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Motivation
Simulation

● One of the most commonly used tools in the industry to research, create, 
test and operate machines and mechanisms

● Source of costs and time savings

● In the manufacturing line:
 Fast design evaluation
 Prototype testing stage reduction
 Assembly line early error detection

● As training platform:
 Operator physical risk minimization
 Hardware costs and risk reduction for expensive machinery
 Training courses automated evaluation
 Simulation of hard or unusual working conditions
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Motivation

Virtual assembly
● Contact is a key factor to obtain accurate results 

in complex simulations

● Many machinery parts fit into each other, creating 
conforming contacts: the size of the contact 
footprint is not negligible compared to the size of 
the bodies

● Human-machine interaction imposes real-time 
execution requirements

● Contact model must be accurate and realistic
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Motivation

The problem with many contact models: realistic contacts and collisions
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[Forza Horizon 4]




Motivation

DYNAMICS ENGINE
Real-time

Numerically robust
Small number of 

contacts
Not realistic

FEM METHODS
Accurate

Closer to a real 
pressure distribution

Many contacts
Slow

WHAT WE NEED
Real-time capable

Numerically robust
Accurate
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Multibody dynamics

● Multibody dynamics enables the systematic computation of motion in 
mechanical systems

● The system is defined as an interconnected group of every element

● Robust, efficient, flexible and real-time capable

● A set of coordinates, a formulation and an integrator are combined to 
mathematically express mechanism dynamics
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Multibody dynamics

Natural coordinates

● Every element is defined independently

● Reference points are located on the joints and can be shared

● 4 entities needed: 1 point + 3 vectors

● Position and orientation are expressed easily

● Constraints are simple expressions
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Multibody dynamics

Index-3 Augmented Lagrangian formulation with projection of velocities 
and accelerations

● Penalty at position level only

● Contraints are fullfilled but their derivatives (       ) are not

● Velocities and accelerations must be projected

DAE ODE
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Multibody dynamics

Newmark integrators

● Implicit: I3AL formulation couples solving of the EOM with integration

● The system of equations is solved by the Newton-Raphson iteration

● Terms from applied forces must be differenciated, and an approximation 
for the tangent matrix is used 
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Multibody dynamics

Initialization
t = 0

Time loop
t = t + h

Iteration loop
i = i + 1

Corrector

Predictor

Computation of velocities and accelerations:

Projection of velocities and accelerations

Err < tol

yes

no

t = tendStop
yes

no
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Contact model

● There are different approaches to the contact implementation

● Contact complexity determines the contact model requirements

● Virtual assembly requirements:

 Accurate in order to simulate machinery pieces that drive each other

 Real-time to allow interactive frame-rates

 Conforming-contact capable to enable contacts between arbitrary-size 

surfaces and fitting pieces

15/59



Contact model

Complementary methods

● Instantaneous impacts through instantaneous change in the balance 
momenta

● Imposed restrictions to handle long-duration contacts
● Not well-suited for neither I3AL formulation nor our friction model

Penalty methods

● Based on regularized-force models
● Forces are proportional to deformation to avoid penetration
● Usually based on Hertz contact theory:

 Assume contact areas much smaller than the characteristic body 
dimensions

 Not valid for conforming contact
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Contact model

Gonthier model
● Based on a modified Winkler elastic foundation
● Mimics a contact force distribution derived from the inter-penetration
● Based on the mesh intersection volumetric properties
● Includes spinning friction and rolling resistance
● Valid for any geometries with reasonably flat contact area

Normal model
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Contact model

Tangential model

● Sliding friction:

● Rolling resistance:

● Spinning friction:
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Contact model

Bristle model [Dopico10]

● The stiction force is considered by means of viscoelastic elements 
acting between the colliding bodies, called bristles
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Collision detection
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Collision detection

Collision detection stages
● Force model requires the computation of intersection volume, 

centroid and inertia tensor.
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Detect bodies in contact

Build intersection volume

Calculate intersection 
properties

Feed contact model



Collision detection

Geometric representation

● NURBS: free form surfaces. Flexible, non-real-time 

● CSG: boolean operations. Non general

● Mesh discretization. General and real-time, approximate

Method B:
Volume elements
● Sphere fillings

Method A:
Surface elements
● Triangle meshes
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Triangle mesh method implementation

● LIMCODE: LIM Collision Detection
 C++ language
 Does not require a specific mesh format
 Data type agnostic: float, double, multi-precision

Collision detection

Far detection stage
● Object level
● Simple tests to discard 

objects far apart
● Ignored if few objects

Near detection stage
● Primitive level
● Precise intersections
● Hierarchical classification
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Collision detection

