY, _
T'(x,%x)=0 x =Tz + Bv Zs1 = Fozp & Giov equations
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State, parameter, and input estimation for digital twins in thermal systems Benchmarks

Proposed problems

4 N\ g N\

>
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State, parameter, and input estimation for digital twins in thermal systems Results

Simulation environments

64-bit Intel x86 CPU 64-bit ARM CPU

Vs

(. J |\ J

OS: Kubuntu 20.10 OS: Raspbian 5.4.83
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State, parameter, and input estimation for digital twins in thermal systems Results

Generic RC LPTM: Input and resistor estimation

Input source estimation Resistor estimation
( N\ 4 1\
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State, parameter, and input estimation for digital twins in thermal systems Results

Generic RC LPTM: Capacitor and state estimation

Capacitor estimation State estimation
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State, parameter, and input estimation for digital twins in thermal systems Results

3-phase inverter: Junction temperature estimation

Constant input Step input
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State, parameter, and input estimation for digital twins in thermal systems Results

State estimation: Efficiency assessment
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Simulation length: 5s, stepsize h: 1ms




Co-simulation methods for real-time model-based system testing
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Co-simulation methods for real-time model-based system testing  Introduction

Connecting components in MBST environments

Real-time virtual interface

continuous and discrete subsystems
|\ J

H : Need to synchronize execution
o1 | MBS vehicle Subsystem | &
H 5 model 1 H n R J
EE : = N
H . %
Actuators : H o H H
e £ -( H — — - Use of tailored algorithms for each subsystem
- : — —/ =
B )
- H E ( N
HE R Subssen | 3 Guarantee communication between
.o 2 n H
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Co-simulation methods for real-time model-based system testing  Simulation approaches

Monolithic vs co-simulation

e N s N

Component 1 Component 2
X X3

Subsystem 3

Single solver for all components Tailored solvers

All-encompassing set of equations Need to synchronize integrations




Co-simulation methods for real-time model-based system testing  Real-time requirements in co-simulation

Co-simulation configuration options

° e Force-displacement
e Nonmatching e Displacement - displ.
Co-simulation schemes Input extrapolation
e Jacobi e Zero-order hold
: e Gauss-Seidel ... e First-order hold ...
Subsystem M Subsystem M,
e Single-rate e Implicit
e Multi-rate °
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Co-simulation methods for real-time model-based system testing  Coupling schemes

Explicit coupling schemes for real-time applications

Gauss Seide

( N\ 4 1\

o o
“ “

t @ | tert

Parallelizable integration
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Co-simulation methods for real-time model-based system testing  Errors due to a discrete-time co-simulation interface

Real-time explicit co-simulation with constant timesteps

Example to co-simulate Mechanical energy

( A ( \

Selected setup: Matching grids, single-rate, explicit Jacobi, force-displacement

Time-discrete interface introduces discontinuties into the system, affecting its energy



Errors due to a discrete-time co-simulation interface

Co-simulation methods for real-time model-based system testing

Co-simulation quality assessment

Co-simulation

~

-

Power equilibrium deviation 6P

Component 1 | Pgor

Subsystem 2

Component 2 Pcgoa Subsystem 1

Component 3  Pcos

Subsystem 3

Power error caused by the solver Power error caused by the interface,

No interface error but also by the solvers
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Co-simulation methods for real-time model-based system testing  Co-simulation error evaluation

Power residual

ho=H

Laboratorio de Ingenieria Mecanica
Universidade da Cori

Stands for the error in the power
balance of a system as

e Theoretically, P should be zero
e In co-simulation, outputs evaluated
before receiving inputs: dP no longer zero




Co-simulation methods for real-time model-based system testing  Co-simulation error evaluation

Energy residual

Integral of the residual power Actual energy deviation
t
SE / SP(t) dt (6) E(t)— Ey— W () =< (8)  (7)
to

= o (t) =pdE(t)
= |ncrease of mechanical energy for conservative systems

= Deviation from energy balance in nonconservative ones
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Co-simulation methods for real-time model-based system testing

Co-simulation error evaluation

Residual power as indicator of co-simulation quality

Undamped linear oscillator Damped linear oscillator

s N s N
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E
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Co-simulation methods for real-time model-based system testing  Correction method

imulation energy correction

4 N\

A usually position or speed, whereas B3 often

force, pu and k;, corrective coefficients
(. J

B+ Buorr

4 N\
wOE*! energy intended to correct, however,

BEL A2 H s finally corrected
(. J

k+1 k
Bk+1 _0E + ki £ +1

corr — 'U_Ak+1 H -

Ak+1 H (8)

s N

B is assumed constant, but A usuall
gk+1 — gk +/,L5Ek+l + Blg(;l;rlAk+2H (9) co.rr y
varies between two macrosteps