Intersection volume computation: overview

1. Intersecting faces detection
2. Clipping
3. Internal faces detection
4. Reconstruction
   
                        Step 1)               Step 2)               Step 3)               Step 4) 
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Step 1: AABB tree
● Hierarchical node structure
● Every node is a AABB volume
● Node AABBs are split by a plane perpendicular to their 

biggest dimension axis passing through the triangle 
group COM

● Collision check is performed AABB vs OOBB:   T’B=TA
-1TB 

● O(log(n))
● Traversal ends when two leaf nodes holding one 

triangle are tested

Collision detection
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Collision detection

Step 1: Triangle intersection

● AABB node test is not sufficient: box-box intersection

● does not guarantee mesh contact 

● Devillers-Guigue method:

 Combinatorial stage: vertex relative position detection and reordering

 Evaluation stage: actual collision check
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Collision detection

Step 2: Binary Space Partition Tree
● Needed to check if an entity lies in the inside/outside of 

the object
● Used for determining inner/outer points while clipping 

triangles 
● Successively splits the mesh by a plane until each sub-

mesh is a convex cell
● Object facets are used as splitting planes
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Collision detection

Step 2: Polygon clipping
● During the intersection stage, polygons must be cut 

against a plane
● Clipped polygons must be reconstructed
● Brittle numerical task if performed naively. Risk of 

inconsistent output
● Bernstein’s implementation:

 Follow each vertex in order and classify it using 
predicates

 Implemented as a Finite State Machine
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Collision detection

Geometrical predicates

● Classification operations on meshes are floating-point error prone, which 

can generate non-watertight meshes that lead to force inconsistencies

● Predicates are modularized expressions of common geometrical checks

● Geometrical inconsistencies are removed

● Common examples: point over/under plane, line-triangle intersection  

  Sugihara                                                                                                         Devillers-Guige
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Collision detection

Step 3: Half-edge structure [Lee79]

● Used to traverse a mesh surface over its faces, 

edges or nodes

● Facets connectivity info is precomputed

● Nodes hold a reference to:

 Next vertex

 Actual facet

 Opposite half-edge node

 Next half-edge node
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Collision detection
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Step 3: Intersection hull closing algorithm
● Locate internal facet (BSP)
● Traverse HE structure and create neighbor list
● Add to list internal facets that are not on intersection 

facets list
● Continue until traversal cannot advance



Collision detection
Step 4: Volume properties computation
● Clipped intersecting triangles + internal triangles: 

manifold mesh
● Volume, center of mass and inertia tensor can be 

computed 
● “Fast and Accurate Computation of Polyhedral Mass 

Properties” [Mirtich96]

● Eberly further simplifies Mirtich’s expressions for 

polyhedra with triangular faces
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Collision detection

Inner Sphere Trees method implementation
● More general alternative than mesh detection
● Objects are approximated to non-overlapping, different-

size sphere collections: sphere packings
● Computer Graphics Group U. Bremen: ProtoSphere, 

CollDet
● Inner Sphere Tree hierarchy:

 Nodes are also spheres
 A node covers all its leaves but not all its direct children
 ~10k spheres: rough approximation (85%), ~100 contacts
 IST - IST intersection: sphere pairs list. Multiple contact 

forces: one for every colliding pair
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Collision detection

Sphere - sphere intersection
● Distance between two given spheres (RA > RB)

        A)  d ≥ RA + RB  :  No contact

        B)  RA ≥ d + RB  :  Sphere B inside A

        C)  d ≥ dA          :  Less than half sphere B inside A

        D)  d < dA                :  More than half sphere B inside A

● Mass properties are simple expressions: spherical caps
● Intersection properties are added-up to get the total 

values
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Collision detection

Numerical error optimization
● Previous expressions are bad numerically conditioned  due to 

magnitude ratio between coordinates and indentations
● Truncation and loss of significance can lead to division-by-zero among 

other effects
● HERBIE tool: identifies errors known to operators and rewrites 

expressions to minimize floating-point error [Panchekha15]
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Collision detection

MBSDEBUG: data export and visualization tool
● Collision data is exported to Paraview: face/vertex indices, colliding 

triangles, clipped triangles, inner triangles, collision contours, normals
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Results
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Results

Test 1: block sliding on plane

● Designed to validate the normal and tangential 

models

● m = 1 kg

● Dimensions 1m x 0.5m x 0.5m

● Compare critical angle vs theoretical one 

● 4-second simulation at 30º: trajectory, velocity, 

angular deviation (roll, pitch, yaw) errors
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Results