. J

Energy correction method

s N

Correction depends on R, extrapolation

order, and direct feedthrough
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Co-simulation methods for real-time model-based system testing  Correction method

Selection of the correction coefficient 1

Largest step — direct feedthrough Smallest step — direct feedthrough

'd N\ 'd N\
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Co-simulation methods for real-time model-based system testing = Benchmarks

Proposed benchmarks

Double oscillator Coupled pendula Hydraulic crane

A B 0,
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Co-simulation methods for real-time model-based system testing  Results

Linear oscillator: errors and correction

Mass 2 displacement Mechanical energy

( N\ 4 1\
6T T i — T
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g
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Co-simulation methods for real-time model-based system testing  Results

Linear oscillator: errors and correction

Mass 2 displacement Mechanical energy

( N\ 4 1\
3 . -101
[— Uncorrected —— Corrected - == Reference | 1.00 T T T T T T . . .
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Co-simulation methods for real-time model-based system testing

Results

Coupled pendula: errors and correction

Mass 2 horizontal displacement Mechanical energy

N\ 4 1\
54 T
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| = 52
=
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g
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Co-simulation methods for real-time model-based system testing  Results

Hydraulic crane: errors

Residual power Actuator displacement
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and hyy = 0.lms, FOH, incorrect dynamics




Model-based test bench for electric motors
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(@) Model-based test bench for electric motors

Laboratorio de Inge Mecanica

Universidade da Coru



Model-based test bench for electric motors Implementation

Cyber-physical test benches

( )

Real components are interfaced to

simulations
Full-vehicle virtual model (b) |\ J
<=
\ (@) ( )
= . .
— ¢ 9 Systematic and repeatable gathering
electonics . of experimental data
(O \. J
B " Sen wding: +
\M‘m Lﬁn‘l‘v Dmf"il [0 - ~
= | Easy and safe to reproduce dangerous
o
— P4 | manoeuvres
commands < N )
[a
4 A

Prototype-driven testing strategies

Driving interface (d) Controller (c) Test bench (a)

do not often allow this flexibility
(. J
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Model-based test bench for electric motors Implementation

Application: testing e-powertrain components

( N\
Gain insight into component

behaviour and mutual interaction

|\ J

( N\

Enhance virtual models of the

- components
|\ J
< ( D
= ' Verify the effect of new materials and
| < Motor 1 ,
. et designs
2. = ~ <
4 A

Enable early tests when full-vehicle

Why using cyber-physical tests?

prototypes are not available yet

(. J




Model-based test bench for electric motors Implementation

Test bench for automotive-grade e-motors

MBST evaluation of

automotive-grade electric motors

Currently under construction

Back-to-back configuration

Automotive test bench

N

Two three-phase PMSMs of up to
200 kW, 15,000 rpm, and 400 Nm
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Model-based test bench for electric motors  Prototype

Prototype test bench

( \
Cyber-physical testing device

(. J

( N\

Two low-power BLDCs in a

back-to-back configuration
(. J

4 \

First motor is under test

(. J/

Prototype test bench

( \
Second motor applies the load

calculated in the simulation
(. J
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Model-based test bench for electric motors  Prototype

Prototype test bench - Results

4 N\

Torque-speed in motors are updated

stop

Torque (mNm)  Speed (rpm)
Real Target Real Target

by a simulation or sliders

& -

- - (O8N \_ J
=
@
Q
+— 'd )
0 .
§of | Currently evaluating errors due to

T =8l | the co-simulation scheme

> RN J
et
[}
e
o
o N
o

Intended to be demonstrator of

algorithms developed in this research
(. J
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Conclusions and future work
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Conclusions and future work  Conclusions

Conclusions
Real-time models PIS estimation

DT is of help in MBST, consisting
of physical and virtual systems,
and their mutual communication

Multiphysics models contribute to
a better understanding of the
interactions between components

PISE techniques based on Kalman
Filters can be incorporated to the
digital twin

Models are required to interact in
RT within MBST environments

A Itiplatform fi ork i . . .
muttipiatiorm framework 1 Possibility to estimate magnitudes that

necessary to evaluate RT performance
cannot be measured by sensors
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Conclusions and future work  Conclusions

Conclusions
Cyber-physical test benches

4 A
RT co-simulation allows to integrate
separately real and virtual

components in MBST o . .
MBST application, in which some

real components are interfaced

Co-simulation may introduce artificial to a computer simulation

energy or damping into the system

. . . . The objective is to ensure the
Important to identify co-simulation

errors and eliminate them, before
the numerical integration becomes
unstable or inaccurate

reliability in cyber-physical applications
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Conclusions and future work  Future work

Real-time models PIS estimation

Model-order reduction for Sensitivity analysis for

single-board computers the LPTM initial tuning

Cyber-physical test benches

Generalization of error monitoring Gain insight into e-powertrains through

and correction algorithms test campaigns and validation
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Conclusions and future work  Works derived from this thesis

Works derived from this thesis

= Published journal papers
= B. Rodriguez, F. Gonzalez, M. A. Naya, and J. Cuadrado. Assessment of Methods for the Real-Time
Simulation of Electronic and Thermal Circuits. Energies (2020). DOI: 10.3390/en13061354.

= B. Rodriguez, E. Sanjurjo, M. Tranchero, C. Romano, and F. Gonzalez. Thermal Parameter and State
Estimation for Digital Twins of e-Powertrain Components. |[EEE Access (2021). DOI: 10.1109/AC-
CESS.2021.3094312.

= Submitted journal papers (under review)

= B. Rodriguez, A. J. Rodriguez, B. Sputh, R. Pastorino, M. A. Naya, and F. Gonzalez. Energy-based
Monitoring and Correction to Enhance Accuracy and Stability of Explicit Co-simulation Schemes.
Multibody System Dynamics - Special Issue on Co-simulation.

= Journal papers in preparation

= | Tamellin, B. Rodriguez, D. Richiedei, and F. Gonzalez. Eigenstructure of Explicit Co-simulation
Problems.

Laboratorio de Ingenieria Mecanica

Universidade da Corufa



Conclusions and future work  Conference communications
Conference communications

= Conference communications
= B. Rodriguez, F. Gonzalez, M. A. Naya, and J. Cuadrado. A Test Framework for the Co-simulation
of Electric Powertrains and Vehicle Dynamics. In 9th ECCOMAS Thematic Conference on Multibody
Dynamics, Duisburg, Germany, July 2019.

= B. Rodriguez, A. Zar, F. Gonzalez, M. A. Naya and J. Cuadrado. Use of Energy Indicators in the
Explicit Co-simulation of Multibody Systems. In Proceedings of the ASME 2020 International Design
Engineering Technical Conferences & Computers and Information in Engineering Conference, Saint
Louis, USA, August 2020.

= B. Rodriguez, A. Zar, B. Sputh, M. A. Naya, F. Gonzalez and R. Pastorino. Evaluation of Indicators
for the Accuracy and Stability of Explicit Co-simulation Schemes. In COSIM 2021 - International
Symposium on Co-Simulation and Solver Coupling in Dynamics, Ferrol, Spain, May 2021.

= B. Rodriguez, A. J. Rodriguez, D. Maceira, E. Sanjurjo, U. Lugris, M. A. Naya, F. Gonzalez and J.
Cuadrado. Cyber-Physical Test Benches for Model-Based System Testing of Electric Motors. In 1st
International Conference on Machine Design, Porto, Portugal, September 2021.
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Conclusions and future work  Conference communications

Conference communications

= Conference communications (cont.)
= B. Rodriguez, A. J. Rodriguez, D. Maceira, F. Bottero, E. Sanjurjo, U. Lugris, M. A. Naya, F. Gonzalez
and J. Cuadrado. Development of a Cyber-Physical Test Bench for E-Powertrain Components. In
10th ECCOMAS Multibody Conference 2021, Budapest, Hungary, December 2021.

= G. Boschetti, F. Gonzalez, G. Piva, D. Richiedei, B. Rodriguez and A. Trevisani. Synthesis of an
Extended Kalman Filter for Cable-Driven Parallel Robots. In 10th ECCOMAS Multibody Conference
2021, Budapest, Hungary, December 2021.

= Submitted conference communications
= B. Rodriguez, A. Zar, F. Gonzalez, M. A. Naya and J. Cuadrado. Monitoring Energy Errors in Explicit
Co-Simulation Setups. In 6th Joint International Conference on Multibody System Dynamics and
10th Asian Conference on Multibody System Dynamics, New Delhi, India, October 2022.
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