Test 1: mesh model

● Simplest triangular mesh possible for block and floor

● Started sliding at 26º (97.87% of the theoretical value)

● Effects of the initial non-penetration position: small 

transition phase

● Trajectory, velocity and angular error plots show 

minimal deviation from expected values
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Results

Test 1: Inner Sphere Tree model

● ~12k (block) and ~15k spheres (floor)

● Multiple forces are applied

● Bristle model does not stabilize, block is not stopped

● Trajectory, velocity and angular errors are significant
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Angle (º) Residual velocity (m/s)

10 1 x 10-5

22 1 x 10-4

23 1 x 10-3

25 1 x 10-2



Results

Test 1: video comparison
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                                    Triangle mesh model                           Inner Sphere Tree model




Results

Test 1: velocity profiles
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                       Triangle mesh model                                                      Inner Sphere Tree model



Results

Test 1: trajectory profiles
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                       Triangle mesh model                                                      Inner Sphere Tree model



Results

Test 2: disk rotating on a plane

● Designed to validate the spinning friction model

● m = 1 kg

● R = 0.25 m       H = 0.05 m

● ω0 = 5π rad/s

● Trajectory, velocity, angular velocity and angular deviation

● Theoretical stop at  t = 0.5 s
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Results

Test 2: mesh model

● Friction not constant: depends on the angular velocity

● Logarithmic decrease instead of linear

● Braking response smooth but braking time inaccurate (1s)

● Trajectory and angular error very low (~1 x 10-4)
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Results

● Test 2: Inner Sphere Tree model

● ~11k spheres (disk) and ~21k spheres (floor)

● Almost linear braking response

● Stop time close to theoretical one

● Higher trajectory, velocity and angular errors

● Rough response with vibrations
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Results

Test 2:  video comparison
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                                   Triangle mesh model                               Inner Sphere Tree model




Results

Test 2: angular velocity profiles
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                       Triangle mesh model                                                      Inner Sphere Tree model



Results

Test 3: cylinder rolling on a plane

● Designed to check the quality of the rolling resistance model

● m = 1 kg     R = 0.25 m     H = 1 m

● 15º inclination plane

● Trajectory, velocity and angular errors 
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Results

Test 3: mesh model

● Velocity profile matches closely the theoretical solution

● Minimal trajectory and angular errors

● Trajectory error shows quadratic evolution 

● Great plane inclinations induce increasing frequency noises in the graphs
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Results

Test 3: Inner Sphere Tree model

● ~9k spheres (cylinder) and ~6k spheres (ground)

● Ground homogeneous sphere distribution was needed

● Velocity profile a little lower than theoretical

● Sphere collisions perceptible as “steps”

● Small trajectory and angular deviations
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Results

Test 3:  video comparison
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                                    Triangle mesh model                           Inner Sphere Tree model




Results

Test 3: velocity profiles
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                       Triangle mesh model                                                      Inner Sphere Tree model



Results
Performance comparison
● Graphic output disabled
● Full simulation including object loading, preprocess and output

Test Model
Simulated 

time
Execution 

time
Real Time 

ratio

Sliding 
plane

Mesh 4 1.362 0.340

Spheres 4 25.754 6.438

Rotating 
disk

Mesh 1.5 1.973 1.315

Spheres 0.5 12.397 24.794

Rolling 
cylinder

Mesh 3.5 1.893 0.540

Spheres 3.5 12.503 3.572
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Conclusions and future work
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Conclusions and future work
Contributions

● A Gonthier volumetric contact model was implemented to simulate 
conforming contacts in real-time. A collision detection library (LIMCODE) 
and data a export and visualization library (MBSDEBUG) were also 
created. A volumetric properties calculation algorithm was developed on 
top of CollDet library.

● Two different collision detection algorithms (meshes and spheres) were 
employed.
 Triangle mesh model
 Inner Sphere Tree model (developed at CGVR U. Bremen)

● Three different tests were designed to validate different aspects of the 
force models: sliding/sticking, spinning and rolling.
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Conclusions and future work

Conclusions
●

● Mesh model:
 Real-time
 Accurate
 Less general
 Restricted to planar contours

● IST model:
 Not real-time
 Less realistic
 More general
 Dependent on object dimensions ratio

● Mesh model ran ~20 times faster yielding more realistic simulations
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Conclusions and future work

Future work

● Collision generalization: more tests, multiple objects, complex contacts

● Optimizations: larger time-steps, calling collision detection once per 

time-step

● Parallelization

● Time critical IST collision detection

● Multiple contact stiction

● Arbitrary shape decomposition for non-planar contour collisions
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